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Intro

Adaptive testing is critical to support production-grade AI applications at scale. This enables AI teams to 
leverage behavioral distributions to create a comprehensive definition of an app’s desired behavior that can 
be refined over time. Thus enabling teams to quantifiably test and investigate when there are deviations 
from that desired behavior. 


Distributional provides an enterprise platform for adaptive testing, which is designed to meet the scale and 
performance needs for AI teams to continuously test, understand, and refine application behavior. Using 
Distributional’s platform, customers are able to shorten the development cycles for AI, productize higher 
value applications, and keep them in production. All while minimizing risk to the business with the 
confidence that these applications are behaving and will continue to behave as desired. 


Distributional’s platform was designed to easily integrate with existing tools and workflows, and to scale 
alongside AI teams and their projects. The architecture is intentionally streamlined to result in efficiencies 
and simplified management in the long run. 


This guide was written to help AI teams quickly get up to speed on Distributional’s architecture so they can 
hit the ground running. In the following pages, we’ll share key terminology, take a deep dive into the 
technical architecture, and review how it can integrate into existing architecture. 
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Distributional Workflow & 
Terminology

Before diving into how the Distributional platform is designed, it’s 
important to understand some key terms related to how Distributional 
implements adaptive testing for AI apps. These help to break down the 
types of computation in the system done to create a statistical 
representation of behavior for AI applications.



The first step with Distributional is for a 
user to send data to the platform.



A dataset includes  of running the application (such as inputs 
and outputs for a question / answer app), and can be augmented with 
as few or as many  as available.


As long as the dataset fits in a pandas DataFrame, Distributional is able 
to start working with it.


A metric is a measurable property of the app. These could include: 
response time, word count, token count, LLM-as-judge metrics, etc. 
Metrics can be both user-created (such as existing evaluation metrics) 
and generated by Distributional automatically.

Dataset


examples

metrics

METRIC


WHAT MAKES A GOOD EXAMPLE 
OF APP USAGE?


An example is the data related to 
a single instance use of your app. 
If additional context is added, 
Distributional is able to compute 
a more complete definition of app 
behavior. Here’s an example of 
some common columns and 
attributes for a question / answer 
application:


Question: The question 
inputted into your app by the 
user. 


Answer: The answer outputted 
by your app. 


Response time: The time it 
took the app to produce the 
answer. 


Context: The context that was 
used to generate the answer 
(e.g. documents retrieved 
from a knowledge base).
 


Eval(s): Performance metric(s) 
already being calculated.
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Once the data is collected, Distributional processes this data to 
generate a Run.



A run is the result of uploading a  to Distributional. It includes a set of  derived from the 
 in the original  augmented with  and other data computed by Distributional, used 

to create a measurable definition of application behavior. 



By quantifying the definition of behavior as a Run, it can now be 
tested for changes to that behavior over time. 



A statistic is an aggregate quantity computed over metrics in one or more runs. Statistics can be used to 
measure changes in the distribution of a metric across runs, for example by computing a Kolmogorov-
Smirnov test.


A test defines the acceptable range of values compared to a baseline . These definitions can be 
automatically generated by Distributional based on known behavior, or defined by the user, creating a 
definition of desired behavior. A test can check for behavioral change between two , or check for 
behavioral constraints of a single run.


A test session compares two  to test for behavioral similarity over time. A test session executes a set of 
predefined  over a  comparing it to a known baseline  and compares the  against a 
set of thresholds.


A test result is the outcome of executing a  as part of a . For each , the test result notes 
whether the test assertion passed or failed when evaluating the  compared to the baseline .


A Similarity Index (Sim Index) is a numerical value — between 0 and 100 — that quantifies how much an 
application or subsets of an application (at the column- and metric-level) has changed between .


RUN


dataset results
examples dataset metrics

STATISTIC


TEST


run

runs

TEST SESSION


runs
tests run run run statistics

TEST RESULT


test test session test
run run

SIMILARITY INDEX


runs
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Once a change is detected, users can be notified, understand the 
change, and take action.



A notification can be triggered on the outcome of a . Users can use their preferred notification 
channels (such as PagerDuty or Slack), to create custom notifications based on the properties of the 

 in a . 


An insight is a piece of human readable evidence explaining the outcome of a . While 
Distributional calculates  and  to test against, it also maintains the lineage to the raw dataset. 
This allows users to explore evidence from  to understand and pinpoint specific properties or 
values that caused the change in behavior. Users then are able to assess whether there is an underlying 
issue in the application that needs to be resolved, or whether the  needs to be recalibrated. 


NOTIFICATION 


test session
test 

results test session

INSIGHT 


test result
metrics statistics

test results

test
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Distributional’s Platform 
Architecture

For the platform to support this workflow and continuously test for behavior changes over time, it needed to 
both be able to handle large, context-rich datasets as well as perform fast, analytic-style processing of that 
data. Let’s go into more detail about how the platform is architected to support this. 


Importantly, Distributional’s platform does not try to replace customers' existing data storage systems. It is 
purposefully designed to integrate with existing data infrastructure, where all the raw logs for the AI 
applications already are stored. Based on the customer-defined ingestion schedule, Distributional is then 
able to efficiently process this data in batch, with inherently no limits on scale. This enables the platform to 
run much more complex analytics against the data, while maintaining its rich context, to derive a 
comprehensive set of metrics and statistics about the applications, as well as calculate changes to these 
over time.


Additionally, unlike systems designed for pure logging and monitoring, users can update or change the data 
provided to Distributional. This gives them the ability to do things like adding in missing data points and 
retrying the processing job, expanding the type of data and context provided, or even recalculating metrics 
based on data from a past point in time. 


Since access to this data is critical, customers deploy and manage the Distributional platform in their private 
cloud environment. This prevents Distributional from becoming yet another technology silo within a 
customer’s overall architecture and allows the platform to live where the data already resides, preventing 
duplicate systems of record or concerns about moving data outside of the existing secure environment. To 
support this though, we purposefully architected it with as few dependencies as possible and leveraged 
industry-standard systems to make it as easy to deploy and manage as possible. 
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At a high level, the platform consists of an API service, a UI service, a worker service, a messaging queue, 
and a database. All three services run on Kubernetes with Redis and PostgreSQL being used for the 
messaging queue and database, respectively. The data is stored in an object store with support for AWS S3, 
Google Cloud Storage (GCS), and Azure Blob Storage. This results in only four external dependencies that all 
leverage industry-standards our customers are already familiar with. 


The core of the platform is the API service, with users able to interact with it via the user interface or SDK for 
more programmatic access. When the API service is tasked with a workload such as computing metrics on 
raw data or evaluating different tests, the messaging queue relays the work to the worker service for 
compute processing and can scale out these resources or adjust the type of compute as needed depending 
on the size of job or concurrent requests. For the users, this design abstracts away the complexity of 
managing storage and compute resources, so they can focus on getting the answers they need from their 
application’s data. 
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Integrating within a Customer’s 
Environment

As mentioned earlier, the Distributional Platform is designed to sit within a customer’s existing data 
infrastructure, rather than be a separate silo to manage and sync. It can easily be deployed in their existing 
cloud environment and integrate with their existing storage system. This makes it easy to fit seamlessly 
within any AI platform. By leveraging industry-standard components, it also ensures that customers can take 
advantage of the managed cloud service versions of each for even easier management. 


In addition to being fairly agnostic with regard to where the data lives, the platform is also agnostic on what 
the data looks like. Any existing logs, traces, or other evaluation metrics can be used as inputs – as long as 
it’s structured and fits in a pandas DataFrame, that’s enough for the platform. The more data provided, the 
more context the platform has to develop a comprehensive understanding of behavior for testing.
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Customers can then use their preferred orchestration tool to define the ingest schedule for how often new 
data is sent to Distributional. For example, they could schedule daily updates through Airflow to ensure their 
models haven't drifted by feeding a fixed set of inputs into their AI app to generate a dataset of examples to 
be uploaded to Distributional as a run and tested for change. 


For customers to get alerted when there are key changes to their AI app’s behavior over time, they can also 
integrate Distributional with PagerDuty or Slack for real-time notifications. 


For authentication, the platform uses OpenID Connect (OIDC), again ensuring seamless integration with any 
preferred identity providers. In addition to authentication, the platform also has a native permission model 
using role-based access controls for further security. 


Overall, the SDK is designed for broad extensibility. It’s built in Python, making it flexible for customers to 
integrate with other preferred tools or existing processes. Distributional is also continuing to expand the 
native integrations built into the platform to make this even more seamless for customers. This allows 
customers to seamlessly integrate Distributional with their AI platforms, while still allowing for portability and 
adaptability as these platforms continue to mature. 


Ultimately resulting in a platform that is easy to deploy and manage, integrates within an existing 
environment and preferred tooling, and is built for enterprise scale and secure usage. 
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Conclusion

With Distributional’s adaptive testing platform, customers no longer need to build AI applications in a 
vacuum, and are able to account for the uncertainty of production usage while constantly adapting 
applications incrementally over time. This leads to fewer production surprises and the ability to catch 
gradual shifts before users do. Plus, with a shared comprehensive view of desired behavior, the silos 
between development to production break down, resulting in faster and more predictable updates. 
Ultimately this unlocks the confidence needed to ship higher value AI products faster, while minimizing 
business risk. 


For additional resources, please visit: 


Distributional Docs

Distributional Blog
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https://docs.dbnl.com/
https://www.distributional.com/resources/blog


About Distributional

Distributional is building the modern enterprise platform for adaptive testing to make AI 
safe, secure and reliable. As the power of AI applications grows, so does the risk of harm. 
By taking a proactive, adaptive testing approach with Distributional, AI teams can deploy 
AI applications with more confidence and catch issues before they cause significant 
damage in production.


Learn more at distributional.com

Follow us on:

LinkedIn

YouTube

https://www.distributional.com/
https://www.linkedin.com/company/dbnlai/
https://www.youtube.com/@dbnlAI

