
Distributional’s Platform

2

Intro

Adaptive testing is critical to support production-grade AI applications at scale. This enables AI teams to
leverage behavioral distributions to create a comprehensive definition of an app’s desired behavior that can
be refined over time. Thus enabling teams to quantifiably test and investigate when there are deviations
from that desired behavior.

Distributional provides an enterprise platform for adaptive testing, which is designed to meet the scale and
performance needs for AI teams to continuously test, understand, and refine application behavior. Using
Distributional’s platform, customers are able to shorten the development cycles for AI, productize higher
value applications, and keep them in production. All while minimizing risk to the business with the
confidence that these applications are behaving and will continue to behave as desired.

Distributional’s platform was designed to easily integrate with existing tools and workflows, and to scale
alongside AI teams and their projects. The architecture is intentionally streamlined to result in efficiencies
and simplified management in the long run.

This guide was written to help AI teams quickly get up to speed on Distributional’s architecture so they can
hit the ground running. In the following pages, we’ll share key terminology, take a deep dive into the
technical architecture, and review how it can integrate into existing architecture.

Distributional’s Platform Distributional, Inc

3

Table of Contents

Page 4: Distributional Workflow &
Terminology

Page 7: Distributional’s Platform
Architecture

Page 9: Integrating within a
Customer’s Environment

Page 12: About Distributional

Distributional’s Platform Distributional, Inc

4

Distributional Workflow &
Terminology

Before diving into how the Distributional platform is designed, it’s
important to understand some key terms related to how Distributional
implements adaptive testing for AI apps. These help to break down the
types of computation in the system done to create a statistical
representation of behavior for AI applications.

The first step with Distributional is for a
user to send data to the platform.

A dataset includes of running the application (such as inputs
and outputs for a question / answer app), and can be augmented with
as few or as many as available.

As long as the dataset fits in a pandas DataFrame, Distributional is able
to start working with it.

A metric is a measurable property of the app. These could include:
response time, word count, token count, LLM-as-judge metrics, etc.
Metrics can be both user-created (such as existing evaluation metrics)
and generated by Distributional automatically.

Dataset

examples

metrics

METRIC

WHAT MAKES A GOOD EXAMPLE
OF APP USAGE?

An example is the data related to
a single instance use of your app.
If additional context is added,
Distributional is able to compute
a more complete definition of app
behavior. Here’s an example of
some common columns and
attributes for a question / answer
application:

Question: The question
inputted into your app by the
user. 

Answer: The answer outputted
by your app. 

Response time: The time it
took the app to produce the
answer. 

Context: The context that was
used to generate the answer
(e.g. documents retrieved
from a knowledge base).
 

Eval(s): Performance metric(s)
already being calculated.

Distributional Workflow & Terminology Distributional’s Platform

5

Once the data is collected, Distributional processes this data to
generate a Run.

A run is the result of uploading a to Distributional. It includes a set of derived from the
 in the original augmented with and other data computed by Distributional, used

to create a measurable definition of application behavior.

By quantifying the definition of behavior as a Run, it can now be
tested for changes to that behavior over time.

A statistic is an aggregate quantity computed over metrics in one or more runs. Statistics can be used to
measure changes in the distribution of a metric across runs, for example by computing a Kolmogorov-
Smirnov test.

A test defines the acceptable range of values compared to a baseline . These definitions can be
automatically generated by Distributional based on known behavior, or defined by the user, creating a
definition of desired behavior. A test can check for behavioral change between two , or check for
behavioral constraints of a single run.

A test session compares two to test for behavioral similarity over time. A test session executes a set of
predefined over a comparing it to a known baseline and compares the against a
set of thresholds.

A test result is the outcome of executing a as part of a . For each , the test result notes
whether the test assertion passed or failed when evaluating the compared to the baseline .

A Similarity Index (Sim Index) is a numerical value — between 0 and 100 — that quantifies how much an
application or subsets of an application (at the column- and metric-level) has changed between .

RUN

dataset results
examples dataset metrics

STATISTIC

TEST

run

runs

TEST SESSION

runs
tests run run run statistics

TEST RESULT

test test session test
run run

SIMILARITY INDEX

runs

Distributional Workflow & Terminology Distributional’s Platform

6

Once a change is detected, users can be notified, understand the
change, and take action.

A notification can be triggered on the outcome of a . Users can use their preferred notification
channels (such as PagerDuty or Slack), to create custom notifications based on the properties of the

 in a .

An insight is a piece of human readable evidence explaining the outcome of a . While
Distributional calculates and to test against, it also maintains the lineage to the raw dataset.
This allows users to explore evidence from to understand and pinpoint specific properties or
values that caused the change in behavior. Users then are able to assess whether there is an underlying
issue in the application that needs to be resolved, or whether the needs to be recalibrated.

NOTIFICATION

test session
test

results test session

INSIGHT

test result
metrics statistics

test results

test

Distributional Workflow & Terminology Distributional’s Platform

7

Distributional’s Platform
Architecture

For the platform to support this workflow and continuously test for behavior changes over time, it needed to
both be able to handle large, context-rich datasets as well as perform fast, analytic-style processing of that
data. Let’s go into more detail about how the platform is architected to support this.

Importantly, Distributional’s platform does not try to replace customers' existing data storage systems. It is
purposefully designed to integrate with existing data infrastructure, where all the raw logs for the AI
applications already are stored. Based on the customer-defined ingestion schedule, Distributional is then
able to efficiently process this data in batch, with inherently no limits on scale. This enables the platform to
run much more complex analytics against the data, while maintaining its rich context, to derive a
comprehensive set of metrics and statistics about the applications, as well as calculate changes to these
over time.

Additionally, unlike systems designed for pure logging and monitoring, users can update or change the data
provided to Distributional. This gives them the ability to do things like adding in missing data points and
retrying the processing job, expanding the type of data and context provided, or even recalculating metrics
based on data from a past point in time.

Since access to this data is critical, customers deploy and manage the Distributional platform in their private
cloud environment. This prevents Distributional from becoming yet another technology silo within a
customer’s overall architecture and allows the platform to live where the data already resides, preventing
duplicate systems of record or concerns about moving data outside of the existing secure environment. To
support this though, we purposefully architected it with as few dependencies as possible and leveraged
industry-standard systems to make it as easy to deploy and manage as possible.

Distributional’s Platform Architecture Distributional’s Platform

8

At a high level, the platform consists of an API service, a UI service, a worker service, a messaging queue,
and a database. All three services run on Kubernetes with Redis and PostgreSQL being used for the
messaging queue and database, respectively. The data is stored in an object store with support for AWS S3,
Google Cloud Storage (GCS), and Azure Blob Storage. This results in only four external dependencies that all
leverage industry-standards our customers are already familiar with.

The core of the platform is the API service, with users able to interact with it via the user interface or SDK for
more programmatic access. When the API service is tasked with a workload such as computing metrics on
raw data or evaluating different tests, the messaging queue relays the work to the worker service for
compute processing and can scale out these resources or adjust the type of compute as needed depending
on the size of job or concurrent requests. For the users, this design abstracts away the complexity of
managing storage and compute resources, so they can focus on getting the answers they need from their
application’s data.

Distributional’s Platform Architecture Distributional’s Platform

9

Integrating within a Customer’s
Environment

As mentioned earlier, the Distributional Platform is designed to sit within a customer’s existing data
infrastructure, rather than be a separate silo to manage and sync. It can easily be deployed in their existing
cloud environment and integrate with their existing storage system. This makes it easy to fit seamlessly
within any AI platform. By leveraging industry-standard components, it also ensures that customers can take
advantage of the managed cloud service versions of each for even easier management.

In addition to being fairly agnostic with regard to where the data lives, the platform is also agnostic on what
the data looks like. Any existing logs, traces, or other evaluation metrics can be used as inputs – as long as
it’s structured and fits in a pandas DataFrame, that’s enough for the platform. The more data provided, the
more context the platform has to develop a comprehensive understanding of behavior for testing.

Integrating within a Customer’s Environment Distributional’s Platform

10

Customers can then use their preferred orchestration tool to define the ingest schedule for how often new
data is sent to Distributional. For example, they could schedule daily updates through Airflow to ensure their
models haven't drifted by feeding a fixed set of inputs into their AI app to generate a dataset of examples to
be uploaded to Distributional as a run and tested for change.

For customers to get alerted when there are key changes to their AI app’s behavior over time, they can also
integrate Distributional with PagerDuty or Slack for real-time notifications.

For authentication, the platform uses OpenID Connect (OIDC), again ensuring seamless integration with any
preferred identity providers. In addition to authentication, the platform also has a native permission model
using role-based access controls for further security.

Overall, the SDK is designed for broad extensibility. It’s built in Python, making it flexible for customers to
integrate with other preferred tools or existing processes. Distributional is also continuing to expand the
native integrations built into the platform to make this even more seamless for customers. This allows
customers to seamlessly integrate Distributional with their AI platforms, while still allowing for portability and
adaptability as these platforms continue to mature.

Ultimately resulting in a platform that is easy to deploy and manage, integrates within an existing
environment and preferred tooling, and is built for enterprise scale and secure usage.

Integrating within a Customer’s Environment Distributional’s Platform

11

Conclusion

With Distributional’s adaptive testing platform, customers no longer need to build AI applications in a
vacuum, and are able to account for the uncertainty of production usage while constantly adapting
applications incrementally over time. This leads to fewer production surprises and the ability to catch
gradual shifts before users do. Plus, with a shared comprehensive view of desired behavior, the silos
between development to production break down, resulting in faster and more predictable updates.
Ultimately this unlocks the confidence needed to ship higher value AI products faster, while minimizing
business risk.

For additional resources, please visit:

Distributional Docs

Distributional Blog

Distributional’s Platform Distributional, Inc

https://docs.dbnl.com/
https://www.distributional.com/resources/blog

About Distributional

Distributional is building the modern enterprise platform for adaptive testing to make AI
safe, secure and reliable. As the power of AI applications grows, so does the risk of harm.
By taking a proactive, adaptive testing approach with Distributional, AI teams can deploy
AI applications with more confidence and catch issues before they cause significant
damage in production.

Learn more at distributional.com

Follow us on:

LinkedIn

YouTube

https://www.distributional.com/
https://www.linkedin.com/company/dbnlai/
https://www.youtube.com/@dbnlAI

