
Distributional’s Testing
Framework

2

Intro

For teams scaling AI applications in production, adaptive testing is critical for consistency and reliability. But
testing these applications is not trivial. This is especially true for any LLM-based application, due to the
nature of the embedding process, and subsequent recovery of text from embedding space, these apps
require statistical analysis and testing.

Additionally, once an app is running in production, testing automation becomes necessary since teams can
no longer manually test for all possible usages and analyze all possible responses. Even when ignoring the
infeasibility of searching the space of all possible text, these teams are paid to ship things, not solely test
them.

Distributional provides an adaptive testing platform that is uniquely designed to address these needs.
Distributional’s testing strategy is based on analyzing recent production usage to test for consistency of app
behavior as a whole, while also providing mechanisms to both alert users to behavioral deviations and
provide interpretable evidence for users to understand what has occurred.

In this paper, we describe Distributional’s testing strategy in more detail, and how it can be applied for both
live and synthetic production testing.

For additional resources, please visit:

Distributional Docs

Distributional Demos

Distributional Blog

Distributional’s Testing Framework Distributional, Inc

https://docs.dbnl.com/
https://www.youtube.com/@dbnlAI
https://www.distributional.com/resources/blog

3

Table of Contents

Page 4: Strategy to test for
consistent app behavior
in production

Page 7: Similarity Index for
studying the hypothesis
tests

Page 9: Distributional for
synthetic production
testing

Page 11: About Distributional

Distributional’s Testing Framework Distributional, Inc

4

Strategy to test for consistent
app behavior in production

At its core, Distributional’s platform uses a testing strategy that embraces the idea that every time an AI app
is used, both the prompt (input) and response (output) are random variables drawn from some distribution.
The goal is to analyze the behavioral consistency of the app; for example, has the app responded to
questions about the CEO of company X differently today than yesterday. The platform then surfaces notable
deviations to users in an unsupervised way. By design, it does not pass judgment on the veracity of those
responses; rather, Distributional gives users the ability to introspect and apply supervision by passing
judgment based on their own expertise and their use cases.

To help discuss this testing strategy in terms of random variables, we introduce some notation. Capital
letters represent a random variable, and lowercase letters represent a realization of that random variable or
other deterministic quantity. (Note: For simplicity in this paper, we only discuss the input/output consistency
from an app. Distributional’s approach, in practice, also analyzes consistency across intermediate data
generated by the app.)

𝐼 – the distribution of possible inputs (prompts) to the app

𝑖 – an observed set of prompts

O – the distribution of possible outputs (responses) from the app

o – an observed set of outputs

t – time span over which inputs and outputs are considered

Now, we also introduce some conditional notation to facilitate analysis in Distributional.

𝐼 | 𝑡1 – the possible inputs over time span 𝑡1

𝐼, O | 𝑡1 – the possible inputs and outputs over time span 𝑡1

O | 𝑡1, 𝐼 – the possible outputs over time span 𝑡1, given the inputs 𝐼

tb – a baseline time period against which recent usage is compared

Distributional’s core testing functionality studies the following hypothesis test:

 HO: 𝐼, O | 𝑡𝑒 and 𝐼, O | 𝑡𝑏 are the same distribution

 H1: They are not the same distribution

Strategy to test for consistent app
behavior in production Distributional’s Testing Framework

5

In general, 𝑡𝑒 is a recent time period and 𝑡𝑏 is a fixed time window from the past. For example, comparing
usage from the past 24 hours to usage from last Monday.

Distributional then helps users understand whether they should reject HO by presenting relevant evidence of
behavioral deviations based on logged app usage between 𝑡𝑏 and 𝑡𝑒. If the user finds this evidence
compelling, notifications can be created to identify such behavior in the future.

This evidence can also be used to consider alternate, more targeted, null hypotheses. These could be:

 HO: 𝐼 | 𝑡𝑒 and 𝐼 | 𝑡𝑏 are the same distribution

which asks only whether the inputs to the app have changed or

 HO: O | 𝑡𝑒 and 𝐼 | 𝑡𝑏 are the same distribution

which asks only whether the outputs have changed given the input distribution.

Figure: Evidence of a perceived deviation in behavior may be summarized with a statement such as “Distribution moderately drifted to the left,” but users can dig deeper
to interrogate that evidence and judge if this change in behavior is worrisome.

Strategy to test for consistent app
behavior in production Distributional’s Testing Framework

6

BACKGROUND ON DISTRIBUTIONAL CONSISTENCY

INCORPORATING INTERPRETABLE EVALUATION METRICS

Distributional consistency could be naturally analyzed under special circumstances. For example, the classic
method of the t-test would be a logical strategy for considering consistency of normally 𝑡distributed data. If
we were studying only the inputs I | t and they consisted of only a single numerical value that was normally
distributed, then we could analyze whether with 𝐸 [I | tb] ≠ 𝐸 [I | te] with a t-test. But in the text-first world of
generative AI, it is unlikely that such parametrized analysis will ever be sufficient.

A nonparametric analysis of distributional similarity has been well addressed for a single continuous or
discrete random variable by tools such as the Kolmogorv-Smirnov statistic or Chi-squared statistic,
respectively. Tools such as the Kullbeck Liebler (KL) Divergence provide a strategy to measure dissimilarity
between random variables when the distribution of those random variables is known.

However, these tools alone are generally insufficient to analyze the consistency of observed app behavior
since:

the nature of text is neither numerical nor categorical;

we desire to study multiple variables representing characteristic behavior of the text simultaneously; and

we are unable to proactively sample data (for, e,g., the KL divergence) given fixed historical logs.

Nevertheless, Distributional does incorporate these quantities as facets for helping to define how severely an
app’s recent behavior has deviated from previously observed behavior. This is discussed in the next section.

Distributional is designed to empower users to ultimately make the judgment whether a significant or
worrisome behavioral deviation has occurred. This means the platform must clearly provide understandable
evidence of deviations to users.

To that end, the analysis of HO is powered by interpretable evaluation (eval) metrics. Distributional provides a
set of built-in evals of different structures:

Locally computed classical NLP quantities such as reading level

LLM-as-judge style quantities leveraging the user’s choice of model

Hooks for users to create their own LLM-as-judge quantities for submission to Distributional

RAG-specific quantities to help analyze the behavior of the retrieval process

Furthermore, any additional quantities that users already compute can be sent to Distributional to be
incorporated into the analysis of HO.

Strategy to test for consistent app
behavior in production Distributional’s Testing Framework

7

Similarity Index for studying the
hypothesis tests

Distributional’s testing strategy not only needs to analyze the behavioral consistency of an application, but
results of this analysis also need to be understandable by users, regardless of the volume of logs, number of
metrics, or complexity of the app. This is why Distributional created the Similarity Index (Sim Index) as an
automatically calculated value—between 0 and 100—which defines the deviation between two time periods,
or runs, and, in turn, serves as a proxy for the user to reject HO. In effect, a lower Sim Index should make the
user more likely to reject the null hypothesis. This can be done at the application level, for a grouping of
metrics, or for a single metric or eval being logged. This strategy is how Distributional expands beyond the
limitations of existing parametric and nonparametric methodologies.

The core concept for computing a Sim Index starts with a single column of numerical or categorical data –
this could be one of the evals that is computed on the text or a column of non-text data that the user has
provided. We refer to this single column as me and mb for the columns from the recent time period and
baseline time period, respectively. Our strategy for 6
computing Sim Index on this column, denoted by
𝑠𝑖𝑚(𝑚𝑒, 𝑚𝑏), is powered by a desire to produce evidence of dissimilarity between and me and mb. And then,
through this evidence, the user can decide 𝑚𝑒𝑚𝑏if these columns are, in fact, different in a way that is
significant or relevant for their needs.

To surface such evidence, we assume that HO is true, i.e., 𝑚𝑒 and 𝑚𝑏 are drawn from the same distribution.
We then pool results from both 𝑚𝑒 and 𝑚𝑏 to facilitate an independent and identically distributed (iid)
bootstrapping process. This gives an initial sense of what should be happening if the two runs were actually
drawn from the same distribution.

COMPUTING SIM INDEX

Similarity Index for studying the
hypothesis tests Distributional’s Testing Framework

8

Figure: Data from today and previously observed data are pooled into a single population from which samples are drawn. These samples, in the box on the far right,
provide a sense of what should be observed if today’s data showed no deviation from previous data.

From each of these test pairs, common statistics for both 𝑚𝑒 and 𝑚𝑏 are computed. These include, for
example, the 10th percentile, or the prevalence of the most common categories. This bootstrapping
strategy has the benefit of “normalizing” and accounting for the scale of the quantities present to permit all
subsequent analyses to take place on a fixed scale. These bootstrapped quantities also provide the desired
evidence of behavioral deviation that is surfaced to the user.

The final Sim Index value for this column is computed through a weighted averaging of the difference of
these common statistics as well as nonparametric measures such as the Mann-Whitney U statistic. Future
versions of Sim Index may enable users to customize the weighting process to better align with their sense
of behavioral deviation, e.g., more heavily weighting tail behavior rather than central tendency of the
distribution.

A Sim Index can also be generated for a text column through combining the Sim Index values for all the
quantities derived from that column, e.g., the sentiment or toxicity of a given column. That combination is
primarily the minimum Sim Index value over the derived metrics. This conservative strategy ensures that any
potentially troubling metric deviations are clearly surfaced to users. This also allows users to set thresholds
on individual metrics or even statistics of those metrics so they can be notified of any deviations.

A Sim Index value is also generated at the app-level in the same fashion over all the columns in the app. This
provides a helpful signal to users as to whether there’s been deviations in behavior overall.

SIM INDEX FOR TEXT COLUMNS AND THE APP

Similarity Index for studying the
hypothesis tests Distributional’s Testing Framework

9

Figure: An app-level Similarity Index, built on column-level Similarity Index values and insights.

Distributional for synthetic production
testing

As described earlier, Distributional is designed to analyze recently observed app usage extracted from
production logs to inform users of deviations in app behavior. Another investigative strategy with
Distributional is to synthetically produce app usages using a fixed set of canonical inputs every day, such as
a golden dataset.

By pushing a small number of consistent inputs through the app, the confounding analysis of “Which
prompts did users submit?” can be skipped.

This is, in the parlance of experimental design, holding one parameter constant (the inputs) while allowing
the other to vary (time) and analyzing only the effect of time on the app. One common use of this is in RAG-
based knowledge management, where new documents are regularly added to the vector database as they
arrive (such as 10Q financial documents). The app owner could run synthetic production testing in
Distributional’s platform to understand how the answers to consistent questions change as new documents
arrive.

Distributional for synthetic
production testing Distributional’s Testing Framework

10

Conclusion

Distributional’s approach to AI testing provides a flexible and scalable framework that teams can get started
with, regardless of the robustness of existing evals, and that can be applied to any AI application, regardless
of complexity. Through the Sim Index and interpretable metrics, it enables teams with immediate signals on
shifts in behaviors, and arms them with the relevant evidence to understand those deviations and pass
judgment on whether they matter for their app. Ultimately, providing an automated workflow that AI product
teams can use to continuously define, understand, and improve AI application behavior in production.

COnclusion Distributional’s Testing Framework

About Distributional

Distributional is building the modern enterprise platform for adaptive testing to make AI
safe, secure and reliable. As the power of AI applications grows, so does the risk of harm.
By taking a proactive, adaptive testing approach with Distributional, AI teams can deploy
AI applications with more confidence and catch issues before they cause significant
damage in production.

Learn more at distributional.com

Follow us on:

LinkedIn

YouTube

https://www.distributional.com/
https://www.linkedin.com/company/dbnlai/
https://www.youtube.com/@dbnlAI

