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Intro

For teams scaling AI applications in production, adaptive testing is critical for consistency and reliability. But 
testing these applications is not trivial. This is especially true for any LLM-based application, due to the 
nature of the embedding process, and subsequent recovery of text from embedding space, these apps 
require statistical analysis and testing. 


Additionally, once an app is running in production, testing automation becomes necessary since teams can 
no longer manually test for all possible usages and analyze all possible responses. Even when ignoring the 
infeasibility of searching the space of all possible text, these teams are paid to ship things, not solely test 
them. 


Distributional provides an adaptive testing platform that is uniquely designed to address these needs. 
Distributional’s testing strategy is based on analyzing recent production usage to test for consistency of app 
behavior as a whole, while also providing mechanisms to both alert users to behavioral deviations and 
provide interpretable evidence for users to understand what has occurred. 


In this paper, we describe Distributional’s testing strategy in more detail, and how it can be applied for both 
live and synthetic production testing. 


For additional resources, please visit: 


Distributional Docs

Distributional Demos

Distributional Blog

Distributional’s Testing Framework Distributional, Inc

https://docs.dbnl.com/
https://www.youtube.com/@dbnlAI
https://www.distributional.com/resources/blog
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Strategy to test for consistent 
app behavior in production

At its core, Distributional’s platform uses a testing strategy that embraces the idea that every time an AI app 
is used, both the prompt (input) and response (output) are random variables drawn from some distribution. 
The goal is to analyze the behavioral consistency of the app; for example, has the app responded to 
questions about the CEO of company X differently today than yesterday. The platform then surfaces notable 
deviations to users in an unsupervised way. By design, it does not pass judgment on the veracity of those 
responses; rather, Distributional gives users the ability to introspect and apply supervision by passing 
judgment based on their own expertise and their use cases. 


To help discuss this testing strategy in terms of random variables, we introduce some notation. Capital 
letters represent a random variable, and lowercase letters represent a realization of that random variable or 
other deterministic quantity. (Note: For simplicity in this paper, we only discuss the input/output consistency 
from an app. Distributional’s approach, in practice, also analyzes consistency across intermediate data 
generated by the app.) 


𝐼 – the distribution of possible inputs (prompts) to the app 

𝑖 – an observed set of prompts

O – the distribution of possible outputs (responses) from the app 

o – an observed set of outputs 

t – time span over which inputs and outputs are considered 


Now, we also introduce some conditional notation to facilitate analysis in Distributional. 


𝐼 | 𝑡1 – the possible inputs over time span 𝑡1


𝐼, O | 𝑡1 – the possible inputs and outputs over time span 𝑡1


O | 𝑡1, 𝐼 – the possible outputs over time span 𝑡1, given the inputs 𝐼

tb – a baseline time period against which recent usage is compared


Distributional’s core testing functionality studies the following hypothesis test: 


          HO: 𝐼, O | 𝑡𝑒  and  𝐼, O | 𝑡𝑏 are the same distribution


          H1: They are not the same distribution 

Strategy to test for consistent app 
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In general, 𝑡𝑒 is a recent time period and 𝑡𝑏 is a fixed time window from the past. For example, comparing 
usage from the past 24 hours to usage from last Monday. 


Distributional then helps users understand whether they should reject HO by presenting relevant evidence of 
behavioral deviations based on logged app usage between 𝑡𝑏 and 𝑡𝑒. If the user finds this evidence 
compelling, notifications can be created to identify such behavior in the future.


This evidence can also be used to consider alternate, more targeted, null hypotheses. These could be:


          HO: 𝐼 | 𝑡𝑒  and  𝐼 | 𝑡𝑏 are the same distribution


which asks only whether the inputs to the app have changed or 


          HO: O | 𝑡𝑒  and  𝐼 | 𝑡𝑏 are the same distribution


which asks only whether the outputs have changed given the input distribution. 

Figure: Evidence of a perceived deviation in behavior may be summarized with a statement such as “Distribution moderately drifted to the left,” but users can dig deeper 
to interrogate that evidence and judge if this change in behavior is worrisome.

Strategy to test for consistent app 
behavior in production Distributional’s Testing Framework
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BACKGROUND ON DISTRIBUTIONAL CONSISTENCY



INCORPORATING INTERPRETABLE EVALUATION METRICS



Distributional consistency could be naturally analyzed under special circumstances. For example, the classic 
method of the t-test would be a logical strategy for considering consistency of normally 𝑡distributed data. If 
we were studying only the inputs I | t and they consisted of only a single numerical value that was normally 
distributed, then we could analyze whether with 𝐸 [I | tb] ≠ 𝐸 [I | te] with a t-test. But in the text-first world of 
generative AI, it is unlikely that such parametrized analysis will ever be sufficient.



A nonparametric analysis of distributional similarity has been well addressed for a single continuous or 
discrete random variable by tools such as the Kolmogorv-Smirnov statistic or Chi-squared statistic, 
respectively. Tools such as the Kullbeck Liebler (KL) Divergence provide a strategy to measure dissimilarity 
between random variables when the distribution of those random variables is known.


However, these tools alone are generally insufficient to analyze the consistency of observed app behavior 
since: 


the nature of text is neither numerical nor categorical; 

we desire to study multiple variables representing characteristic behavior of the text simultaneously; and 

we are unable to proactively sample data (for, e,g., the KL divergence) given fixed historical logs. 


Nevertheless, Distributional does incorporate these quantities as facets for helping to define how severely an 
app’s recent behavior has deviated from previously observed behavior. This is discussed in the next section. 



Distributional is designed to empower users to ultimately make the judgment whether a significant or 
worrisome behavioral deviation has occurred. This means the platform must clearly provide understandable 
evidence of deviations to users. 


To that end, the analysis of HO is powered by interpretable evaluation (eval) metrics. Distributional provides a 
set of built-in evals of different structures: 


Locally computed classical NLP quantities such as reading level 

LLM-as-judge style quantities leveraging the user’s choice of model 

Hooks for users to create their own LLM-as-judge quantities for submission to Distributional 

RAG-specific quantities to help analyze the behavior of the retrieval process 


Furthermore, any additional quantities that users already compute can be sent to Distributional to be 
incorporated into the analysis of HO.

Strategy to test for consistent app 
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Similarity Index for studying the 
hypothesis tests

Distributional’s testing strategy not only needs to analyze the behavioral consistency of an application, but 
results of this analysis also need to be understandable by users, regardless of the volume of logs, number of 
metrics, or complexity of the app. This is why Distributional created the Similarity Index (Sim Index) as an 
automatically calculated value—between 0 and 100—which defines the deviation between two time periods, 
or runs, and, in turn, serves as a proxy for the user to reject HO. In effect, a lower Sim Index should make the 
user more likely to reject the null hypothesis. This can be done at the application level, for a grouping of 
metrics, or for a single metric or eval being logged. This strategy is how Distributional expands beyond the 
limitations of existing parametric and nonparametric methodologies.



The core concept for computing a Sim Index starts with a single column of numerical or categorical data – 
this could be one of the evals that is computed on the text or a column of non-text data that the user has 
provided. We refer to this single column as me and mb for the columns from the recent time period and 
baseline time period, respectively. Our strategy for 6
computing Sim Index on this column, denoted by 
𝑠𝑖𝑚(𝑚𝑒, 𝑚𝑏), is powered by a desire to produce evidence of dissimilarity between and me and mb. And then, 
through this evidence, the user can decide 𝑚𝑒𝑚𝑏if these columns are, in fact, different in a way that is 
significant or relevant for their needs.


To surface such evidence, we assume that HO is true, i.e., 𝑚𝑒 and 𝑚𝑏 are drawn from the same distribution. 
We then pool results from both 𝑚𝑒 and 𝑚𝑏 to facilitate an independent and identically distributed (iid) 
bootstrapping process. This gives an initial sense of what should be happening if the two runs were actually 
drawn from the same distribution. 


COMPUTING SIM INDEX



Similarity Index for studying the 
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Figure: Data from today and previously observed data are pooled into a single population from which samples are drawn. These samples, in the box on the far right, 
provide a sense of what should be observed if today’s data showed no deviation from previous data.

From each of these test pairs, common statistics for both 𝑚𝑒 and 𝑚𝑏 are computed. These include, for 
example, the 10th percentile, or the prevalence of the most common categories. This bootstrapping 
strategy has the benefit of “normalizing” and accounting for the scale of the quantities present to permit all 
subsequent analyses to take place on a fixed scale. These bootstrapped quantities also provide the desired 
evidence of behavioral deviation that is surfaced to the user. 


The final Sim Index value for this column is computed through a weighted averaging of the difference of 
these common statistics as well as nonparametric measures such as the Mann-Whitney U statistic. Future 
versions of Sim Index may enable users to customize the weighting process to better align with their sense 
of behavioral deviation, e.g., more heavily weighting tail behavior rather than central tendency of the 
distribution. 



A Sim Index can also be generated for a text column through combining the Sim Index values for all the 
quantities derived from that column, e.g., the sentiment or toxicity of a given column. That combination is 
primarily the minimum Sim Index value over the derived metrics. This conservative strategy ensures that any 
potentially troubling metric deviations are clearly surfaced to users. This also allows users to set thresholds 
on individual metrics or even statistics of those metrics so they can be notified of any deviations. 


A Sim Index value is also generated at the app-level in the same fashion over all the columns in the app. This 
provides a helpful signal to users as to whether there’s been deviations in behavior overall.


SIM INDEX FOR TEXT COLUMNS AND THE APP
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Figure: An app-level Similarity Index, built on column-level Similarity Index values and insights. 

Distributional for synthetic production 
testing


As described earlier, Distributional is designed to analyze recently observed app usage extracted from 
production logs to inform users of deviations in app behavior. Another investigative strategy with 
Distributional is to synthetically produce app usages using a fixed set of canonical inputs every day, such as 
a golden dataset.


By pushing a small number of consistent inputs through the app, the confounding analysis of “Which 
prompts did users submit?” can be skipped.


This is, in the parlance of experimental design, holding one parameter constant (the inputs) while allowing 
the other to vary (time) and analyzing only the effect of time on the app. One common use of this is in RAG-
based knowledge management, where new documents are regularly added to the vector database as they 
arrive (such as 10Q financial documents). The app owner could run synthetic production testing in 
Distributional’s platform to understand how the answers to consistent questions change as new documents 
arrive.

Distributional for synthetic 
production testing Distributional’s Testing Framework
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Conclusion

Distributional’s approach to AI testing provides a flexible and scalable framework that teams can get started 
with, regardless of the robustness of existing evals, and that can be applied to any AI application, regardless 
of complexity. Through the Sim Index and interpretable metrics, it enables teams with immediate signals on 
shifts in behaviors, and arms them with the relevant evidence to understand those deviations and pass 
judgment on whether they matter for their app. Ultimately, providing an automated workflow that AI product 
teams can use to continuously define, understand, and improve AI application behavior in production. 


COnclusion Distributional’s Testing Framework



About Distributional

Distributional is building the modern enterprise platform for adaptive testing to make AI 
safe, secure and reliable. As the power of AI applications grows, so does the risk of harm. 
By taking a proactive, adaptive testing approach with Distributional, AI teams can deploy 
AI applications with more confidence and catch issues before they cause significant 
damage in production.


Learn more at distributional.com

Follow us on:

LinkedIn

YouTube

https://www.distributional.com/
https://www.linkedin.com/company/dbnlai/
https://www.youtube.com/@dbnlAI

