#### PARTNERS

The EMPHATICaL consortium, led by TNO, consists of a collaboration between 17 partners from 11 countries focused on developing the economic potential and sustainability of electrified metallurgical and e-methanol production.



































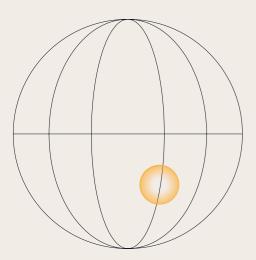















#### VISION

# Our Commitment to a Sustainable Future

EMPHATICaL is an innovative 4.5-year project addressing the challenges faced by the metallurgical industry in meeting 2050 climate goals. It aims to efficiently convert captured CO<sub>2</sub> into e-methanol and storable CO<sub>2</sub> in a cost-effective manner while promoting process electrification and fostering cross-industry collaboration to reduce energy consumption and greenhouse gas emissions.



### **Our Vision**

To provide solutions to the metallurgical industry's transition towards climate goals by designing a First-Of-a-Kind (FOAK) demonstrator to capture and convert metallurgical CO<sub>2</sub> emissions into e-methanol.

# **Our Objectives**

To integrate innovative technologies to produce e-methanol using captured CO<sub>2</sub> and renewable energy, aiming to reduce energy use by 25% and reduce 41 million tons of CO<sub>2</sub> annually by 2050.

### **OBJECTIVES**

# Our Key Objectives for a Sustainable Future

The EMPHATICaL consortium is committed to developing the economic potential and sustainability of electrified metallurgical and e-methanol production.



# TRL7 Demo and Long-Term Implementation of EMPHATICAL

Design, procure, and construct a TRL7 demonstration to showcase consistent e-methanol production with high purity, energy yield,  $CO_2$  capture, flexible operation, and material stability under industrial conditions, while also evaluating two business cases for feedstocks. Deliver a pre-FEED (Front End Engineering Design) for a modular FOAK plant, optimizing process design, economic feasibility, and addressing site-specific factors like renewable energy,  $H_2$  costs, and  $CO_2$  storage.



# EMPHATICAL Process and System Evaluation

Optimise energy efficiency, reduce emissions, and lower costs by integrating Al-based controllers, developing process models, and evaluating integration into renewable grids while achieving significant energy yield improvements, energy and cost reductions, and net-zero or negative CO<sub>2</sub> emissions.



### Bankable design for the FOAK Plant

Evaluate two business cases for feedstocks, deliver a pre-FEED for a modular FOAK plant, optimise process design, economic feasibility, and address site-specific factors like renewable energy, H<sub>2</sub> costs, and CO<sub>2</sub> storage.

### INNOVATION

# Transforming CO<sub>2</sub> into Sustainable E-Methanol

EMPHATICaL employs Calcium Looping (CaL) and Closed Loop Heat Pump Assisted Distillation (CL-HPAD) technologies to convert CO<sub>2</sub> emissions from electrified metallurgical processes into e-methanol powered by green hydrogen. This innovative approach reduces industrial emissions and promotes a circular economy and industrial symbiosis.

