
1The Mini Backporting Blueprint: Built for engineering teams who don’t have time for broken builds

The Backporting (Mini) Blueprint

What Security Scanners Miss,
and How Engineering Teams
Can Take Back Control
A no-nonsense guide to using backporting in
open source security - so you can fix
vulnerabilities without breaking everything.

The Mess We're In
We live in an Open-Source world. But what happens when a vulnerability is discovered? 
Security teams tell you to fix it, but this dependency is disruptive:

Organizations spend over budget on dependency upgrades
to of their security goals. (Resolved Security research)

5% of their R&D
fix only 10%

Today, the only way to fix a vulnerability
in an open-source dependency is to
upgrade the package version to one that
contains the fix, usually the latest and
greatest. But dependency upgrades
often introduce breaking changes. 
Backporting changes that. This guide
shows you how.

The new version brings in API changes and behavior shifts, forcing you to change our own code

What seems like a small version bump in one library can cascade into a chain reaction of
changes across your codebase

It is almost impossible to vet all the new version of the upgraded version and the impact
on your codebase

The real problem:
The real problem: Dependency upgrades are manual, costly, and bring in uncontrolled risk. 
No wonder developers refrain from doing them at scale, the scale security requires.

Your deployment cycles
can not accommodate
upgrades in the pace

you need

You waste time
upgrading

dependencies

You face impossible
choices between

security

and stability

Engineering get
burned on mundane

work

2The Mini Backporting Blueprint: Built for engineering teams who don’t have time for broken builds

What is Backporting, Really?

Examples:

Linux vendors like Red Hat, Ubuntu, and Debian have been doing it for decades. They
routinely backport security patches into older package versions they support - that’s why
the same version of OpenSSL can be secure on both RHEL 7 and RHEL 9, even if it looks old.

Large tech companies often maintain internal forks of critical open source libraries, applying
patches independently of the upstream maintainers.

Why We Believe in Backporting

Real-world impact metrics:

80% reduction

in security-related deployment

delays

MTTR

improved from

days/weeks to hours

Engineering

efforts spent on dependency

management reduced to minutes

Backporting transforms your approach from "update everything and pray" to
"solve it with surgical precision with minimal risk."

Target the exact
vulnerability, not whole

dependency chains

Fix
precisely

Target the exact
vulnerability, not whole

dependency chains

Fix
precisely

Smaller changes =
fewer regressions

Reduce

test cycles

No waiting for full
upgrade validation

Ship
faster

"Yes we fixed it, no
we didn't upgrade"

Bridge security-
dev gap

Definition:
Backporting is the process of taking a fix or a
feature that was made in a newer version of a
software project and applying it to an older
version. This is commonly done in software
development for the sake of stability, security,
or compatibility - especially when users can't
upgrade to the latest version due to
compatibility or operational constraints.

3The Mini Backporting Blueprint: Built for engineering teams who don’t have time for broken builds

Implementing Backporting with Resolved

Core Steps

Map & Identify

Resolved scans your
codebase and provides a

secure twin for every
vulnerable dependency - no

manual work needed.

Fix without Breaking

Automated workflows
seamlessly update the

application to use secure
versions of packages, while

maintaining full
compatibility.

Ship with Confidence

Test and deploy your
application with Resolved

secure twins, knowing your
code is both secure and

stable.

Step 1 Step 2 Step 3

Remediation Plarform

Code Repository

SCA/ASPM/CSPM

CI

Build-time

Org. Registry

My App

Own Code cookie 0. 6. 0

json5 2.2. 1 axios 0. 26. 1

alpine - 3.20. 0

Resolved Package

My App

Own Code cookie 0. 6. 0.resolved

json5 2.2. 1 axios 0. 26. 1.resolved

alpine - 3.20. 0.resolved

Vulnerable package 
versions

Upstream community 
fixes

Org. Registry

Handling open source risks was a constant uphill battle - no matter our efforts, we
couldn’t get ahead. With Resolved Security what felt impossible is now automatic and
seamless, finally allowing us to manage vulnerabilities at scale.

Jacob Avidar

VP R&D and CISO

4The Mini Backporting Blueprint: Built for engineering teams who don’t have time for broken builds

Finding vulnerabilities
is easy; fixing them is
hard.

Resolved Open-source Security Platform automatically fixes vulnerabilities without slowing
development. Finding issues is easy - fixing them without breaking things is what matters.
Our solution eliminates remediation overhead with no upgrades required and zero release
disruption. We deliver: near-zero engineering effort, scalable automation, and a validated
approach that satisfies both security compliance and engineering stability requirements.

The Bottom Line
Backporting fundamentally changes your security posture by separating crucial fixes from
disruptive upgrades. Engineering teams regain control of their deployment cycles while still
addressing critical vulnerabilities. The real power comes from precision - surgical fixes that
target exactly what matters without the overhead of full dependency chain updates.

Stop letting version numbers dictate your security response. Fix what matters, when it
matters, how it matters.

Contact our engineering team at

to schedule a technical
consultation.

hello@resolvedsecurity.com

mailto:hello@resolvedsecurity.com

