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INTRODUCTION

Senescent cells are a promising, but potentially controversial biomarker candidate for aging because no single marker is specific and expressed over
cells’ lifecycles. Methods bypassing this problem with orthogonal validation across multi-modal measurements (e.g., proteins, genes, morphology) are
sub-optimal, in part, because no single technology longitudinally collects these metrics from the same, single cell. Thus, populations identified as
senescent for quantification or enrichment are likely impure, making it challenging to draw confident conclusions around cells caveated as

“senescent-like.”

To address these challenges, we developed a method for identifying and quantifying senescent cells by leveraging a novel cell biology platform. This
platform compartmentalizes tens of thousands of single cells within permeable hydrogel compartments, integrating imaging and nucleic acid
extraction for linked, multi-modal analysis of the same cell across functional, phenotypic and genomic data. We validated this method detects multi-

modal hallmarks of senescence (e.g., morphology, SASPs, p16/p21, and / or transcriptome) from the same, etoposide-induced IMR90 fibroblasts.

Because this method can multi-modally identify cells and unambiguously link converged markers to the transcriptome, we believe this method can
play a meaningful role in driving consensus on the identity and utility of senescent cells as an aging biomarker.
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Fig 1. There are no known sensitive and specific markers of senescence across tissue. (A) Senescent cells accumulate in tissues with
age, but markers of senescence likely vary across cell types and tissues. (B) To increase confidence in the identity of senescent cells, significant
orthogonal validation is done with different markers across different technologies. (C) Because no single technology can collect multi-modal markers

from the same, individual cells, researchers leverage single-modal markers to quantify cells, resulting in likely impure or incomplete quantification. This
project aims to tackle this challenge by developing a method that measures multi-modal markers of senescence from the same, single cells.
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Fig 2. Cellanome’s Technology enables the measurement of multiple phenotypic and functional assays from the same cells in

CellCage™ enclosures. (A) Tens of thousands of cells are mixed with hydrogel precursor and loaded on an 8-lane flow cell. Cell positions are

identified and CellCage™ enclosures automatically generated around cells with light-guided polymerization. Bio-compatible CellCage™ enclosures can
be formed around single cells, multiple cells, or cells with objects (e.g., cytokine beads). CellCage™ enclosures are permeable to reagents enabling
long-term culturing and a variety of imaging-based, longitudinal phenotypic and functional assays to be performed on the same cells (e.g., small
molecules, immunofluorescent antibodies). Cells are lysed within CellCage™ enclosures to generate positionally barcoded cDNA for downstream library
prep and sequencing off the instrument. (B) Fluorescent imaging of the same NK-92 cell in CellCage™ enclosures following staining with a-CD7-FITC,
a-CD56-PE, a-CD45-CY5 and DAPI. (C) Quantification of CellCage™ enclosures embedded with longitudinal imaging data. Each dot represents the
aggregate relevant signals within each CellCage™ enclosure. Representative images of adherent fibroblasts. (D) Flow cells are designed to be
compatible with suspension and adherent cells by barcoding either the bottom (suspension) or top (adherent) surfaces. (E) Step-by-step overview of
how imaging data is linked to mMRNA. Encapsulated cells are serially imaged across brightfield and fluorescence channels. In these representative
Images, 3 fibroblast markers are detected on the same cells. After imaging data is collected, Cellanome’s computer vision capabilities segment cells,

identify barcode positions on the flow cell surface, and match them to constructed CellCage™ enclosures. Cells are then lysed within CellCage™

enclosures and mRNA captured to the barcodes on the flow cell’s surface prior to cDNA synthesis.
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Fig 3. Cell types tested for viability on Cellanome’s Technology. (A) Circulating suspension blood cells. (B) Adherent tissue cells
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Fig 4. Secretion of SASP factors can be converged to morphology and cell-surface expression with Cellanome’s Technology.
(A) Schematic of workflow for multi-modal assays on Cellanome’s Technology. POC was established for assays converging cytokine secretion to surface
markers. For cytokine secretion assays, PBMCs or fibroblasts were activated with a-CD3 / a-CD28 in flask, mixed with cytokine detection beads and
hydrogel precursor, and loaded onto a Cellanome flow cell. Cells were detected and CellCage™ enclosures formed around cells alone or with proximal
cytokine beads. Media containing reagents that label cells or beads, including a-CD71 (lymphocyte activation), a-IFNy / a-TNFa / a-IL-6 / a-CCL-2
(cytokine beads) were perfused onto the flow cell. Subsequently, time-lapse images of cells within CellCage™ enclosures were collected for multi-modal
evaluation. (B) Analysis strategy for isolating fluorescence signal to cytokine detection beads. i) Representative gating strategy distinguishing fibroblast
cells from non-cell objects detected within CellCage™ enclosures. Identity of cytokine secreted can be determined by signal from distinct fluorescence
channels. ii) Representative gating strategy for analyzing aggregate signal of all objects within a single CellCage™ enclosure, with each dot
representing an individual CellCage™ enclosure. This enables quantifying the number of cytokine positive CellCage™ enclosures and therefore, single
cytokine-secreting fibroblast cells. (C) Converging cytokine secretion to surface receptors on individual cells. i) Representative images generated to
collect multi-modal data (secreted cytokines, surface receptors). ii) Signal intensity of cytokine beads and surface receptor expression can be quantified
and linked to perform pairwise analysis across modalities, with each dot representing an individual CellCage™ enclosure.
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Fig 5. Cellanome’s Technology is compatible with etoposide-induced models of senescence. (A) Schematic of workflow for evaluating
etoposide induced and uninduced IMR9O0 cells. (B) Validating in vitro models of senescence are compatible with Cellanome’s Technology by evaluating
classic hallmarks of senescence. Upon adherence to flow cell surface, fixation / permeabilization and labeling reagents (e.g., fluorescent antibodies)
were diffused into flow cell lanes. i) Representative images show p16 and p21 protein expression specifically in induced cells. i1) Representative images
show [B-Galactosidase staining (red) and larger morphological size, specifically in induced cells. (C) Validating encapsulation within Cellanome’s
CellCage™ enclosures is compatible with senescence. Detection reagents were diffused as described above, after encapsulation of induced and
uninduced cells. Representative images of cells in single CellCage™ enclosures which exhibit larger morphological size and pl16 / p21 protein
expression in induced cells. (D) Preliminary single-cell evaluation of p16 / p21 protein expression of induced and uninduced IMR90 cells reflect
expected heterogeneity in intensity and cellular distribution of protein expression. (E) Larger morphology and secretion of SASP factor (IL-6) detected
from the same induced IMR90 cells co-encapsulated with cytokine detection beads. (F) POC that imaging data detecting senescence markers can be

further linked to scRNA sequencing data. Each column represents an individual CellCage™ enclosure containing a single IMR90 cell, with genes
clustered by upregulation or downregulation in uninduced vs. induced cells.
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DISCUSSION AND FUTURE DIRECTIONS

We demonstrate that encapsulation within Cellanome’s CellCage™ enclosures is compatible with in vitro models of
senescence and detecting multi-modal senescence markers from the same individual cells. This includes imaging-based
detection of larger morphology with p16 / p21 protein expression, B-Gal activity, and / or secretion of SASP factors, any of
which can be linked to single-cell transcriptomics. Our next steps are to 1) continue converging more senescence
measurements from the same cells with single experiments, 2) validate this method in more senescence models, and 3) apply
multi-modal detection of senescence to experiments co-culturing both senescent and healthy cells. We believe this method will
increase confidence in senescence studies, accelerate atlas initiatives seeking to identify tissue-specific senescence markers,
and unlock access to novel questions, including kinetics of senescence acquisition and whether senescent cells can transmit
this phenotype to healthy cells.
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