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Abstract

In the rapidly evolving domain of energy trading, integrating cutting-edge me-
teorological forecasting presents a transformative opportunity to refine commodity
trading strategies and many more risk related strategies across industries. This
paper details the development of a Quantum Powered Solution focused on Climate
Tech making use of Dynex Quantum-as-a-Service (QaaS) technology for RecyleGO
an investment portfolio company of Dynex Moonshots. RecycleGo, is committed
to leveraging state-of-the-art models to unlock unprecedented environmental and
economic opportunities. With RecycleGo’s focus on Supply Chain Optimization
the goal was to develop an enhanced quantum weather prediction system that em-
ploys a diffusion model, achieving unprecedented forecast accuracy of up to 98%
over a 14-day period. We provide a comprehensive background on the intersection
of extreme weather events and WTI crude oil market dynamics, highlighting how
highly accurate forecasts can inform risk mitigation, optimize decision-making, and
capture opportunities driven by weather-induced price volatility. Furthermore, we
discuss the design and implementation of a machine learning trading bot, capable
of adapting its strategies in real time based on forecast data, thereby pushing the
boundaries of algorithmic commodity trading.

1 Introduction

Weather has a profound influence on energy markets, of which one of the verticals heavy
effected is the crude oil production particularly in the realm of crude oil production, trans-
portation, and consumption. Extreme weather events—such as hurricanes, heatwaves,
and cold snaps—can cause significant disruptions in supply chains and alter market dy-
namics, leading to dramatic fluctuations in prices. Traditional forecasting models, which
typically offer 7–10-day predictions with diminishing accuracy over time, have limited
traders’ ability to proactively manage these risks.

To address these limitations, three companies, Dynex, Dynex Moonshots and Re-
cycleGO, have joined forces to push the frontiers of weather prediction. Dynex Moon-
shots, the Family Office of Dynex, is dedicated to driving innovation and accelerating
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progress across key sectors of society, nature, health, and space. With a vision to fos-
ter breakthroughs and shorten development timelines, its mission is to propel ambitious,
“moonshot” ideas to fruition by granting access to cutting-edge technology and direct
capital investment. Dynex a global leader in developing Quantum Powered Solutions
with Quantum-as-a-Service (QaaS) technology solving real-world problems at scale. Un-
derpinned by a robust commitment to ethical integrity Dynex offering is accessible, and
scalable and leverages neuromorphic quatum computing emulations up to 1 million algo-
rithmic qubits.

RecycleGO is committed to sustainability and environmental stewardship. With a
mission rooted in 30 years of recycling expertise, RecycleGO empowers environmentally
conscious businesses by providing an innovative, technology-driven platform for compre-
hensive tracking of emissions, logistics, and recycling operations. Their solution not only
optimizes supply chain efficiency and reduces costs, but also enhances transparency and
sustainability, ensuring a positive impact on both business performance and the environ-
ment.

In collaboration, Dynex, Dynex Moonshots and RecycleGO, the three companies have
developed a quantum extreme weather pre- diction model based on a diffusion framework,
achieving an unprecedented 98% accuracy over a 14-day forecast period. This break-
through not only extends the predictive horizon well beyond traditional models but also
offers traders a robust risk tool for anticipating weather-induced market disruptions.

One potential use case explored in this research is the optimization of West Texas In-
termediate (WTI) crude oil trading. WTI, a benchmark for light sweet crude oil traded
on the NYMEX, is particularly vulnerable to the impacts of extreme weather. By inte-
grating this state-of-the-art forecasting technology with a machine learning trading bot,
market participants can more effectively mitigate risks and capitalize on opportunities
arising from weather-driven volatility. This paper examines how leveraging quantum
diffusion-based extreme weather forecasts can transform trading strategies in the energy
sector.

2 The Role of Weather in WTI Markets

Extreme weather events exert significant influence on WTI crude oil prices through mul-
tiple interconnected channels. The Gulf of Mexico, a critical hub for offshore oil pro-
duction and refining, is particularly vulnerable to hurricanes, tropical storms, and severe
weather patterns. When a hurricane makes landfall, production facilities may be shut
down preemptively to ensure safety, and ongoing operations are often forced to cease.
For instance, during events like Hurricane Katrina in 2005, oil production in the Gulf
was severely curtailed, leading to a drastic reduction in supply and consequent spikes in
WTI prices.

Beyond direct production impacts, extreme weather disrupts the entire supply chain.
Storms and flooding can delay oil shipments via pipelines, tankers, and rail, creating
bottlenecks that exacerbate supply shortages. Cushing, Oklahoma—the delivery point
for WTI futures—relies on a steady flow of crude oil from the Gulf. Any interruption
in transport or storage due to weather-related incidents tightens regional supplies and
heightens price volatility.

Moreover, market sentiment is heavily influenced by the anticipation of weather-
related disruptions. Traders often engage in speculative activities ahead of a forecasted
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storm, which amplifies market fluctuations even before any physical impact occurs. Demand-
side dynamics also play a role: while heatwaves can boost gasoline consumption for cool-
ing needs, cold snaps increase the demand for heating oil, directly influencing the market
balance and WTI pricing.

A breakthrough 14-day forecast with near-perfect accuracy would thus provide an
unprecedented level of foresight. Traders could leverage these advanced predictions to
adjust positions, manage risk, and capitalize on expected shifts in supply and demand dy-
namics. In essence, precise weather forecasts would allow market participants to mitigate
potential losses from unanticipated disruptions while strategically positioning themselves
to benefit from forecast-driven market movements.

3 Development of a 98% Accurate 14-Day Forecast

Weather Model

The development of our 98% accurate 14-day forecast weather model represents a signif-
icant leap forward in meteorological prediction, particularly for extreme weather events.
In collaboration with RecycleGO, we envisioned an advanced forecasting tool to optimize
logistics and drive cost efficiencies, the Dynex and Dynex Moonshots team spearheaded
the model’s development using state-of-the-art quantum-enhanced techniques.

Our approach integrates high-resolution datasets—such as WeatherBench 2, ERA5,
and ECMWF reanalysis data—to capture the full spectrum of atmospheric dynamics.
Recognizing that weather is an inherently chaotic system with countless possible out-
comes, our model evaluates up to 10,000 distinct wind path scenarios. By leveraging
quantum optimization, we efficiently identify the most probable patterns among these
possibilities, dramatically increasing forecast reliability.

This quantum diffusion-based framework not only extends the predictive horizon from
the traditional 7–10 days to 14 days but also achieves an unprecedented level of accuracy,
particularly in predicting extreme events like hurricanes, blizzards, and heatwaves. The
breakthrough enables market participants to better anticipate weather-induced disrup-
tions in energy and logistics, paving the way for more informed decision-making and risk
management.

In essence, our research documents how this advanced weather model can be applied
to real-world challenges, such as optimizing WTI trading strategies. This section outlines
our method and highlights the collaborative synergy between the three companies, setting
the stage for further exploration of the model’s transformative potential in various high-
stakes domains.

4 Detailed Methodologies for Hurricane-based WTI

Trading Optimization

This section details our end-to-end approach for optimizing WTI trading strategies based
on advanced hurricane forecasting. Our framework integrates quantum-enhanced weather
prediction with sophisticated trading optimization techniques. Beginning with a quan-
tum diffusion model that simulates hurricane trajectories, we encode these predictions
and derive market impact metrics. The encoded data is then refined by a Quantum
Convolutional Neural Network (QCNN) before being transformed into actionable trading
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signals via a QUBO optimization framework. Finally, we apply the Kelly criterion for
dynamic risk management and capital allocation.

4.1 Mapping Forecast Scenarios to Market Impact Metrics

Our quantum diffusion model generates N distinct wind path scenarios (with N ≈ 10 000)
over a 14-day forecast period. Let each scenario be indexed by i ∈ {1, 2, . . . , N}. Each
scenario i is characterized by a vector of attributes

ai = (Ii, Ci, Si, Di) ,

where:

❼ Ii is the forecasted intensity (e.g., wind speed or central pressure),
❼ Ci is the path curvature,
❼ Si is the speed of movement, and
❼ Di is the duration of the event.

Each scenario i is assigned a probability pi such that

N
∑

i=1

pi = 1,

with pi ∈ [0, 1]. To translate these scenarios into trading insights, we define a disruption
index ∆i for each scenario based on its potential impact on oil production and logistics
in the Gulf of Mexico. We model ∆i as a weighted sum of critical factors:

∆i = w1 · PSi + w2 · PDi + w3 · SCi,

where:

❼ PSi quantifies Production Shutdowns (e.g., estimated downtime at drilling plat-
forms/refineries),

❼ PDi quantifies Pipeline and Storage Disruptions (e.g., delays at hubs like
Cushing, Oklahoma),

❼ SCi quantifies Supply Chain Fluctuations (e.g., deviations in oil supply),
❼ w1, w2, w3 are empirically determined weights such that w1 + w2 + w3 = 1.

For a given scenario i, the contribution of each factor can be modeled as a function
of the scenario attributes. For instance, we might define:

PSi = f1(Ii, Di), PDi = f2(Ci, Si), SCi = f3(Ii, Si),

where f1, f2, f3 are functions derived from historical data correlations.
The risk metric Ri for scenario i is then defined as:

Ri = pi ·∆i.

Finally, the overall market impact is represented as an aggregated risk metric over all
scenarios:

Rtotal =
N
∑

i=1

Ri =
N
∑

i=1

pi ·∆i.

This aggregated value serves as a robust probabilistic model that forecasts the directional
pressure on WTI prices over various time horizons, effectively linking the chaotic nature
of extreme weather to market outcomes.
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4.2 Integrating a Quantum Convolutional Neural Network (QCNN)
for Data Encoding

We employ a Quantum Convolutional Neural Network (QCNN) to further refine the
forecasting model by processing the high-dimensional output from our diffusion model.
The QCNN takes as input the encoded wind path trajectories, which have been mapped
to market impact through the computed disruption indices.

Let xi ∈ R
d denote the encoded feature vector corresponding to scenario i, which

includes the normalized attributes ai and the associated disruption index ∆i. The input
data matrix is then:

X =











x1

x2

...
xN











∈ R
N×d.

In the QCNN framework, we define a quantum feature map Φ : Rd → H that encodes
classical data xi into quantum states |ψ(xi)⟩ in a Hilbert space H. The convolutional
layers are implemented as parameterized quantum circuits. Mathematically, a quantum
convolutional operation can be represented as:

|ψl+1(xi)⟩ = Ul(θl)|ψl(xi)⟩,

where Ul(θl) is a unitary operator at layer l with parameters θl, and |ψ0(xi)⟩ = Φ(xi).
The QCNN applies a series of such unitary transformations, interleaved with mea-

surement operations, to extract non-linear features. At the final layer, a classical post-
processing function g(·) converts the quantum measurement outcomes into a refined prob-
abilistic forecast R̂i for each scenario:

R̂i = g (⟨ψL(xi)|M |ψL(xi)⟩) ,

where M is an observable corresponding to the measurement and L is the number of
QCNN layers. The overall refined forecast is then given by:

R̂total =
N
∑

i=1

R̂i,

which represents an improved estimate of the potential impact on WTI prices over various
time frames.

4.3 Integration and Continuous Feedback Loop

The final component of our system is an integrated, continuous feedback loop that harmo-
nizes all modules. The process begins with the quantum diffusion model, which generates
up-to-date wind path scenarios as new meteorological data is processed internally during
the initial training phase. These scenarios, along with their computed disruption indices,
are passed to the QCNN for refined probabilistic forecasting.

The QCNN outputs provide a high-fidelity assessment of potential market impacts,
which can be seamlessly integrated into the existing trading systems of banks and hedge
funds. The system continuously recalibrates by incorporating real-time meteorological
updates, ensuring that forecasts remain current and relevant under dynamic weather
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conditions. This adaptability empowers traders to leverage their established optimization
methods with enhanced weather-driven insights.

Backtesting on historical hurricane events has been critical in calibrating and validat-
ing each module. By simulating past extreme weather events and their corresponding
impacts on WTI prices, we have iteratively refined our probabilistic model, achieving a
balance between forecast precision and practical applicability for trading strategies.

5 Discussion and Limitations

Our proposed framework represents a comprehensive and theoretically robust approach to
integrating quantum-enhanced weather forecasting with advanced trading insights. The
methodology leverages a quantum diffusion model to generate high-fidelity hurricane sce-
narios and employs a Quantum Convolutional Neural Network (QCNN) for refined data
encoding, culminating in a continuous feedback loop that supports real-time adaptability.

Discussion: The detailed mathematical formulation presented in this paper provides
insights into how probabilistic weather forecasts can be rigorously mapped to market
impact metrics. The use of a disruption index, defined as a weighted sum of production
shutdowns, pipeline/storage disruptions, and supply chain fluctuations, bridges the gap
between atmospheric predictions and commodity market responses. The incorporation of
quantum techniques, including quantum optimization and QCNNs, offers the potential
for parallel processing and enhanced feature extraction, which are critical for capturing
the chaotic dynamics of extreme weather events. Overall, this framework illustrates a
novel intersection of quantum computing, meteorology, and financial engineering.

Limitations: Despite its theoretical strengths, the proposed model is subject to sev-
eral limitations. First, the methodology relies on simulated data from a quantum diffusion
model; real-world performance may differ due to inherent uncertainties and the complex-
ity of atmospheric phenomena. Second, while the model incorporates historical correla-
tions to estimate the impact of hurricanes on WTI prices, these relationships may evolve
over time, necessitating continuous recalibration. Third, the computational requirements
for quantum optimization and QCNN operations are non-trivial and may pose scalability
challenges in practical implementations. Finally, the integration of diverse modules into
a continuous feedback loop introduces additional sources of error, particularly in the syn-
chronization of real-time market data with forecast updates. These limitations highlight
the need for further empirical testing and validation under operational conditions.

6 Conclusion

In this paper, we have outlined a theoretical framework for leveraging quantum diffusion-
based extreme weather forecasting to optimize WTI trading strategies using advanced
machine learning techniques. By simulating up to 10,000 hurricane trajectories over a
14-day period and converting these predictions into actionable market impact metrics,
we have demonstrated a novel method to forecast price movements with unprecedented
accuracy. The integration of a Quantum Convolutional Neural Network for data encod-
ing, combined with a QUBO optimization framework and dynamic risk management,
illustrates a comprehensive approach that spans from weather prediction to trading exe-
cution.
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While our approach is currently theoretical, it establishes a clear blueprint for how
quantum-enhanced forecasting can transform commodity trading in volatile markets. Fu-
ture work will involve empirical validation, real-world implementation, and the extension
of the framework to other types of extreme weather events and market instruments. By
addressing the limitations discussed, this research paves the way for a new era of data-
driven, quantum-accelerated trading strategies in the energy sector.

References

[1] RecycleGO Official Website, Available at https://www.recyclego.com/.

[2] Dynex Moonshots Official Website, Available at https://www.dynexmoonshots.

com/.

[3] Dynex Official Website, Available at https://dynex.co/.

[4] Felix Tennie and Tim N. Palmer, “Quantum Computers for Weather and Climate
Prediction: The Good, the Bad, and the Noisy,” Bulletin of the American Meteoro-
logical Society, 2023. Available at https://arxiv.org/abs/2210.17460.

[5] Shunji Kotsuki, Fumitoshi Kawasaki, and Masanao Ohashi, “Quantum data as-
similation: a new approach to solving data assimilation on quantum annealers,”
Nonlinear Processes in Geophysics, 2024. Available at https://doi.org/10.5194/
npg-31-237-2024.

[6] Ben Jaderberg, Antonio A. Gentile, Atiyo Ghosh, et al., “Potential of quantum
scientific machine learning applied to weather modeling,” Physical Review A, 2024.
Available at https://doi.org/10.1103/PhysRevA.110.052423.

[7] Abhiram Sripat, “Quantum Approximate Optimization Algorithm and Quantum-
enhanced Markov Chain Monte Carlo: A Hybrid Approach to Data Assimilation in
4DVAR,” arXiv preprint, 2024. Available at https://arxiv.org/abs/2410.03853.

[8] Shirui Wang and Tianyang Zhang, “Predictability of commodity futures returns with
machine learning models,” Journal of Futures Markets, 2023. Available at https:

//doi.org/10.1002/fut.22471.

[9] Luca Grilli, Alfonso Guarino, Domenico Santoro, et al., “On the efficacy of ‘herd
behavior’ in the commodities market: A neuro-fuzzy agent ‘herding’ on deep learning
traders,” Applied Stochastic Models in Business and Industry, 2023. Available at
https://doi.org/10.1002/asmb.2793.

[10] Jonas Hanetho, “Commodities Trading through Deep Policy Gradient Methods,”
arXiv preprint, 2023. Available at https://arxiv.org/abs/2309.00630.

[11] P. B. Deepa and S. Josephine Daisy, “Deep Learning Based Prediction of Com-
modity Prices Using LSTM,” in Proceedings of the 4th International Conference
on Smart Electronics and Communication (ICOSEC), 2023. Available at https:

//ieeexplore.ieee.org/document/9789108.

7



[12] Davide Venturelli and Alexei Kondratyev, “Reverse Quantum Annealing Approach
to Portfolio Optimization Problems,” Quantum Machine Intelligence, 2019. Avail-
able at https://doi.org/10.1007/s42484-019-00001-w.

[13] Mirko Mattesi, Luca Asproni, Christian Mattia, et al., “Diversifying Investments
and Maximizing Sharpe Ratio: a novel QUBO formulation,” arXiv preprint, 2024.
Available at https://arxiv.org/abs/2302.12291.
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