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Introduction

Optimization Process in Architectural Design

  e “Optimization Process in Architectural Design” is developed by H Architecture, 

New York, to identify various applications of information in architecture practices and 

fabrication processes.

As introduced in “Data, Information, and Architecture” (H Architecture, New 

York, NY, 2017), data is simply facts or fi gures - bits of information, but not the 

information itself.   e “Computational Design in Practice” introduces architects 

and designers to the data as design parameters that could be utilized to optimize the 

building performances and the methods to achieve such results effi  ciently through 

computational design.

  e “Optimization Process in Architectural Design” covers the applications of the 

repetitive problem-solving method known as the ‘Evolutionary Computing’ at diff erent 

architectural design stages- from the strategic location of building masses to the 

development of modules to help the architects and designers to develop the optimal 

design proposals through iterations.
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2014 –   e “Domestic Hats” was patented for technical illustrations that became popular in the Industrial Revolution. It typically 
contained tools for accurate drawing like a protractor and compass.

2009 – Phare Tower Option Study Models by Morphosis Architects

A History of Evolutionary Computing

Repetitive Problem Solving Technique

  e Evolutionary Computing emanates from the “  eory of Evolution by Natural 

Selection”  by Charles Darwin (Darwin, Charles. On the Origin of Species by Means 

of Natural Selection, Or, the Preservation of Favoured Races in the Struggle for Life. 

London: J. Murray, 1859.)   e   eory of Evolution states: organisms with physical or 

behavioral traits that allow them to better adapt to their environments have higher 

chances of survival and have more off springs.   e process of Evolutionary Computing 

resembles such a process. Lawrence J. Fogel, a pioneer in Evolutionary Computing, fi rst 

used the notion of Evolutionary Computation in the 1960s with a support from the 

U.S. Government.   e application of the evolutionary computing in design processes 

emerged in the 1980s with the advent of personal computers. As the Computer Aided 

Design so% ware such as AutoCAD, FOrm Z, Maya, and Rhinoceros were more frequently 

used, the ‘Evolutionary Computing’ became more accessible as an architectural design 

procedure. Despite its potential for practical uses, the evolutionary computing so% ware 

is generally perceived as so% ware for the programmers only due to its complexity and 

was only used in a few projects during the last few decades.
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Top: Geco Grasshopper Simulation
ICD/ITKE Research Pavillion 2016 Structure Model
  e Tower by CITA Interior 
Lower Manhattan Modeling by NYC Opendata
ICD/ITKE Research Pavilion 2016 Robotic Sewing Process

Although the Evolutionary Computing is still rarely used, numerous other data 

analysis so% ware became available to architectural designers through open sources. 

  e prevalence of data analysis so% ware allowed the Evolutionary Solvers to fl ourish 

in Rhinoceros + Grasshopper environment.   e optimization in terms of “X” became 

available to architectural discipline through the evolutionary solvers and this new trend 

is called the  “X” Driven Design.   e Environmental Data Driven Design is a branch 

of this trend which is relatively common. An example of this process would be the 

extraction of view, radiation, glare, and daylight data through plug-ins such as Ladybug 

and HoneyBee and utilizing these data to simulate and evaluate for the optimal design 

solution through another plug-ins, Galapagos or Octopus.   ere are other simulation 

plug-ins such as Kangaroo Physics for the Force Driven Design and Karamba for 

Structure, Local Code, or Urban Data Driven Designs.

Environmental Data

Physic Data

Material Data

GIS Data

Process Data

Environmental Informa� on Based Design 

Structural Informa� on Based Design 

Force Informa� on Based Design 

Urban and Geographical Informa� on Based Design 

Advanced Geometry Analysis in Design

Honeybee + Ladybug

Environmental Based Ini! al Massing in Pre-schema! c 

Facade system Analysis in Schema! c and Design Development Phase

Ini! al massing and Integra! ve Design System for parametric structure 

in Pre-schema! c & Schema! c Phase 

Column Free roof Structure, Stadium, Terminal, Airport,

Facade, Interior Feature in Pre-schema! c & Schema! c Phase

Urban Design in Pre-schema! c & Schema! c Phase

Op! miza! on and Realiza! on for Paneling of Complex Geometry in Design 

Development & Construc! on Document Phase

KARAMBA 3D

Kangaroo

GIS, Local Code, Elk

Lunch Box

Rhinoceros + Grasshopper

Rhinoceros + Grasshopper

Rhinoceros + Grasshopper

Rhinoceros + Grasshopper

Rhinoceros + Grasshopper

Revit + Dynamo

Revit + Dynamo
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Application of Optimization in Multiple Design Phase

  e objective of this research is to introduce the practical applications of the optimization 

so% ware in architecture.   e optimization process could be described as “Flexible” because 

the optimization results depend on the raw input data and setting of the user’s objective.

  is research will cover the methods to set appropriate objectives for the optimization 

so% ware.   e optimization process is similar to a conventional architectural design 

process that it simulates  generations of similar options and selecting the better ones. 

  e only diff erence is that a computer cannot distinguish the better or worse options. 

  us, the user should prepare appropriate inputs for proper optimization, which cannot 

be done without the knowledge and experiences.

  is research will go through the applications of evolutionary optimization at various 

architectural design stages to demonstrate its fl exibility and validity.
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Evolutionary Computing

Single-Objective Optimization

Multi-Objective Optimization

Methods
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  e Evolutionary computing in Rhinoceros + Grasshopper can be utilized in 

conjunction with data analysis plug-ins to seek for the optimal design based on the 

environmental data. David Rutten, a so% ware developer at McNeel & Associates, 

developed a plug-in called the “Galapagos” which facilitates the optimization process 

within the Grasshopper (A visual algorithm editor). In his lecture: ‘Computing 

Architectural Concepts’, Architectural Association, London, 2010, Rutten explained 

the basics of the Galapagos and its potential uses.   e same material can be found in 

his personal blog - “Evolutionary Principles Applied to Problem Solving.” 

 “Octopus” is another plug-in for the Grasshopper that is similar to Galapagos. It is 

widely utilized for the application of evolutionary principles in parametric design and 

problem-solving.   e Octopus produces a range of optimized solutions for multiple 

parameters.   e critical diff erence between the two plug-ins is that the Galapagos can 

only process one parameter  at  a  faster rate while the Octopus can process multiple 

parameters simultaneously.

Evolutionary solvers are most eff ective when it is used with numeric data such as  

Environmental, Geometric, Structural and GIS data.   e data types on the le%  are the 

examples of the appropriate numeric data, which can be extracted through several 

other plug-ins such as Ladybug, Honeybee, Kangaroo, Elk and many more.

Evolutionary Computing

Environmental data

Geometric data

GIS data

Environmental data is usually documented in numerical form, which can be 

simulated, evaluated, analyzed and visualized relatively easily.   is character-

istic is convenient for the evolutionary computing.

Not all but some of the GIS data, such as the number of water complaints, the 

price of the rent, or the population in a region, can be converted to numerical 

data and used in the design process.

Geometric data in 3D modeling space is organized with numerical matrixes 

such as a point (x,y,z), a line (x,y,z *2), and a surface (x,y,z *4). In addition to 

the coordinates, the number of items is also numerical data.
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As its name suggests, the Single Objective Optimization can only process one-

goal output. In cases that do not require multiple objectives, the Single Objective 

Optimization is preferred since it is faster to simulate and easier to interpret. 

Galapagos is one of the most prevalent single objective optimizers in the 

Grasshopper environment. Its interface is composed of three major categories 

(‘Options,’ ‘Solvers,’ and ‘Record’) located on the top-le%  corner of its window.

  e ‘Options’ panel is organized to set up the behavior of the Evolutionary computing. 

  e Fitness (Goal) option decides whether to simulate for the maximum or the 

minimum value of a given parameter. In the Evolutionary solver tab, Max means the 

maximum number of the generations to be calculated. As mentioned in the last chapter, 

the Evolutionary solver creates a collection of options in several steps called ‘generations.’ 

  e Evolutionary solver categorizes the superior data and its proximate data as a ‘Family’ 

in a generation and iterates the next generation with the family.   e ‘population,’ just 

below the max tab, indicates the density of the data to be simulated in a generation.

In the ‘Solvers’ window, the simulation results are displayed.   e upper part is the 

generation and data tree, and the lower part is a list of the generation selected above.

‘Record’ window shows the simulated data as a text.

Single Objective Optimization

Galapagos Interface
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Above code is example of the fundamental application of the evolutionary computing 

in Rhinoceros & Grasshopper environment.   e object of the overall coding is to fi nd 

a specifi c random seed which maximizes or minimizes the number of the points. Base 

geometries are rectangular boundary and circular inner area. Points are populated 

randomly and according to the seed parameter, the location of the populated points are 

changed without changing the number of the total number of the points. 

1. Create Rectangular boundary with given setting (plane, XY size, Radius)

2. Extract Center point of the rectangle via ‘Area’ Component

3. Create circle inner boundary with  plane & any given number of radius

Single Objective Optimization Example Base Geometries setting

Point Populate Number of Items

Base Geometry (Boundary & Area)

#1 #2

#3

Solver
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1. Connect the ‘Rectangle’ output to ‘Region’ input of ‘populate 2d’

2. Set the total number of the points at ‘Count’ input

3. Set the number slider with domain of 0 to 1000 and connect to ‘Seed’ input

4. Connect the ‘Circle’ output to ‘Curve’ input of ‘Point in Curve’

5. Connect the ‘Population’ output to ‘Point’ input of ‘Point in Curve’

1. Connect ‘Relationship’ output to ‘Cull Pattern’ input of ‘Cull Pattern’

2. Connect ‘Population’ output to ‘List’ input if ‘Cull Pattern’

3. Connect ‘List’ output to ‘List’ input of list length

4. Converting the data type to ‘Number’

5. Connect ‘Genome’ to ‘Random seed’ number slider

6. Connect ‘Fitness’ to result ‘Number’

Populate points and Sorting Connection to Solver

#1-3

#4-5

#5-6

#1-4
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1. Double Click the Galapagos Solver to open up the pop-up window

2. Set ‘Fitness’ as ‘Maximize’ or ‘Minimize’ depending on the purpose

3. Set ‘Max. Stagnant’ and ‘Population’ to 20 for shorter simulation

4. Click ‘Solver’ tab for the Simulation

5. Click the le%  clock icon to visualize overall simluation in Rhino viewport

6. Start Solver

1. Click the optimized data

2. Reinstate the input params

3. Check the results (Maximized or Minimized)

Galapagos Setting & Run Optimization Results

#2

#3

#4

#5

#1 #1

#2#2

#3 #3

#6
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Octopus Interface

Unlike the Single Objective Optimization,   e Multi Objective Optimization can 

have two or more controversial objectives as goals to achieve.   e Multi Objective 

Optimization has a three-dimensional graph interface to display the complex simulation 

results. Octopus is the most prevalent plug-in for the Multi Objective Optimization. 

  e ‘Genome’ tab of the Octopus undertakes the Genetic input of the Galapagos.   e 

‘Octopus’ tab, which is usually misunderstood as Goal, does the same function as the 

Fitness in Galapagos. While the Octopus can facilitate most of the Galapagos functions, 

it cannot prioritize for the minimum. To modify this issue, the users have to multiply 

the input data with a negative to convert the maximum into a minimum.   e three-

dimensional graph is another visualization method of the evolutionary computing, 

which is rather intuitive than logical.   e main logic of the graph is that the distance 

between a point, which represents the simulation result of a specifi c option, and the 

origin point can be interpreted as the eff ectiveness of the option.   is relationship could 

vary depending on the input data type, thus the result must be evaluated by a designer 

with the option’s x,y,z values.

Multi Objective Optimization
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Above code is an example of the fundamental application of the multi objective

optimization computing in Rhinoceros & Grasshopper environment.   e object of the 

overall coding is to fi nd a specifi c random seed which maximizes and minimizes the 

number of the points in a defi ned region. Base geometries are rectangular boundary and 

2 circular inner areas. Points are populated according to the random seed as previous 

optimization coding.

1. Create Rectangular boundary with given setting (plane, XY size, Radius)

2. Extract Center point of the rectangle via ‘Area’ Component

3. Create the fi rst circle inner boundary with plane & any given number of radius

4. Create the second circle boundary in diff erent location via ‘move’ component

Multi Objective Optimization Example Base Geometries setting

Point Populate

Number of Items

Base Geometry (Boundary & Area)

#1 #2

#3-4

Solver
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1. Connect the ‘Rectangle’ output to ‘Region’ input of ‘populate 2d’

2. Set the total number of the points at ‘Count’ input

3. Set the number slider with domain of 0 to 1000 and connect to ‘Seed’ input

4. Connect the ‘Circle’ output to ‘Curve’ input of ‘Point in Curve’

5. Connect the ‘Population’ output to ‘Point’ input of ‘Point in Curve’

1. Connect ‘Relationship’ output to ‘Cull Pattern’ input of ‘Cull Pattern’

2. Connect ‘Population’ output to ‘List’ input if ‘Cull Pattern’

3. Connect ‘List’ output to ‘List’ input of list length

4. Converting the data type to ‘Number’ and Multiply ‘-1’ for minimize optimization

5. Connect ‘Genome’ to ‘Random seed’ number slider

6. Connect ‘Fitness’ to each result ‘Number’ components

Populate points and Sorting Connection to Solver

#1-3

#4-5

#5-6

#1-4
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1. Double Click the Octopus Solver to open up the pop-up window

2. Check the parameters to be matched with the grasshopper coding

3. Set parameters to have individual axis by clicking the checkbox

4. Set Max generation (‘0’-unlimited / Typical setting is about ‘50’)

5. Start the solver

1. Click the optimized option and select ‘reinstate’ in dropdown menu

2. Check the results (Maximized and Minimized)

Octopus Setting & Run Optimization Results

#5

#1

#4

#2-3

#1

#2
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Evolutionary Optimization on Multiple Design Stages

  is research covers the applications of the Evolutionary Solver as a decision-making 

tool at various architectural design phases. An architectural design proposal is embedded 

with countless decisions as its process is a compromisation between various role players 

or parameters. Many decisions are made by defi nitive parameters-such as building codes 

or the cost. On the other hand, some parameters are more sophisticated to evaluate.   e 

Evolutionary Optimization is an ideal procedure to iterate options through repetitive 

and complex numeric data.
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Analysis Stage

  e context analysis is typically the fi rst step of the architectural design as most of the 

building design proposals are set in specifi c sites and environmental conditions.

Environmental data is a collection of numeric data. View, infrastructure, neighboring 

buildings, census, sun paths, wind roses, temperature, noise level to name a few are the 

examples of data types that can be collected as the raw material for the context analysis.

  e computation converts the raw data into visual information for interpretation.

In the Analysis Stage, the ‘Partial Building Massing Process’ of “Sejong M2 Block project, 

South Korea, 2013” is used as a reference.
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Sejong M2 Block project was done in 2013, South Korea. H-architecture participated in 

the project during the pre-schematic phase.   is chapter will use the Sejong M2 Block 

project as a reference to discuss the partial application of the shadow range analysis and 

evolutionary computing at the early design stage.

Generally, in residential complex projects, one building’s shadow on another building 

results in inferior units and negatively aff ects the value of the units in the shadow. To 

avoid this situation, the architects are paying more attention to guarantee as much day-

lighting as possible to all units.

  e Sejong M2 Block project consists of bar type buildings below and tower type apart-

ment buildings on top.   e bars’ locations are determined by regulations and knowl-

edge of residential projects while the towers’ locations on the bar are relatively fl exible.

  e Evolutionary Optimization was used to simulate critical diff erences resulted from 

subtle diff erences of designs.
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1. Divide the fi rst podium massing according to the circumstaces(width, cores, columns)

2. Create tower massing with given height & number of the fl oors

3. Repeat the same process for other podiums (in this tutorial, total 9 podium massings)

Tower location setting

1. Extract front surface of the tower

2. Move the surface slightly above to avoid the surface overlapping

3. Convert the surface to mesh (U = n(unit) in a fl oor, V = n(fl oors))

Analyzing mesh creation

Base Tower Geometry

(x9) (x9)(x9)

#1-2. Tower Front Surface Extrac� on Mesh Conver� ng
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1. Collect the prepared tower front surface meshes

2. Collect the front surface of podiums (surfaces for analysis only)

Podium surface extraction

1. Set up the Base setting for shadow range analysis

2. Run the Simluation

3. Connect ‘Sunlight hours’ to ‘Number’ for data conversion

Shadow range (Minimizing Value)

#1. Shadow Range Analysis Se�  ng

#2. Podium Mesh Collec� on

#2-3. Simula� on

#1. Tower Mesh Collec� on
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1. Extract rear edges of the front tower’s fl oors

2. Extract spacing curves from backward tower’s fl oor edges

3. Create ‘Curve / Curve’ component to check overlapping of the tower locations

Tower spacing check

1. Collect the ‘Point’ output of the ‘Curve/Curve’ component to ‘List length’ Component

2. Cull the non-overlapping values with ‘Cull pattern’ component

3. Recalculate the length of the cull patterned list via ‘List length’ again

4. Convert the data type to numbers

Relative spacing check (Minimizing Value)

#3. Spacing Checker

#1. Spacing Checker

#1. Spacing Checker

#2-4. Convert result as a number

overlaps - nega� ve scenario

X overlaps - Posi� ve scenario

#1. Tower #1’s Rear Floor Edges

#2. Tower #2’s Designated Spacing Curves
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1. Connect the ‘Tower Location’ params(1-9) to ‘Genome’ of the Octopus solver

2. Connect converted numeric data of the sunlight hours to ‘Octopus’ of the solver

3. Connect converted numeric data of the distance checker to ‘Octopus’ of the solver

4. Double click the solver to open up the pop-up window

Octopus Connection

1. Set up the max generation according to circumstances

2. Check the numbers are having individual axis

3. Click ‘Start’ to run the simulation

Run the simulation

#2. Sunlight Hours -> Number

#1. The 1st Tower Loca� on

#1. The 9thTower Loca� on #4. Solver

#3. Building Distance Checker -> Number
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Options simulated via Evolutionary Optimization
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Best Option Selected from Evolutionary OptimizationBest Option Selected from Evolutionary Optimization

Best Option Selected from Evolutionary Optimization

  e tower casts less shadow to an adjacent building in this location and orientation. 

  e Shadow Range Analysis of the Ladybug plug-in was used to measure the 

shadow range.   e analysis code was plugged-in to the ‘Octopus’, a multi-

objective evolutionary solver, to simulate various tower locations and evaluate 

whether the locations of the towers were feasible.   e net shadowing hours 

on the building segments were used to evaluate the  tower location options.

  e graph above shows all of the simulated options and each point corresponds to a 

certain amount of shadow range.   e image on the le%  has the least amount of shadow 

range in the entire project, which is indicated as the ‘Optimized Result’ in the graph 

above.

Building Overlaps : 0 - Positive

Building Overlaps : 2 - Negative

Optimized Result
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Initial Design Stage

Conventionally, a larger scale building is composed of repetitive elements called  the 

“Modules.”   e modules are relatively fl exible design elements than the overall building 

form that is limited by strict regulations, building codes and so on.   erefore, in many 

cases, the overall form and the orientation of the building may not be in the ideal con-

dition. However, there is still a chance to improve the building performance by proper 

optimization of the modules.

Typically, buildings with horizontally elongated proportions are composed of repetitive 

modules.   e airports and factories are the clear examples.

In the initial design Stage application,   e ‘Proto-type Form Finding Process of the 

Module Design’ of “Incheon international airport Terminal 2 design, South Korea, 

2017” is used as a reference.
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  e Incheon International Airport Terminal 2 extension project was done in 2017 as a 

competition project. H-architecture participated in the entire process of the competition.

One of the most important parts of the project was to design a module that crosses the 

entire width of the airport lounge spaces to minimize the structural members obstruct-

ing the circulation.

  e view and daylight were the two design parameters of the modules. Ideally, a module 

would have a view to the airside and roadside from the interior and so%  indirect daylight 

with minimal glare.

However, due to the orientation of the modules, the above criteria were confl icting el-

ements.   e evolutionary solver was utilized to simulate and evaluate for the optimal 

design option.
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1. Create standard points and import it to Grasshopper via ‘Point’ component.

2. Set Movable parameters according to circumstances (Height limit, Columns, etc).

3. Connect points by creating triangulated surface for prototype geometry creation.

Module prototype creation

1. Assemble the surfaces via ‘Merge’ component.

2. Create repeated installation of the module via ‘Linear array’ component.

3. Numbers vary depending on each projects’ circumstances.

Array Modules for simulation

#1-3. Module Prototyping

#1-3. Module Assembly
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1. Create target fl oor geometry as a mesh with appropriate U,V value.

2. Create radiation simulation setting for the summer period.

3. Connect the module, simulation setting and fl oor mesh to radiation simulation.

4. Connect the target fl oor geometry to Geometry of Radiation Analysis.

5. Connect the arrayed modules to Context of Radiation Analysis.

6. Run the simulation.

Radiation Analysis (Minimizing Value)

1. Connect the target fl oor to Geometry of View Analysis.

2. Connect the arrayed modules to the Context of View Analysis.

3. Set appropriate integer (0-4) for View type and resolution.

4. Run the simulation.

View Analysis (Maximizing Value)

#2-5. Radia� on Simula� on Se�  ng

#6. Simula� on & Result

#1. Floor Geometry

#1-3. View Analysis Se�  ng
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1. Set up the max generation according to circumstances

2. Check the numbers are having individual axis

3. Click ‘Start’ to run the simulation

Run the simulation

1. Connvet module shaping params to ‘Genome’ of the Solver

2. Convert ‘viewStudyResult’ output into ‘Number’ parameter

3. Connect the converted number to ‘Octopus’ of the Solver

4. Convert ‘totalRadiation’ ouput into ‘Number’ parameter

5. Connect the converted number to ‘Octopus’ of the Solver

6. Double click the solver to open up the pop-up window

Solver

#4-5. Radia� on Value

#2-3. View study Value#1. Module Shape Parameters

#6. Solver
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  e ‘Octopus’ is used instead of Galapagos for the multi-objective optimization. Each 

point in the graph  above is a simulation result of complex relationships between the 

view, daylighting and glare.

  e view and the sun direction coincided due to the orientation, which complicated 

the design process. An incresed opening meant a better view and the daylight but also  

larger the opening higher the change of the glaring eff ect due to an increased diff erence 

between the brighter and darker parts of the interior.

To resolve this complicated relationship, the genetic algorithm is plugged into the 

Octopus to evaluate several possible options that satisfy the above mentioned confl icting 

objectives.

View

Optimized Result

Total Radiation
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Developing Stage

  e Evolutionary solvers are not limited to only data-driven simulations.   e major 

benefi t of the Evolutionary solver is that it is super fl exible with the condition. It only 

requires a numerical input parameter and a numerical objective. In a traditional 

design process, the optimizations were manually done by architectural designers. If the 

evolutionary solver could be used instead of manual optimization, some undiscovered 

opportunities could be found.

  e Plan and Section studies are one of the most typical manual optimization processes. 

  e designers had to manually dra%  in search for more seats, units, rooms, or leasing 

spaces.   is process could be revolutionized by the Evolutionary Solvers with practical 

considerations.

In the Developing Stage application, ‘Seat layout optimization process’ of “Bucheon 

Concert Hall project, South Korea, 2018” is used as a reference.
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Bucheon Concert Hall project was done in 2018 as a competition project and H-archi-

tecture participated in main concert hall design.

Due to acoustical reasons, the main concert hall had fi xed dimensions.

  e limited room volume resulted in an issue of the seat arrangement. Since the total 

number of the seat is directly connected to the total income, it had to be maximized in 

a limited volume.

  e location and the dimensions of the egress, defi ned by the building codes, and the 

visibilities to the stage from each seat are the two major factors had to be considered in 

the seat layout design.

  e two parameters-the egress and the view had to be engraved in the Grasshopper 

coding as a design generator.
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1. Create single point in Rhino environment and export it in Grasshopper

2. Move the point to Conductor’s location on the stage condition in the project

3. Set up distances between the fi rst series of the seat rows in section

4. Set up rise height of the fi rst series of the seat rows in section

5. Applying the distances and the rise heights to each rows

6. repeat the #3 to #5 in each series of the seat rows in section

Sectional Seat Layout Creation

1. Create curve from audiences eye level’s point to conductor’s location point

2. Create curve from audiences’ seat level to headtop

3. Check the corssing curve to determine the twiggling of the seats in plan

Visibility Check

#3-5. Create Sec� onal Seat Loca� on#1. Origin Point

#2. Conductor’s Loca� on as Point

1st set of Rows 2nd set of Rows 3rd set of Rows 4th set of Rows

Plan view of 

the Orthodox 

Seat layout

Plan view of 

the Twiggled 

Seat layout
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1. Set Center point and Radius of the Arc for the seat layout 

2. Create Arc with a setting and off set the arc with designated distance

3. Merge all data into one data list via ‘Merge’ component

Radial Seat Layout in Plan

1. Create Outer Boundary of the Arc seat layout according to the Hall Volume

2. Join the Hall boundary curves as a Region to trom

3. Trim the Arcs with a Region via ‘Trim with Region’ component

Trimming Radial Layout

#2-3. Arc Seat Layout #3. Region Trim#1. Arc Layout Se�  ng #1-2. Create Hall Boundary
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1. Set up the Width of each seats

2. Create the Locational points on the Arcs to create Seat Location

3. Set up Seat geometry by importing the seat shaped curve in Rhino to Grasshopper

4. Place the geometry on each point for the data visualization

5. Converting the length of the item list of the seat to Number and Connect it to Fitness

6. Connect the Base params (Height of the rise / number of rows) to Genome

Cull Seat ovelaps with Aisle width

1. Double Click the Galapagos Solver to open up the pop-up window

2. Set ‘Fitness’ as ‘Maximize’ to create more venues in the space

3. Set ‘Max. Stagnant’ and ‘Population’ to 50 for Precise simulation

4. Click ‘Solver’ tab for the Simulation

5. Click the le%  clock icon to visualize overall simluation in Rhino viewport

6. Start Solver

Galapagos Setting & Run

#2

#3

#4

#5#6

#2. Seat  Loca! on #4. Seat  visualisa! on

#6. Base Params

#5. Conver! ng

Data type to Number

#3. Seat  

Geometry

#1. Seat  

Width
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  e major issue of creating the seat layout was related to the building codes about the 

egress and visual interruption to the stage from the seats in front.   e major input 

parameter was the shape of the inner corridor and by adjusting it, the number of the seats 

was increased greatly, which meant the maximized income. Another input parameter 

was the adjustment of the seats according to the visual interruptions.   e audiences 

seating in front blocks the view of the stage to the audience seating behind.   us, the 

seat layout of the following row was coded to shi%  to provide avoid the obstruction.

  e coding was designed to simulate and evaluate these parameters, which aff ected the 

fi nal result of the seat layout.
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Post Design Stage

Building elements such as the sun shading devices -louver, fi n, etc- are usually considered 

during the later design process due to the fact that the entirety of the building is subject 

to stricter parameters such as the Building code, Economical benefi ts or Client’s request. 

When the overall building form, fl oor plans, and sections are fi xed, the building elements 

are the only way to control the radiation, shading, irradiance, daylighting or glaring eff ects. 

  e post design elements can be designed through the environmental simulation and 

the resulting information. However, the fi ne-tuning of the elements such as the dimen-

sion of the depth, width, or shape cannot be perfected from just the simulation alone. 

  e evolutionary solver can be the fi ne tuning method for these elements by constantly 

calculating and evaluating the design results.
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267 Broadway is a skyscraper that H-architecture proposed in 2018.   e shape of the 

tower is decided by strict building code and other social considerations.   e elevation of 

the tower was designed as a grid-based louver and fi n combination which is the classic 

Manhattan skyscraper style.

  e Environmental analysis of this elevation focused on two controversial aspects of 

the fi n and louver which is the obstruction of the view and the reduction of the total 

radiation. To achieve the two confl icting objectives simultaneously, the multi-objective 

optimization was applied to the sun shading devices.
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Context View Analysis

Radiation Analysis
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1. Set the orientation of the buliding (XY plane to EWSN plane)

2. Create building modeling with Floors, Heights and Elevation modules

3. Extract the Building skin with proper Mesh conversion

Create Base Modeling in Grasshopper Building Orientation

#2. Floor Data #3. Convert Eleva� on Unit to Mesh

#1. Building Orienta� on

1. Create a Rectangle using “Rectangle 2Pt” Component.

2. Connect diagonal points to Point A and Point B of “Rectangle 2Pt.”

2. Connect the Rectangle output to Edges input of “Boundary Surfaces.”

#1-2 Building Perimeter #3 Base Surface
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1. Create “Number sliders” for each height domain.

2. Subtract the lower domain from the higher domain.

3. Connect the result into the Length input of  “Repeat Data” components.

4. Create “Number sliders” with the fl oor-to-fl oor heights at each domain.

5. Connect the step 4 results to Data inputs of “Repeat Data” Components.

6. Connect the “Repeat Data” outputs into “Merge” Component.

1. Explode the Rectangle in Building Orientation

2. List the explosion results using “List item.”

3. Move the lists using the results from Floor Data

4. Merge the moved lists and the original lists.

Floor Data Convert Elevation Unit to Mesh-1

#1 Domain #2-5 Heights #1-2 Mesh Data #3-4 Floor Data

#6 Merge Data
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1. Create Radiation Analysis setting

2. Run the analysis and extract the Result

The 1st Radiation Analysis

#1. Radia� on Analysis Se�  ng #2. Radia� on Analysis & Result

1. Divide the curves created.

2. Create four appropriate series (X, X+1, X+Y, X+Y+1).

3. Create Mesh faces using “Mesh Quad” and the series generated.

4. Construct Mesh.

5. Join the Meshes created.

Convert Elevation Unit to Mesh-2

#1-2 Mesh Data Management #3-4 Mesh

#5
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1. Extract the mesh edges using the “Mesh Explode” and “Face Boundaries.”

2. Extract the bottom and top edges of each mesh face using “List Item.”

3. Select the center points of the edges by setting “Point on Curve” to “0.50.”

4. Construct a Line between the center points.

5. Extract the normal vectors of mesh faces using “Evaluate Surface.”

6. Connect normal output to vector input of “Amplitude.”

1. Remap the radiation simulation data to numbers between 1 and 20.

2. Connect the remapped data to A input of “Multiplication.”

3. Create a number slider between 0.02 and 0.10, connect to B input of “Multiplication.”

4. “Gra% ” the multiplication results and connect to “Amplitude” created earlier.

5. Connect the resulting vector to “Extrusion.”

6. Connect the lines created earlier to “Extrusion.”

Create Shading Devices - Fin Create Shading Devices - Fin

#1-6. Edge Extrac� on

#1-3. Remap Data

#4-6. Fin Surface
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1. Connect the remapped radiation data to A input of “Multiplication.”

2. Create a number slider between 0.02 and 0.10, connect to B input of “Multiplication.”

3. “Gra% ” the multiplication results and connect to “Amplitude” created earlier.

4. Connect the normal vectors of mesh faces to “Amplitude.”

5.  Extract the top edges of each mesh face using “List Item.”

Create Shading Devices - Louver

1. Connect the extrusion created earlier to “Amplitude.”

2. Connect a number slider to “Amplitude.”

3. Connect the extrusion created earlier to another “Extrusion.”

4. Connect amplitude to the new “Extrusion.”

Create Shading Devices - Fin

#1-4. Fin Mass

#1-5. Edge Extrac! on
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1. Create View Analysis setting with Shading devices as context

2. Run the Analysis

3. Extract overall view percentage as a numeric data from ‘viewStudyResult’ of simulation 

View Analysis with Fin & Louver (Maximizing Value)

#1. View Analysis se�  ng #2-3. View Analysis

1. Connect the extracted edges and vectors to “Extrude.”

2. Extract the centroids of the extrusion using “Area.”

3. Connect centroids to “XY Plane.”

4. Connect XY Plane and a number slider to “Amplitude.”

5. Connect the extrusion to another “Extrusion.”

6. Connect the amplitude to the new “Extrusion.”

Create Shading Devices - Louver

#1-6. Louver Mass
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1. Share the 1st Radiation Analysis setting for the 2nd simulation

2. Plug the Fin&Louver as additional contexts of the radiation simulation

3. Run the analysis

3. Convert the overall radiation value to numeric data via ‘Number’ component

The 2nd Radiation Analysis (Minimizing Value)

#2. Shading 

Devices

#3-4. Radia� on Analysis & Result

1. Connect the isolated Fin & Louver params to the ‘Genome’ of the solver  

2. Connect converted numeric data of View analysis to ‘Octopus’ of the solver

3. Connect converted numeric data of Radiation analysis to ‘Octopus’ of the solver

4. Double-click the solver to open up the pop-up window

5. Check the numbers to have individual Axis

6. Run the solver by clicking ‘Start’ button

View Analysis with Fin & Louver (Maximizing Value)

#1. Fin & Louver depth

#2. View Analysis Data #4. Solver

#5. Numbers & Axis

#6. Run it

#3. the 2nd Radia� on Analysis
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Simulation Option #2

Simulation Option #1

Simulation Option #4

Simulation Option #3
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Simulation Option #6

Simulation Option #5

Option #1

Option #3

Option #5

Option #2

Option #4

Option #6
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Optimized Solution

  e optimization process of the fi n and louver forms was based on the view and the 

radiation. Ideally, the building would have the maximum view with minimum radiation. 

However, due to other set conditions of the project, the view and the radiation became 

confl icting parameters.   us, when the view was maximized the radiation was also 

maximized instead of the ideal condition of being minimized.   e graph above refl ects 

the confl icting situation and the design has to be a compromise between the view and 

radiation.   e marked genomes above is the superior geometry.

View

Radiation

Optimized Result
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Bucheon Concert Hall Optimized Center Venue

Result & Limitation

Evolutionary computing programs are extremely helpful for making design decisions 

or, at least, useful for narrowing down the design options when it is used with proper 

data fl ow algorithms and logical foundation of the practical considerations.   e 

understanding of the design process is crucial for a designer to create a specifi c code 

response related to design parameters that are usually rooted in building code or general 

design criteria.   e list below is the fundamental understanding of the Evolutionary 

solver that needs to be followed for future applications.

1. Not a stand-alone program

  e Evolutionary Solver requires additional coding to generate diverse design options. 

  us, the designer who wants to utilize the Evolutionary Solver must learn the skills to 

create additional data fl ow structure in the Grasshopper environment.

2. Requires only numerical value as objectives

  e Evolutionary Computing only accepts numerical data as the simulation objectives. 

  us, all of the objectives must be converted into quantitative data with proper units. 

For example, the Lx is used for simulating the daylighting, number of venues, or hours 

of shadow in range.

3. Application of the program in overall design process is limited

  e Evolutionary Solver doesn’t need to be involved in the entire design process. As 

mentioned above, the Evolutionary Solver can only accept measurable data, therefore, 

understanding when to use the Evolutionary Solver during the design process is crucial 

for the eff ective use of the Evolutionary Solver.

4. Simulation time vary depends on base algorithms

  e duration of the simulation varies greatly on the complexity of the base algorithms. 

Some complex algorithms may take unexpectedly long hours.   us, the designer must 

be able to compromise between the accuracy of the result and the duration it takes for 

the eff ective use of the Evolutionary Solver.
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Conclusion

  e contemporary designers have a wider range of computer-based design tools 

more than ever. As these modeling, drawing, and simulating so% ware develop, the 

algorithms behind the visible results become ever more sophisticated. While some of 

the computer aided design so% ware are intuitive for the designers and thus widely used 

in the professional practices, other so% ware that require deeper understanding in the 

computation have higher entry barrier-such as the Evolutionary Solver and therefore 

are less commonly used.

Although learning the Evolutionary Solver may require time and eff ort, learning the 

apparatus can be an extremely useful skill for architectural designers.   rough the 

knowledge of the Evolutionary Solver, a designer may design beyond the human 

cognition by cooperating with the computer. While humans have knowledge and 

intuition, we are also subject to prejudices. On the other hand, computation algorithms 

are created with no preconception.   us, the computers can generate design options, 

simulate and compare them fast and unbiased.   erefore, the computational processed 

designs are less subject to prejudice and personal preferences then the traditionally 

processed design.   us, the designers can surpass the human cognition by cooperating 

with the Evolutionary Solver Program and other simulation algorithms and create 

innovative and objective design proposals.

In the last two research projects, “Performative façade” & “Data Management in 

Architectural Design”, data-driven design methods and data management techniques 

were covered.   e aim of this research is to increase the precision of the former 

researches through the Evolutionary Solvers and grant the designers a skill to extract 

refi ned data through simulations.   rough the knowledge gained in the series of 

research and practical applications data-driven design, the teams of H Architecture & 

Haeahn Architecture will be able to deliver innovative high-performance designs.
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