


Executive Summary

Your Al agent works perfectly in demos. It understands context, makes decisions, and
impresses stakeholders. Then deployment stalls. Security blocks hardcoded credentials.
Single-user architecture won't scale. Tool execution breaks under load.

This is an industry-wide problem. 70% of Al agent projects fail to reach production. Gartner
predicts 30% of generative Al projects will be abandoned after proof of concept by the end of
2025.

The Real Problem Isn't Al

Models can reason and execute complex tasks. The Model Context Protocol (MCP)
standardized how agents communicate with tools. But MCP is a protocol, not a platform—it
defines the language, not the production infrastructure.

What MCP leaves unsolved: Multi-user authentication is the critical gap. Teams resort to
service accounts or hardcoded credentials because building OAuth for agentic workflows
requires expertise few organizations have. Beyond auth, teams must build hundreds of tool
integrations, prevent hallucinations in tool selection, and establish governance with audit
trails.

For one agent and one tool, this seems tractable. At scale—dozens of tools, hundreds of
users—custom code becomes unmaintainable. The gap isn't intelligence; it's execution
infrastructure.

The Arcade Solution provides the end-to-end infrastructure MCP
alone cannot deliver:

1. 1,000+ Production MCP Tools: Pre-built integrations eliminating months of
connectivity work

2. Tool Development Kit: Simple framework for building custom tools beyond the
standard catalog

3. Multi-User Authentication: Secure, user-specific permissions across every tool—
what MCP's protocol cannot provide

4. Execution Engine: Intelligent execution handling tool discovery, hallucination
prevention, credential management, and governance

Production-ready architecture means engineering teams focus on differentiated features
instead of maintaining custom code. Security teams approve deployments with enterprise
standards and audit trails. Operations teams gain centralized visibility and control. Business
stakeholders see ROl from agents that execute workflows, not just recommend actions.

This whitepaper examines the technical and organizational challenges preventing Al agents
from reaching production and demonstrates how Arcade addresses the execution gaps MCP
leaves unsolved.

If your team is building agentic applications and facing the prototype-to-production
transition, request a demo https://www.arcade.dev/contact to see how Arcade accelerates
your path to shipping.

Arcade dev


https://www.arcade.dev/contact

The MCP Reality Check

The Model Context Protocol represents a genuine
breakthrough. Before MCP, every agent platform spoke
a different language. Building a tool for one system
meant rebuilding it from scratch for another. MCP
standardized the communication layer—agents and
tools now share a common protocol for discovering
capabilities, calling functions, and exchanging data.

But standardizing how agents talk to tools isn't the
same as making agents work in production. Notice the
pattern in agent demonstrations: weather APls, web
search, Wikipedia lookups—public data that requires no
authentication. These examples work beautifully until
you need the agent to actually do something useful:
read YOUR emails, update YOUR CRM, access YOUR
calendar. The moment tools require user-specific
access, demos end and production problems begin.

MCP is a protocol, not a platform. It defines the format
of the conversation, not the infrastructure needed to
have that conversation at scale, securely, and reliably.

What Teams Discover After the Demo

Development teams building on MCP hit the same walls
in the same order:

Tool Integration: MCP defines how to describe a tool and
how an agent should call it. But someone still needs to
build the actual integration to Slack, Gmail, Salesforce,
or your internal systems. MCP gives you the schema
format—you write the code that connects to APlIs,
handles authentication, manages rate limits, and
processes responses.

Multi-User Authentication and Authorization: MCP has
no concept of user context. Consider this standard MCP
tool call:

"method": "tools/call",
"params": {
"name": "send_email",
"arguments": {
"to": "customer@company.com",
"subject": "Order Update"
ki
}

Whose email account sends this message? MCP doesn't
specify. The protocol can't pass user credentials or
authorization tokens to tools. Teams building multi-user
agents must architect their own authentication layer
outside MCP—handling OAuth flows, token storage,
refresh logic, and user-specific permissions.

Tool Selection Logic: When your agent has 50 tools
available, MCP helps it understand what each tool does.
But MCP doesn't help the agent choose correctly. Teams
must build the logic that filters tools by context, ranks
relevance, handles selection errors, and retries failures.
This selection layer sits on top of MCP, not within it.

Hallucination Prevention: Agents sometimes call tools
with invalid parameters, request non-existent
functions, or misinterpret user intent. MCP defines the
tool schema but doesn't validate agent behavior. Teams
need validation layers that catch errors before they
reach production systems—checking parameters,
confirming intent, and providing guardrails.

Governance and Compliance: Production deployments
need audit trails showing which user triggered which
agent to call which tool with what permissions. MCP
doesn't provide this visibility. Teams must build logging
infrastructure, permission management systems, and
compliance reporting around their MCP
implementation.

Arcade.dev



The Production Gap

at You Must Bu

Tool Protocol Actual integrations to every
connectivity specification system

User Nothing—no user context Complete OAuth infrastructure,
authentication support token management, refresh logic
Tool Discovery and schema Selection logic, filtering, error
selection format handling, retries

Error Tool schema Parameter validation, intent
prevention definitions confirmation, guardrails

Audit and Communication Logging, permission tracking, audit
compliance standard trails, governance

Why Custom Code Breaks at Scale

Your first team builds a Slack integration. They write
5,000 lines connecting MCP tool calls to Slack's API. It
works. Six months later, a second team needs Slack
access. They don't know about the first implementation,
so they build their own. Now you have two Slack
integrations with different error handling and auth
patterns.

Slack updates their API. Both integrations break. The
second team doesn't know the first exists, so they fix
their version. The first team's agent keeps failing.
Nobody notices for two weeks.

Meanwhile, your third team needs Gmail integration.
They copy the Slack pattern and adapt it. Now any
improvements must be replicated across three
codebases. A security audit reveals all three store
tokens differently—environment variables, database,
custom encryption.

Arcade.dev



The Arcade MCP
Execution Platform

MCP made agent-tool connectivity possible by
standardizing the protocol. Arcade made it practical by
building the production infrastructure that sits on top
of that protocol. The platform combines four integrated
capabilities that work together as a unified system—
not isolated features, but architectural layers designed
to solve the production gap.

The'Four Platform Pillars

o » o »

The Four Platform Pillars

1. Machine Experience (MXE) Optimized Tools:
Intention-Based, LLM-Optimized

Arcade provides 1,000+ tools engineered specifically for
agent cognition through its Machine Experience (MXE)
framework. Unlike service-based approaches that
mirror API structures, Arcade organizes tools around
agent intentions—how LLMs actually reason about
tasks. Each tool undergoes continuous evaluation-
driven optimization to maximize model selection
accuracy, with schemas and descriptions refined based
on actual LLM behavior. This fundamental engineering
reduces hallucinations, improves first-time selection
accuracy, and minimizes token consumption. The
catalog covers major SaaS platforms (Slack, Salesforce,
Gmail, Google Workspace, Microsoft 365, Jira, GitHub),
databases (PostgreSQL, MySQL, MongoDB), and
enterprise systems—all with built-in error handling,
rate limiting, and retry logic.

2. Tool Development Kit: Custom Tool Creation

When your team needs connectivity beyond the
standard catalog—internal systems, proprietary
databases, specialized APIs—Arcade's Tool
Development Kit (TDK) provides a framework for
building custom MCP tools. The TDK handles schema
generation, parameter validation, error handling, and
MCP protocol compliance automatically. Developers
write business logic; the platform generates the
infrastructure. Custom tools integrate seamlessly with
Arcade's auth, orchestration, and governance layers—
no separate authentication or logging code required.

3. Multi-User Authentication: Secure, User-Specific
Permissions

Arcade's authentication layer solves what MCP's
protocol cannot—propagating user context through
every tool call. The platform manages OAuth flows for
50+ services, handling authorization requests, token
storage, automatic refresh, and credential isolation.
When an agent needs to access a tool, Arcade ensures
it uses that specific user's permissions through their
authorized OAuth token. Security teams get user-level
audit trails. Compliance teams can answer "who
accessed what, when?" The agent never sees
credentials—authorization happens in Arcade's
infrastructure layer, invisible to agent code.

4. Execution Engine: Tool Selection, Hallucination
Prevention, Governance

The execution engine coordinates tool selection,
validates parameters, prevents errors, and maintains
governance. Powered by MXE's intention-based design,
the engine optimizes for how agents actually reason—
reducing cognitive load and improving selection
accuracy through continuous evaluation. Built-in
parameter validation catches errors before execution—
malformed inputs, invalid formats, out-of-range values
—preventing failures from reaching production
systems. When agents make errors, the engine's retry
logic with context-aware fallbacks recovers
automatically. Every action generates compliance-grade
audit logs with full context: user identity, agent identity,
tool called, parameters, timestamp, and authorization
scope. Centralized management provides operations
teams real-time visibility and control.

Arcade.dev



How the Arcade Platform Works:
End-to-End Workflow

Consider the Slack-CRM agent deployment—the
scenario that revealed the production barriers in earlier
sections. With Arcade, here's how the platform solves
what custom code couldn't.

Integration: The Slack and Salesforce tools already exist
in Arcade's catalog. No custom API code. No
authentication logic. No rate limit handling. Import the
tools, configure which Slack channels and Salesforce
objects your agent should access, done. Deployment
time: minutes, not weeks.

Authentication: Your sales team installs the agent.
When a rep first uses it, Arcade prompts them to
authorize Slack and Salesforce through standard OAuth
flows—the same "Connect to Slack" experience they've
seen in other apps. They authorize with their own
credentials. Arcade stores the OAuth tokens securely,
isolated per user. The agent code never sees these
credentials.

Execution: A sales rep asks the agent to monitor a
customer conversation in Slack and update the deal in
Salesforce. The agent formulates the request. Arcade's
execution engine:

1. Tool Selection: Identifies the Slack "read_channel"
tool and Salesforce "update_opportunity" tool from
the semantic catalog

2. Authentication: Retrieves that specific user's OAuth
tokens for Slack and Salesforce

3. Authorization Check: Verifies the user has
permission to read that Slack channel and update
that Salesforce opportunity

4. Parameter Validation: Confirms the agent provided
valid channel IDs, opportunity IDs, and field values

5. Execution: Calls the tools with user-specific
credentials

6. Error Handling: If Slack rate limits trigger, automatic
retry with exponential backoff

7. Audit Logging: Records user identity, agent action,
tools called, data accessed, timestamp

Governance: The operations team views a dashboard
showing all agent activity across the sales organization.
They see which reps are using which tools, error rates
by tool, authorization patterns. When a rep leaves the
company, admin deactivates their account—all their
agent authorizations terminate immediately, no
orphaned tokens. Security audits show complete trails:
"Rep A accessed Customer X's Slack channel and
updated Deal Y in Salesforce at timestamp Z with
authorization scope [read:channels,
write:opportunities]."

Arcade dev

The Integration Advantage: These four pillars don't
operate independently—they form a unified
architecture where each layer enhances the others.
Tools built with the TDK automatically inherit the auth
layer's user context propagation and the execution
engine's error handling. Custom tools get the same
governance, monitoring, and audit trails as built-in
tools. Authentication tokens are managed consistently
across all tools. The execution engine learns from usage
patterns across all agents and all tools, improving
execution for everyone.

Platform Architecture

Arcade Platform \L

Execution Engine

Tool Selection & Validation

Auth Layer

User Context & Tokens

h
Governance Layer :
Audit & Control :

'

'

1 '

' '

1 1

v .
D iﬁ ------------------------------- ,

SERVICES

° '. L] M salesforce

This integrated platform architecture addresses the
production gaps that MCP's protocol alone cannot fill—
transforming agent-tool connectivity from a
communication standard into production-ready
infrastructure. The next section examines the business
impact these technical capabilities deliver.



Solving the Last-Mile
Problem

Teams building agents—or any multi-tool, multi-user
system—adiscover that solving Al capabilities doesn't
solve production readiness. There are four gaps that
represent the last mile between demo and deployment.

Tool Availability: Building and
Maintaining Integrations

The Problem: Your agent needs to connect to Slack,
Salesforce, Gmail, Google Calendar, Jira, and a dozen
other systems. Each integration requires building API
connectors, managing authentication, handling rate
limits, processing responses, and maintaining code as
APIs evolve. Your first integration takes two weeks. Your
tenth takes three weeks because you're also
maintaining the previous nine. The MCP ecosystem now
offers community servers for popular services, but
connectivity alone doesn't solve the problem—tool
quality matters. Agents must be able to select the right
tool and use it correctly. Most tools are APl wrappers
that agents struggle to use effectively.

The Solution: Arcade provides 1,000+ production-grade
tools across major platforms (Slack, Salesforce, Gmail,
Google Workspace, Microsoft 365, Jira, GitHub),
databases (PostgreSQL, MySQL, MongoDB), and
enterprise systems. Each tool is maintained, tested, and
optimized for agent selection accuracy—not just
wrapped from APl documentation. When you need
connectivity beyond the catalog, the Tool Development
Kit (TDK) provides a framework for building custom
tools with schema generation, parameter validation,
error handling, and MCP compliance built in.

Multi-User Authentication and
Authorization: The Critical
Differentiator

The Problem: A Slack-CRM agent works perfectly when
you hardcode your credentials. But deploying to your
sales team exposes two failure patterns teams
encounter:

Service Account Bypass: Using a service account (the
common RAG approach) creates a privilege escalation
vulnerability. When the intern runs the agent, they
inherit admin-level access through the agent's
credentials. Security teams recognize the risk and force
developers to scope service accounts to near-public
data—resulting in chatbots that can recite the FAQ but
can't answer "where's my order?" because proving Bob
can't access Alice's data is impossible.

Arcade dev

User Credential Danger: The alternative—embedding
user credentials directly into agent configuration—
doesn't scale (every user manually enters credentials)
and creates safety risks. Agents inherit full user
permissions, including delete access. We've seen coding
agents attempt to delete root directories, email agents
with carte blanche to wipe inboxes. Without fine-
grained authorization scoping what agents can do
versus what users can do, deployment becomes
reckless.

Why OAuth Fails in Agents: Standard OAuth workflows
assume a trusted application that can securely store
secrets and complete redirect flows. Agents are non-
deterministic, adversarial, and can't hold secrets.
Building OAuth that works inside agentic workflows—
where authorization happens after the agent starts
executing, not before—requires fundamental
architectural innovation. Most teams lack the
specialized expertise at the intersection of ML systems,
identity protocols, and distributed computing required
to solve this. MCP provides no user context, leaving
teams to architect authentication infrastructure from
scratch. The result: projects stall for months or ship
with dangerous workarounds.

The Solution: This is why Arcade built multi-user
authentication into the platform architecture—because
MCP alone cannot deliver it. Arcade's auth layer sits
between your agent and every tool, managing user-
specific OAuth flows automatically. When the Slack-
CRM agent needs to read Slack, Arcade ensures it
accesses that specific user's authorized channels with
their permissions—not a bot account, not shared
credentials. The platform handles token lifecycle
management, secure storage, automatic refresh, and
credential isolation. Each userauthorizes tools through
standard OAuth flows; Arcade propagates that context
to every tool call. The agent never sees credentials.
Security teams get user-level audit trails. Compliance
teams get answers to "who accessed what, when?"

This isn't a feature—it's foundational architecture
recognizing agents are applications serving multiple
users, not users themselves. As Sam Partee, CTO of
Arcade, frames it: "Agents shouldn't just be able to work
for you. They need to be able to work as you."

The distinction: "work for you" means reactive. You tell
the agent what to do, and it does it. "Work as you"
means proactive. You authorize what the agent can do,
and it operates autonomously within those boundaries.
The agent acts with your permissions, within your
access levels, on your behalf; but you're not manually
triggering every action. Without this layer, multi-user
deployment remains unsolvable.



Tool Selection & Execution: Right Tool,
Right Time, Minimal Hallucinations

The Problem: When your agent has access to 50 tools, it
needs to select correctly. Should the Slack-CRM agent
update Salesforce after every message or batch
updates hourly? Should it read all Slack channels or
filter by keywords? Agents sometimes call tools with
invalid parameters, select irrelevant tools, or
misinterpret ambiguous requests. Custom tool selection
logic becomes complex quickly—context filtering,
relevance ranking, parameter validation, error recovery,
and retry logic for every tool combination.

The Solution: Arcade solves this through Machine
Experience (MXE)—tools designed from the ground up
for agent cognition. Consider Slack: the API exposes
200+ methods organized by technical function
(chat.postMessage, conversations.list, users.info,
files.upload...). Most MCP servers expose all 200, forcing
agents to navigate service-based structures designed
for developers. Arcade provides intention-based tools
instead: "notify team," "get channel updates," "share
with channels"—abstractions that match how agents
reason about tasks. The platform runs continuous
evaluations on tool selection accuracy, optimizing
schemas and descriptions based on actual model
behavior. This isn't just better documentation—it's
fundamental engineering that structures tools around
agent intentions rather than technical endpoints. Built-
in parameter validation catches errors before execution
—malformed inputs, invalid formats, out-of-range
values. When agents make errors, the execution
engine's retry logic with context-aware fallbacks
recovers automatically. The platform continuously
improves selection accuracy through evaluation-driven
optimization, learning from patterns across all agents
using Arcade.

Governance: Who Can Do What, Audit
Trails, Compliance

The Problem: Production deployments demand answers
your demo avoided. How do you audit which sales rep
accessed which customer data? How do you prevent the
agent from exposing EMEA deals to North America
teams? How do you revoke access when someone
leaves? How do you prove SOC2, GDPR, or HIPAA
compliance when audit trails show "bot@company"
performed all actions? Custom governance
infrastructure means building permission management
systems, detailed logging, compliance reporting, and
administrative dashboards—infrastructure complexity
that delays deployment by months.

The Solution: Arcade solves this with centralized
management providing granular governance at user
and agent levels. Every tool call traces back to a
specific user with specific permissions granted through
OAuth flows. Operations teams get real-time visibility
into which agents access which tools on behalf of which
users. Permission revocation is immediate—deactivate
a user, and all agent authorizations terminate instantly.
Compliance-grade audit logs capture every action with
full context: user identity, agent identity, tool called,
parameters, timestamp, and authorization scope. The
governance layer integrates with existing enterprise
identity providers, so agent permissions flow through
your Okta, Azure AD, or SSO infrastructure.

Arcade.dev



Business Impact &
Getting Started

The technical capabilities described in previous sections
translate directly to business outcomes. Organizations
building agents face a stark choice: invest months
building custom infrastructure or deploy on a platform
designed for production. The difference shows up in
velocity, cost, and risk.

Engineering Velocity: Unblocking Stalled Projects
The primary value of production-ready infrastructure is

enabling projects that would otherwise fail. Analysis
shows:

Infrastructure Efficiency: Reducing Operational Costs

Beyond enabling deployment, platform infrastructure
reduces ongoing operational burden:

Risk Mitigation: Security, Compliance, and Scale

Production deployment requires passing security
reviews and maintaining compliance—areas where
custom infrastructure often fails:

- 84% improvement in secu
level authorization with cc
enables agents to pass se
service account approache
answer: Who accessed wh
permissions?

+ 100% user attribution for co
 traces to a specific user thro
| GDPR, HIPAA, and industry reg

Arcade.dev

! ~ attribution. Service accounts ci

User trust through familiar flows: W
ithorize agents through standard C
ther apps—they recognize a trus ]
niliarity builds confidence compare




Arcade.derv

Get Started Today

Two paths to deploying production-ready agents with Arcade:

Request a Demo See the platform in action. Our team will walk through your
specific use case, show how Arcade's architecture solves your production
barriers, and design a deployment plan for your agents.

[Schedule Demo:

Sign Up and Start Building Developers can start immediately with Arcade's free
tier. Build your first agent with production tools, test multi-user auth flows, and
validate the platform with your use cases before committing.

[Get started:

The difference between agents that demo well and agents that actually work
comes down to infrastructure. MCP made the connection possible. Arcade makes
it practical.



https://www.arcade.dev/contact
https://docs.arcade.dev/en/home/custom-mcp-server-quickstart

