Server-Side Programming - Comprehensive Student Guide
Slide 2: Introduction to Server-Side Programming
What is Server-Side Programming?
Server-side programming is like the "brain behind the website". While front-end (client-side) deals with what users see and interact with, server-side handles all the heavy lifting behind the scenes.
Think of it like a restaurant:
· Client-side = The dining area, menu, waiters (what customers see)
· Server-side = The kitchen, chef, inventory management (what customers don't see but makes everything work)
Key Characteristics:
· Runs on the server - Code executes on powerful computers in data centers, not on user's browser
· Handles business logic - Processes data, makes decisions, enforces rules
· Manages data - Stores, retrieves, and manipulates information in databases
· Provides security - Protects sensitive information and validates user access
Real-World Use Cases Explained:
1. Querying the database
· When you search for a product on Amazon, server-side code searches through millions of products in their database
· Example: User searches "laptop" → Server queries database → Returns matching products
2. Operations over databases
· Creating user accounts, updating profiles, deleting posts
· Example: When you update your Facebook status, server-side code saves it to their database
3. Access/Write a file on server
· Uploading profile pictures, downloading documents, generating reports
· Example: When you upload a photo to Instagram, server-side code saves it to their file system
4. Interact with other servers
· Payment processing, weather data, social media integration
· Example: When you pay with PayPal, your website's server communicates with PayPal's servers
5. Structure web applications
· Organizing code, managing user sessions, routing requests
· Example: When you visit different pages on a website, server-side code determines what content to show
6. Process user input
· Validating forms, sanitizing data, processing submissions
· Example: When you fill out a contact form, server-side code validates your email and saves the message
Popular Server-Side Languages:
· JavaScript (Node.js) - Same language as front-end, great for full-stack development
· Python - Easy to learn, popular for data science and web development
· PHP - Powers many websites including WordPress
· Java - Enterprise-level applications, very robust
· Ruby - Known for developer-friendly syntax
· C# - Microsoft's language for Windows-based applications

Slide 3: Key Features of Server-Side Programming
1. Security - The Digital Bodyguard
Authentication (Who are you?)
· Login/Logout systems: Verifying user credentials
· Session management: Keeping users logged in across pages
· Password hashing: Storing passwords securely (never in plain text)
· Two-factor authentication: Adding extra security layers
Real Example: When you log into your bank account, the server:
1. Checks your username/password against the database
2. Creates a secure session
3. Ensures only you can access your account information
Input Validation and Sanitization
· Preventing malicious code: Blocking harmful scripts
· Data type checking: Ensuring numbers are numbers, emails are valid
· SQL injection prevention: Protecting database from attacks
· Cross-site scripting (XSS) protection: Preventing malicious scripts
Example: If someone tries to enter <script>alert('hack')</script> in a form, server-side code removes or neutralizes it.
2. Database Management - The Digital Filing Cabinet
Reading and Writing Data
· CRUD Operations: Create, Read, Update, Delete
· User profiles: Storing personal information, preferences, history
· Content management: Posts, comments, articles, media files
· Transaction records: Orders, payments, logs
Database Types:
· SQL Databases (MySQL, PostgreSQL): Structured data with relationships
1. Good for: E-commerce, banking, traditional business applications
· NoSQL Databases (MongoDB, Redis): Flexible, unstructured data
2. Good for: Social media, real-time applications, big data
Real Example: Twitter's database management
· Stores billions of tweets
· Manages user relationships (followers/following)
· Handles likes, retweets, comments
· Provides real-time search across all content
3. Dynamic Content Generation - The Personalization Engine
What is Dynamic Content? Content that changes based on:
· User identity: Personalized recommendations
· User behavior: Recently viewed items
· Time/date: Current news, weather updates
· Location: Local events, nearby restaurants
· Device type: Mobile vs desktop layouts
Examples:
· Netflix homepage: Shows different movies based on your viewing history
· Amazon product recommendations: "Customers who bought this also bought..."
· News websites: Different headlines based on your location and interests
· Social media feeds: Personalized timeline based on your connections and activity
4. API Development - The Communication Bridge
What are APIs? APIs (Application Programming Interfaces) are like waiters in a restaurant:
· They take your order (request)
· Communicate with the kitchen (server/database)
· Bring back your food (response)
RESTful APIs follow specific rules for communication:
· GET: Retrieve data (like reading a menu)
· POST: Create new data (like placing an order)
· PUT: Update existing data (like modifying an order)
· DELETE: Remove data (like canceling an order)
Real Example: Mobile app communication
· Instagram app sends API request: "Get posts from users I follow"
· Server processes request, queries database
· Returns JSON data with posts, images, comments
· App displays the feed to user

Slide 4: Overview of Server-Side Languages (Node.js Focus)
What Do Server-Side Languages Handle?
Business Logic
· Decision making: If user is premium, show ad-free content
· Calculations: Computing taxes, discounts, shipping costs
· Workflow management: Order processing, approval workflows
· Rule enforcement: Age restrictions, access permissions
Database Operations
· Connection management: Establishing secure database connections
· Query optimization: Making database searches faster
· Data relationships: Managing how different data pieces connect
· Backup and recovery: Ensuring data safety
API Management
· Request routing: Directing different requests to appropriate handlers
· Response formatting: Converting data to JSON, XML, or other formats
· Rate limiting: Preventing abuse by limiting requests per user
· Version control: Managing different API versions
Authentication Systems
· User registration: Creating new accounts
· Password recovery: Reset password functionality
· Role-based access: Different permissions for users, admins, moderators
· OAuth integration: Login with Google, Facebook, etc.
File Operations
· Upload handling: Processing images, documents, videos
· File storage: Organizing files in folders, cloud storage
· Compression: Reducing file sizes for faster loading
· Format conversion: Converting images, generating thumbnails
Server Communication
· HTTP requests: Communicating with other websites/services
· Email services: Sending notifications, newsletters
· SMS/Push notifications: Mobile app notifications
· Third-party integrations: Payment gateways, mapping services
Why Node.js?
JavaScript Everywhere
· Same language for front-end and back-end
· Easier for developers to learn and maintain
· Shared code between client and server
· Single development team can handle full project
Popular Frameworks
· Express.js: Web application framework
· NestJS: Enterprise-level applications
· Koa.js: Modern, lightweight framework

Slide 5: Node.js Deep Dive
What is Node.js?
Technical Definition: Node.js is a server-side runtime environment that allows developers to use JavaScript to build scalable and efficient web applications.
Simple Explanation: Node.js lets you use JavaScript (normally only for websites) to build server applications, like creating APIs, handling databases, and managing file operations.
Built on Chrome's V8 JavaScript Engine
What is V8?
· Google's open-source JavaScript engine
· Same engine that powers Chrome browser
· Compiles JavaScript directly to machine code
· Extremely fast performance
Why This Matters:
· JavaScript runs as fast as compiled languages like C++
· Continuous performance improvements from Google
· Proven reliability (powers billions of web pages)
Ideal Use Cases:
1. Fast, Asynchronous, Scalable Network Applications
· Chat applications: WhatsApp Web, Slack, Discord
· Real-time gaming: Multiplayer online games
· Collaborative tools: Google Docs, Figma, Notion
· Live streaming: Twitch chat, YouTube live comments
2. Web Servers for HTTP Requests/Responses
· E-commerce sites: Handling product catalogs, shopping carts
· Content management: WordPress alternatives, blogging platforms
· Corporate websites: Company portals, customer dashboards
3. REST APIs
· Mobile app backends: Instagram, TikTok APIs
· Microservices: Breaking large applications into smaller services
· Integration APIs: Connecting different software systems
4. Real-time Applications
· Online gaming: Real-time multiplayer games
· Live dashboards: Stock trading, analytics dashboards
· IoT applications: Smart home devices, sensor networks
5. IoT (Internet of Things) Solutions
· Smart home systems: Controlling lights, temperature, security
· Industrial monitoring: Factory equipment, environmental sensors
· Wearable devices: Fitness trackers, smartwatches
Node.js Architecture Explained:
Single-threaded Event Loop
· Traditional servers: Create new thread for each request (heavy memory usage)
· Node.js approach: One thread handles all requests using events (lightweight)
Analogy:
· Traditional: Like having a separate cashier for each customer (expensive)
· Node.js: Like having one very efficient cashier who can handle multiple orders simultaneously
Callback-based and Promise-based
· Callbacks: Functions that run after an operation completes
· Promises: Modern way to handle asynchronous operations
· Async/Await: Even cleaner syntax for handling asynchronous code
Module System
· Built-in modules: File system, HTTP, crypto, path utilities
· NPM modules: Over 1 million packages available
· Custom modules: Create reusable code components
Database Compatibility
· NoSQL: MongoDB, CouchDB, Redis
· SQL: MySQL, PostgreSQL, SQLite
· Cloud databases: AWS DynamoDB, Firebase, Google Cloud Firestore

Slide 6: Key Features of Node.js
1. Unified Language
Benefits:
· Learning curve: Developers only need to master one language
· Code sharing: Common utilities can be used on both client and server
· Team efficiency: Front-end developers can contribute to back-end
· Faster development: No context switching between languages
Real Example: A developer building an e-commerce site can:
· Use JavaScript for website interactivity (client-side)
· Use Node.js for handling orders and payments (server-side)
· Share data validation code between both sides
2. Single-threaded Architecture
How it Works:
Traditional Server (Multi-threaded):
Request 1 → Thread 1 (2MB memory)
Request 2 → Thread 2 (2MB memory)
Request 3 → Thread 3 (2MB memory)
1000 requests = 2GB memory usage

Node.js (Single-threaded):
All requests → Event Loop → Single Thread
1000 requests = ~20MB memory usage
Event Loop Process:
1. Request comes in
2. If it's I/O operation (database, file read), delegate to system
3. Continue processing other requests
4. When I/O completes, run callback
5. Send response back to client
Lightweight Concurrency:
· Can handle 10,000+ concurrent connections
· Much lower memory usage per connection
· Perfect for I/O-intensive applications
3. NPM Ecosystem
What is NPM?
· Node Package Manager: World's largest software registry
· Over 1 million packages: Pre-built solutions for common problems
· Easy installation: npm install package-name
· Dependency management: Automatically handles package dependencies
Popular Packages:
· Express.js: Web framework (50M+ weekly downloads)
· Lodash: Utility functions
· Moment.js: Date/time manipulation
· Mongoose: MongoDB object modeling
· Socket.io: Real-time communication
· Passport.js: Authentication strategies
Benefits:
· Faster development: Don't reinvent the wheel
· Community support: Millions of developers contributing
· Quality packages: Popular packages are well-tested
· Regular updates: Security patches and new features
4. Fast & Efficient Performance
V8 Engine Optimization:
· Just-in-time compilation: Converts JavaScript to machine code
· Hidden class optimization: Optimizes object property access
· Inline caching: Speeds up property lookups
· Garbage collection: Automatic memory management
Performance Benchmarks:
· Netflix: Reduced startup time by 70% switching to Node.js
· PayPal: 2x faster response times compared to Java
· Walmart: Handles 500M page views per month
5. Asynchronous, Non-blocking I/O
Blocking vs Non-blocking:
Blocking (Traditional):
1. Read file from disk (wait 100ms)
2. Process file (wait 50ms)
3. Save to database (wait 200ms)
Total time: 350ms for one request
Non-blocking (Node.js):
1. Start reading file → Continue to next request
2. Start processing file → Continue to next request
3. Start saving to database → Continue to next request
Handle multiple requests simultaneously
Real-world Impact:
· Improved scalability: Handle more users with same hardware
· Better performance: Faster response times
· Cost efficiency: Reduced server requirements
6. Event-Driven Architecture
How Events Work:
// When user uploads file
fileUpload.on('progress', (bytesUploaded) => {
 console.log(`Uploaded: ${bytesUploaded} bytes`);
});

// When upload completes
fileUpload.on('complete', (file) => {
 console.log('File uploaded successfully');
 processImage(file);
});

// If error occurs
fileUpload.on('error', (error) => {
 console.log('Upload failed:', error);
});
Event Types:
· HTTP requests: New user visits website
· Database operations: Query completed
· File operations: File read/write finished
· Timer events: Scheduled tasks execution
· Custom events: Application-specific events
7. Cross-Platform Compatibility
Supported Platforms:
· Windows: Desktop and server versions
· Linux: All major distributions (Ubuntu, CentOS, Debian)
· macOS: Development and production environments
· Docker: Containerized deployments
· Cloud platforms: AWS, Google Cloud, Azure, Heroku
Benefits:
· Development flexibility: Work on any operating system
· Deployment options: Choose best hosting environment
· Team collaboration: Different OS preferences supported
· Cost optimization: Use existing infrastructure

Slides 7-10: RESTful Web Services and APIs
What are RESTful Web Services?
REST = Representational State Transfer
Simple Explanation: REST is like a universal language that allows different applications to communicate with each other over the internet.
Restaurant Analogy:
· Menu = API documentation (what's available)
· Order = API request (what you want)
· Kitchen = Server (processes your order)
· Meal = API response (what you get back)
REST Constraints Explained:
1. Client-Server Architecture
Separation of Concerns:
· Client (Frontend): Handles user interface and user interactions
· Server (Backend): Manages business logic and data storage
Benefits:
· Independent development: Front-end and back-end teams can work separately
· Easy to maintain: Changes to UI don't affect server logic
· Scalable: Can have multiple clients (web, mobile, desktop) using same server
· Technology flexibility: Client can use React, server can use Node.js
Real Example: Instagram
· Mobile app (iOS/Android client) communicates with Instagram servers
· Web interface (browser client) uses same server APIs
· Third-party apps can also integrate using same API
2. Statelessness
What it means: Server doesn't remember previous requests from the client.
Every request must include:
· Authentication token: Who is making the request
· All necessary data: What operation to perform
· Context information: Any relevant details
Example:
❌ Stateful (Bad):
Request 1: "Login as john@email.com"
Request 2: "Get my profile" (server remembers it's John)

✅ Stateless (Good):
Request 1: "Login as john@email.com" → Returns token: "abc123"
Request 2: "Get profile for token abc123"
Advantages:
· Scales easily: No need to store session data
· No session management: Simpler server architecture
· Improved reliability: Server restart doesn't lose session data
· Better performance: No memory used for session storage
3. Cacheability
What is Caching? Storing frequently requested data in fast-access memory to avoid repeated server calls.
Cache Levels:
· Browser cache: User's browser stores images, CSS, JavaScript
· CDN cache: Content Delivery Networks store static files globally
· Server cache: Database query results stored in memory
· Database cache: Frequently accessed data kept in RAM
HTTP Cache Headers:
Cache-Control: max-age=3600 (Cache for 1 hour)
Cache-Control: no-cache (Always validate with server)
ETag: "abc123" (Version identifier)
Benefits:
· Reduces server load: Fewer requests to process
· Faster response times: Data served from cache is much faster
· Better user experience: Pages load quickly
· Cost savings: Less bandwidth and server resources used
4. Uniform Interface
Consistent API Design:
Resource Identification:
✅ Good URLs:
GET /users/123 (Get user with ID 123)
GET /users/123/posts (Get posts by user 123)
GET /posts/456 (Get post with ID 456)

❌ Bad URLs:
GET /getUserById?id=123
GET /getPostsForUser?userId=123
HTTP Methods:
GET /users → Get all users
GET /users/123 → Get specific user
POST /users → Create new user
PUT /users/123 → Update entire user
PATCH /users/123 → Update part of user
DELETE /users/123 → Delete user
Self-Descriptive Messages:
{
 "id": 123,
 "name": "John Doe",
 "email": "john@email.com",
 "created_at": "2024-01-15T10:30:00Z",
 "_links": {
 "self": "/users/123",
 "posts": "/users/123/posts",
 "friends": "/users/123/friends"
 }
}
5. Layered System
Architecture Layers:
Client → Load Balancer → API Gateway → Microservices → Database
Each Layer's Role:
· Load Balancer: Distributes requests across multiple servers
· API Gateway: Handles authentication, rate limiting, logging
· Microservices: Specialized services for different functions
· Caching Layer: Redis/Memcached for fast data access
· Database Layer: Persistent data storage
Benefits:
· Improved scalability: Add/remove layers as needed
· Enhanced security: Multiple security checkpoints
· Better performance: Caching and load balancing
· Easier maintenance: Update individual layers without affecting others
6. Code on Demand (Optional)
What it means: Server can send executable code to extend client functionality.
Examples:
· JavaScript widgets: Sending interactive components
· Browser plugins: Adobe Flash, Java applets (legacy)
· Progressive Web Apps: Service workers for offline functionality
· Dynamic forms: Form validation rules sent from server
Modern Implementation:
// Server sends JavaScript code
{
 "data": {...},
 "clientCode": "function validateForm(data) { ... }"
}

// Client executes the code
eval(response.clientCode);
validateForm(formData);
Benefits:
· Reduces client complexity: Client doesn't need all possible functionality built-in
· Dynamic functionality: Add features without updating client
· Flexibility: Customize behavior based on user or context

Slide 11: Simple Node.js Server Example
Let's break down this code step by step:
const http = require('http');

const data = {
 message: 'Hello, this is simple data from Node.js!',
 author: 'Karthik',
 version: '1.0',
 status: 'success',
 time: new Date()
};

const server = http.createServer((req, res) => {
 res.setHeader('Content-Type', 'application/json');
 res.end(JSON.stringify(data));
});

server.listen(3000, () => {
 console.log('Server running at http://localhost:3000/');
});
Code Explanation:
1. Import HTTP Module:
const http = require('http');
· require('http'): Imports Node.js built-in HTTP module
· This module provides functionality to create HTTP servers and clients
· No installation needed - it's part of Node.js core
2. Define Response Data:
const data = {
 message: 'Hello, this is simple data from Node.js!',
 author: 'Karthik',
 version: '1.0',
 status: 'success',
 time: new Date()
};
· Creates a JavaScript object with sample data
· new Date(): Creates current timestamp
· This data will be sent to all clients as JSON
3. Create HTTP Server:
const server = http.createServer((req, res) => {
 // Request handler function
});
· createServer(): Creates a new HTTP server instance
· Takes a callback function that runs for each request
· req: Request object (contains client data)
· res: Response object (used to send data back)
4. Set Response Headers:
res.setHeader('Content-Type', 'application/json');
· Tells the client that response will be JSON format
· Browser/client knows how to handle the response
· Other common content types: 'text/html', 'text/plain', 'image/png'
5. Send Response:
res.end(JSON.stringify(data));
· JSON.stringify(): Converts JavaScript object to JSON string
· res.end(): Sends the response and closes the connection
· Client receives the JSON data
6. Start the Server:
server.listen(3000, () => {
 console.log('Server running at http://localhost:3000/');
});
· listen(3000): Server starts listening on port 3000
· Callback function runs when server successfully starts
· localhost:3000: Local address where server is accessible
What Happens When You Run This Code:
1. Start the server: node server.js
2. Server starts listening: On port 3000
3. Open browser: Go to http://localhost:3000
4. Server receives request: Browser sends HTTP GET request
5. Server processes request: Runs the callback function
6. Server sends response: JSON data with proper headers
7. Browser displays: JSON data (formatted by browser)
Expected Output in Browser:
{
 "message": "Hello, this is simple data from Node.js!",
 "author": "Karthik",
 "version": "1.0",
 "status": "success",
 "time": "2024-08-03T14:30:45.123Z"
}
Enhancing the Basic Server:
Handle Different Routes:
const server = http.createServer((req, res) => {
 const url = req.url;

 if (url === '/') {
 res.setHeader('Content-Type', 'application/json');
 res.end(JSON.stringify(data));
 } else if (url === '/about') {
 res.setHeader('Content-Type', 'text/html');
 res.end('<h1>About Page</h1>');
 } else {
 res.statusCode = 404;
 res.end('Page not found');
 }
});
Handle Different HTTP Methods:
const server = http.createServer((req, res) => {
 const method = req.method;

 if (method === 'GET') {
 // Handle GET requests
 } else if (method === 'POST') {
 // Handle POST requests
 }
});

[bookmark: _GoBack]Slides 12-14: Database Integration (MySQL)
Why Database Integration?
Real Applications Need Data Persistence:
· User accounts: Store login credentials, profiles, preferences
· Content: Posts, comments, articles, media files
· Business data: Orders, inventory, transactions, analytics
· Session data: Shopping carts, user activities, temporary data
Step-by-Step MySQL Integration:
Step 1: Create Project Directory
mkdir mysql-demo
cd mysql-demo
What this does:
· Creates a new folder for your project
· Keeps your project organized and separate from other projects
· Good practice: one folder per project
Step 2: Initialize Node.js Project
npm init -y
What this creates:
· package.json file: Contains project metadata
· Project name, version, description
· Dependencies list (packages your project uses)
· Scripts for running/testing your project
Sample package.json:
{
 "name": "mysql-demo",
 "version": "1.0.0",
 "description": "Node.js MySQL integration demo",
 "main": "index.js",
 "scripts": {
 "start": "node index.js",
 "dev": "nodemon index.js"
 },
 "dependencies": {}
}
Step 3: Install MySQL Package
npm install mysql
What this does:
· Downloads MySQL driver for Node.js
· Adds dependency to package.json
· Creates node_modules folder with package files
· Allows your Node.js code to communicate with MySQL database
Alternative Modern Package:
npm install mysql2
mysql2 is faster and supports promises/async-await
Step 4: Require MySQL Module
const mysql = require('mysql');
What this does:
· Imports MySQL functionality into your code
· Makes database connection and query functions available
· Must be at the top of your JavaScript file
Step 5: Create Database Connection
const db = mysql.createConnection({
 host: 'localhost', // Database server location
 user: 'root', // Database username
 password: '', // Database password (empty for local dev)
 database: 'testdb' // Database name to connect to
});
Connection Parameters Explained:
· host: Where MySQL server is running
1. localhost: Your local computer
1. 192.168.1.100: Another computer on network
1. database.example.com: Remote server
· user: MySQL username (default: 'root')
· password: MySQL password (set during MySQL installation)
· database: Which database to use (must exist in MySQL)
Step 6: Connect to Database
db.connect((err) => {
 if (err) {
 console.log('Database connection failed:', err);
 } else {
 console.log('MySQL Connected!');
 }
});
Error Handling:
· Connection successful: Code continues execution
· Connection failed: Common issues:
2. MySQL server not running
2. Wrong username/password
2. Database doesn't exist
2. Firewall blocking connection
Step 7: Execute INSERT Query
// Insert new user into database
db.query("INSERT INTO users (name, email) VALUES (?, ?)",
 ['John Doe', 'john@example.com'],
 (err, result) => {
 if (err) {
 console.log('Insert failed:', err);
 } else {
 console.log('User inserted with ID:', result.insertId);
 }
});
Parameterized Queries:
· ? placeholders prevent SQL injection attacks
· Values are safely escaped and inserted
· Much safer than string concatenation
INSERT Query Breakdown:
· Table: users (must exist in database)
· Columns: name, email (must exist in table)
· Values: ['John Doe', 'john@example.com']
· Result: Contains insertId (new record's ID)
Step 8: Execute SELECT Query
// Retrieve users from database
db.query('SELECT * FROM users', (err, rows) => {
 if (err) {
 console.log('Select failed:', err);
 } else {
 console.log('User Data:', rows);
 // rows is an array of user objects
 }
});
SELECT Query Results:
// Example result:
[
 { id: 1, name: 'John Doe', email: 'john@example.com' },
 { id: 2, name: 'Jane Smith', email: 'jane@example.com' }
]
Complete Working Example:
const mysql = require('mysql');

// Database connection configuration
const db = mysql.createConnection({
 host: 'localhost',
 user: 'root',
 password: '',
 database: 'testdb'
});

// Connect to database
db.connect((err) => {
 if (err) {
 console.log('Connection failed:', err);
 return;
 }
 console.log('MySQL Connected!');

 // Create users table if it doesn't exist
 const createTable = `
 CREATE TABLE IF NOT EXISTS users (
 id INT AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(100) NOT NULL,
 email VARCHAR(100) UNIQUE NOT NULL,
 created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
 `;

 db.query(createTable, (err) => {
 if (err) {
 console.log('Table creation failed:', err);
 } else {
 console.log('Users table ready');

 // Insert sample data
 insertUser('John Doe', 'john@example.com');
 insertUser('Jane Smith', 'jane@example.com');

 // Retrieve and display data
 setTimeout(() => {
 getAllUsers();
 }, 1000);
 }
 });
});

// Function to insert new user
function insertUser(name, email) {
 const query = 'INSERT INTO users (name, email) VALUES (?, ?)';
 db.query(query, [name, email], (err, result) => {
 if (err) {
 console.log('Insert error:', err.message);
 } else {
 console.log(`User ${name} inserted with ID: ${result.insertId}`);
 }
 });
}

// Function to get all users
function getAllUsers() {
 db.query('SELECT * FROM users', (err, rows) => {
 if (err) {
 console.log('Select error:', err);
 } else {
 console.log('All users:');
 rows.forEach(user => {
 console.log(`ID: ${user.id}, Name: ${user.name}, Email: ${user.email}`);
 });
 }
 });
}

// Graceful shutdown
process.on('SIGINT', () => {
 console.log('\nClosing database connection...');
 db.end(() => {
 console.log('Database connection closed.');
 process.exit(0);
 });
});
Database Best Practices:
1. Connection Pooling:
const mysql = require('mysql');

const pool = mysql.createPool({
 connectionLimit: 10,
 host: 'localhost',
 user: 'root',
 password: '',
 database: 'testdb'
});

// Use pool instead of single connection
pool.query('SELECT * FROM users', callback);
2. Environment Variables:

