

The National Institute of Engineering, Mysuru

2025-26

Code: 1BPHCSL102/202 Course: Applied Physics Laboratory for Computer

Science and Engineering stream

Credits: 1 L:T:P:S- 0:0:2:0
SEE: 50 Marks
SEE Hours: 3 CIE: 50 Marks
Max. Marks:100

Learning	1. To develop the ability to perform physics experiments and
objectives	relate the results to theoretical concepts.
	2. To enhance skills in data analysis, error estimation, and
	interpretation of experimental outcomes.

Course Outcomes:

On the successful completion of the course, the student will be able to

Cos	Course Outcomes	Bloom's level		
CO1	Apply the knowledge of basic concepts and principles of	Apply		
	experimental physics in measurements of various physical quantities, which in turn provide insight into the behavioral			
	properties of radiation and matter.			
CO2	Analyze the data using scientific tools and validate results	Analyze		
	with theoretical principles.			

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1							2			To be identified for		
CO2	3	1							2				oranch by se Instru	,

Mapping Strength: Strong-3 Medium -2 Low -1

Course Structure

List of Experiments

- 1. Determination of the Wavelength of LASER using a Grating
- 2. Measurement of acceptance angle and numerical aperture of an optical fiber
- 3. Study the Characteristics of a Photo-Diode and to determine the power responsivity.
- 4. Determination of Planck's Constant using LEDs.
- 5. Verification of Stefan's Law

B.E. Blown-up Syllabus – Applied Physics Laboratory for CSE Stream

- 6. Verification of the inverse square law of radiation.
- 7. Determination of Fermi Energy of Copper.
- 8. Determination of the Energy gap of a given Semiconductor.
- 9. Determination of dielectric constant using charging and discharging of a capacitor.
- 10. Resonance in LCR circuit.
- 11. Quantum Computing simulation experiment.
- 12. Determination of the thickness of a material using the air wedge
- 13. Newton's ring to study the interference by the division of amplitude.
- 14. Data Analysis using a Spreadsheet.
- 15. Virtual Lab Experiment.

Reference Books

- Laboratory manual for Engineering Physics Lab by Department of Physics, NIE, Mysuru
- 2. Engineering Lab Manual by WBUT-New Age International Publishers.
- 3. Applied Physics Lab Manual by Anoop Sing Yadav.