

THE NATIONAL INSTITUTE OF ENGINEERING

An Autonomous Institution under Visvesvaraya Technological University, Belagavi), Recognised by AICTE, New Delhi, Grant-in-Aid by Government of Karnataka, Accredited by NAAC, New Delhi

Code: 1BPHEC202 Course: Applied Physics for Electronics and

Communication Engineering

L:T:P:S:- 2:2:0

Credits: 3
SEE: 50 Marks

SEE: 50 Marks SEE Hours: 3 CIE: 50 Marks Max. Marks: 100

Learning objectives	1.	Learn the basic principles of Physics pertaining to Engineering field.				
	2.	To understand and explain the concepts of Physics relevant to Engineering and				
		Technology.				
	3.	Applying the knowledge of Physics in solving problems.				

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Discuss the concepts about, Quantum Physics, Electrical Properties of Metals, Quantum	Understand
	computation, Semiconductor & Semiconductor devices, Physics of Materials, Laser	
	and optical fiber.	
CO2	Apply the fundamental concepts to derive the expression for and solve the problems	Apply
	pertaining to Quantum Physics, Electrical Properties of Metals, Quantum computation,	
	Semiconductor & Semiconductor devices, Physics of Materials, Laser and optical	
	fiber.	
CO3	Analyze the behavior of Metals, Semiconductor & Semiconductor devices, Dielectric,	Analyze
	laser and optical fiber	-

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	1	-	-	-	-	-			
CO2	3	2	-	-	-	-	-	-	-	-	-		2	
CO3	3	3	-	-	-	-	-	-	-	-	-			

Course Structure

W. JJ. 1. Occasion Bloody		No. of Lecture	No. of				
Module 1: Quantum Physics							
		Hours	l Hours				
1.1	de Broglie Hypothesis and Matter waves, de Broglie wavelength and derivation of expression by analogy, Phase velocity, group velocity.	1	0				
1.2	Expression for group velocity, Relation between group velocity and particle velocity (relativistic method), Characteristic properties of Matter-waves, numerical problems.	1	1				
1.3	Heisenberg's uncertainty principle and its physical significance (no derivation), Application of uncertainty principle (Non - existence of electron in the nucleus), numerical problems.	1	1				
1.4	Wave function: Properties and Physical significance (including Probability density and Normalization of wavefunction), Setting up of one dimensional time independent Schrödinger wave equation.	1	0				
1.5	Application of Schrödinger wave equation: Energy Eigen values and Eigen functions of a particle in a potential well of infinite depth and extension to free particle, Role of higher dimensions (Qualitative), quantum tunneling (Qualitative), numerical problems.	1	1				
Modu	Module 2: Electrical Properties of Metals and Quantum Computation						
2.1	Quantum free electron theory: Failure of classical free electron theory, Assumptions.	1	0				
2.2	Fermi energy, Fermi factor, Variation of Fermi factor with temperature and energy	1	1				

Total No. of Tutorial Hours					
	Total No. of Lecture Hours	26	- 14		
5.6		1	1		
5.4	Schottky junction (Qualitative), Construction and working of semiconducting laser. Photodiode and power responsivity, Quantum dots (Qualitative), numerical problems.	1	0		
5.3	direct and indirect band gap semiconductors, Hall effect (Qualitative)	1	0		
5.2	semiconductor(Qualitative).	1	1		
5.1	and hole concentration (only mention of expression), Fermi level in intrinsic semiconductors (derivation). Law of mass action, Conductivity of semiconductors (derivation), fermi level in extrinsic	1	1		
	Classification - Intrinsic and extrinsic semiconductors, Intrinsic semiconductors: electron	1	4		
Modu	le 5: Semiconductor devices and Sensors				
4.5	communication (Qualitative) Numerical problems.	0	1		
4.4	Types of optical fibers, attenuation and Mention of expression for attenuation coefficient, Attenuation spectrum of an optical fiber with optical windows, Discussion of block diagram of point to point communication, Merits and demerits, Twisted beam optical fiber	2	0		
4.3	Optical fibers : Propagation mechanism in optical fibers, TIR, Angle of acceptance, Numerical aperture (derivation), fractional index change, modes of propagation and V number	1	0		
4.2	Construction and working of Ruby Laser. Applications of Laser – LIDAR and Quantum RADAR (Qualitative), numerical problems.	1	1		
4.1	Lasers : Characteristics of Laser, Interaction of radiation with matter: absorption, spontaneous emission and stimulated emission, Requisites of a Laser system, coherence length, spatial and temporal coherence, Condition for Laser action. Expression for energy density equation in terms of Einstein's A and B coefficients and its significance.	2	0		
Modu	le 4: Photonics				
3.6	Superconducting circuit(Qualitative), Applications: MAGLEV, numerical problems.	0	1		
3.5	BCS Theory (Qualitative), Josephson junction, Flux quantization, DC and AC SQUID (Qualitative),	1	1		
3.4	Superconductors: Introduction to superconductor, temperature dependence of resistivity, Properties: critical field and critical current, Meissner Effect, Type-I, Type-II superconductors, High temperature superconductor (Qualitative)	1	0		
3.3	Application of dielectrics in transformers, Capacitors, numerical problems	1	1		
3.2	Equation for internal fields in solids (one dimensional) [derivation], Clausius— Mossotti equation (derivation)	1	0		
3.1	Dielectrics: Polar and Non-polar dielectrics, Dielectric constant and polarization of dielectric materials, Types of polarization.	1	0		
	le 3: Physics of Materials	4	0		
2.6	Brief discussion on types of qubit, gates, circuits, algorithms, errors and corrections (Qualitative), numericals	1	1		
2.5	Quantum Computation : Difference between Classical and quantum computation, qubit, Bloch Sphere, Dirac notation, Superposition	1	0		
2.4	Numerical problems.	0	1		
2.3	Density of states (with derivation), Expression for Fermi Energy at zero Kelvin, Merits of Quantum free electron theory	1	0		

Text Books:

- 1. Engineering Physics-By Gauer & Guptha, Dhanpathrai and Sons, New Delhi.
- 2. A textbook of Engineering Physics by M.N. Avadhanulu, P.G. Kshirsagar and T.V.S. Arun Murthy, Eleventh edition, S. Chand and Company Ltd. New Delhi-110055.

Reference Books:

- Concepts of Modern Physics by Arthur Beiser, Shobhit Mahajan & S. Rai Choudhury, TataMcGraw–Hill Publication, 7thEdition, 2017.
- 2. Solid State Physics by S O Pillai, New Age International, 9th Edition, 2020
- 3. Electronic Devices and Circuits-by Jacob Millman and Christos C. Halkias
- 4. Laser Fundamentals-By Willam T Silfvast, Cambridge University Press.

Online Resources:

- 1. NPTEL Quantum Mechanics I (IIT Madras): https://nptel.ac.in/courses/115106066
- 2. NPTEL Physics: Introductory Quantum Mechanics (NOC):
- 3. https://archive.nptel.ac.in/courses/115/104/115104096
- 4. 3. Solid State Physics NPTEL (IIT Madras) https://nptel.ac.in/courses/115106127
- 5. <u>4. A Brief Course on Superconductivity NPTEL IIT Guwahati (Prof. Saurabh Basu)</u>
- 6. Introduction to Photonics NPTEL (IIT Madras, Prof. Balaji Srinivasan) Lecture 03 to Lecture 12
- 7. cover: Direct video link (start Lecture 03): https://nptel.ac.in/courses/108106135/03
- 8. 9. Semiconductor Optoelectronics NPTEL (IIT Delhi, Prof. M. R. Shenoy)Direct video link (start rele-
- 9. vant lecture): https://nptel.ac.in/courses/108108174/05
- 10. <u>2. Lecture 32 Superconducting Qubits (includes Charge Qubit / Cooper-Pair Box)</u> https://www.youtube.com/watch?v=iYo8ALJ-Mls