

THE NATIONAL INSTITUTE OF ENGINEERING

An Autonomous Institution under Visvesvaraya Technological University, Belagavi), Recognised by AICTE, New Delhi, Grant-in-Aid by Government of Karnataka, Accredited by NAAC, New Delhi

Curriculum Structure and Syllabus 2025-26

I Year B.E. Applied Physics for Electrical and Electronics Engineering

Manandavadi Road, Mysuru-570 008

Phone; 0821 - 4004900, 2481220; Fax: 0821 - 2485802 E-mail: info@nie.ac.in; Website: http://www.nie.ac.in Code: 1BPHEE102 Course: Applied Physics for Electrical and

Electronics Engineering

Credits: 3 L:T:P:S:- 2:2:0

SEE: 50 Marks
CIE: 50 Marks

SEE Hours: 3
Max. Marks: 100

Learning objectives	1.	Learn the basic principles of Physics pertaining to Engineering field.
	2.	To understand and explain the concepts of Physics relevant to Engineering and Technol-
	3.	ogy. Applying the knowledge of Physics in solving problems.

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Discuss the concepts about, Quantum Physics, Electrical Properties of Metals, Semicon-	Understand
	ductor & Semiconductor devices, Physics of Materials and Magnetic Circuits & Elec-	
	tromagnetism.	
CO2	Apply the fundamental concepts to derive the expression and solve the problems per-	Apply
	taining to Quantum Physics, Electrical Properties of Metals, Semiconductor & Semi-	
	conductor devices, Physics of Materials and Magnetic Circuits & Electromagnetism.	
CO3	Analyze the behavior of Metals, Semiconductor & Semiconductor devices, Dielectric	Analyze
	and Magnetic materials and Magnetic Circuits.	-

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	1	-	-	-	-	-	3		
CO2	3	2	-	-	-	-	-	-	-	-	-	3		
CO3	3	3	-	-	-	-	-	-	-	-	-	3		

Mapping Strength: Strong-3 Medium-2 Low-1

Course Structure

Module 1: Physics of Materials		No. of Lec- tureHours	No. of Tutorial Hours
1.1	Dielectrics: Polar and Non-polar dielectrics, Dielectric constant and polarization of dielectric materials, Types of polarization.	1	0
1.2	Equation for internal fields in solids (one dimensional) [derivation], Clausius—Mossotti equation (derivation)	1	0
1.3	Clausius – Mossotti equation (derivation), Frequency dependence of Dielectric constant, Dielectric loss	0	1

1.4	Application of dielectrics in transformers, Capacitors, numerical problems	1	1
1.5	Magnetism & Magnetic materials : Atomic origins of magnetism, Types of magnetism, Importance of Curie Temperature,	1	0
1.6	Hysteresis and Explanation using Domain theory, Energy loss, Hard and soft ferromagnetic materials and Applications, Magnetostriction	1	1
	2: Magnetic Circuits & Electromagnetism		1
2.1	Magnetic circuits, Magneto motive force, reluctance, permeance, ohms law of magnetic circuits	1	0
2.2	Similarities and Dissimilarities between magnetic circuits and electric circuits, numerical	1	1
2.3	Magnetic circuit due to a solenoid and toroid, Difference between Solenoid and Toroid, Applications of Toroid,	1	1
2.4	Faraday's law, Transformer and Motional EMFs, Displacement Current	1	0
2.5	Maxwell's equations for time varying fields (qualitative approach), Retarded potentials, Wave equation	1	1
Module	23: Quantum Physics		1
3.1	de Broglie Hypothesis and Matter waves, de Broglie wavelength and derivation of expression by analogy, Phase velocity, group velocity.	1	0
3.2	Expression for group velocity, Relation between group velocity and particle velocity (relativistic method), Characteristic properties of Matter-waves, numerical problems.	1	1
3.3	Heisenberg's uncertainty principle and its physical significance (no derivation), Application of uncertainty principle (Non - existence of electron in the nucleus), numerical problems.	1	1
3.4	Wave function: Properties and Physical significance (including Probability density and Normalization of wavefunction), Setting up of one dimensional time independent Schrödinger wave equation.	1	0
3.5	Application of Schrödinger wave equation: Energy Eigen values and Eigen functions of a particle in a potential well of infinite depth and extension to free particle, Role of higher dimensions (Qualitative), quantum tunneling (Qualitative), numerical problems.	1	1
Module	4: Electrical Properties of Metals		
4.1	Quantum free electron theory : Failure of classical free electron theory, Assumptions.	1	0
4.2	Fermi energy, Fermi factor, Variation of Fermi factor with temperature and energy	1	0
4.3	Density of states (with derivation), Expression for Fermi Energy at zero Kelvin, Merits of Quantum free electron theory	1	0
4.4	Numerical problems.	0	1
4.5	Classification - Intrinsic and extrinsic semiconductors, Intrinsic semiconductors: electron and hole concentration (only mention of expression), Fermi level in intrinsic semiconductors (derivation).	1	1
			•

	Total No. of Lecture Hours	26 Tutorial Hours	-
	loi(IGD1)		
5.6	FET - types, biasing, FET over BJT, MOSFET, Insulated Gate Bipolar Transistor(IGBT)	1	0
5.5	Bipolar Junction Transistor (BJT) – Schematic representation, formation of depletion region, biasing of transistors, roles of emitter base and collector	1	1
5.4	Photodiode and power responsivity, Quantum dots (Qualitative), numerical problems.	1	1
5.3	Construction and working of semiconducting laser.	1	0
5.2	Hall effect (derivation), Fermi level in Extrinsic semiconductor (Qualitative)	1	0
5.1	Direct and indirect band gap semiconductors, Extrinsic semiconductor(Qualitative).	1	0
Module	5: Semiconductor devices		
4.6	Classification - Intrinsic and extrinsic semiconductors, Intrinsic semiconductors: electron and hole concentration (only mention of expression), Fermi level in intrinsic semiconductors (derivation).	1	1

Text Books:

- 1. Engineering Physics-By Gauer & Guptha, Dhanpathrai and Sons, New Delhi.
- 2. A textbook of Engineering Physics by M.N. Avadhanulu, P.G. Kshirsagar and T.V. S. Arun Murthy, Eleventh edition, S. Chand and Company Ltd. New Delhi-110055.

Reference Books:

- Concepts of Modern Physics by Arthur Beiser, Shobhit Mahajan & S. Rai Choudhury, TataMcGraw–Hill Publication, 7thEdition, 2017.
- 2. Electronic Devices and Circuits-by Jacob Millman and Christos C. Halkias

Online Resources:

- 1. Mod-02 Lec-20: Dielectrics Prof. D. K. Ghosh, IIT Bombay https://www.youtube.com/watch?v=P9VyW2wq9ZE
- 2. Mod-01 Lec-16: Dielectric (Insulating) Solids Prof. G. Rangarajan, IIT Madras, https://www.youtube.com/watch?v=etjZmdmr-iSU
- 3. <u>Semiconductor Optoelectronics NPTEL (IIT Delhi, Prof. M. R. Shenoy)Direct video link (start relevant lecture): https://nptel.ac.in/courses/108108174/05</u>