Course Code: 1BMACV101 Course: Applied Mathematics-I for Civil Engineering Credits: 4 L:T:P:S 3:2:0 SEE: 50% Marks SEE Hours: 3 Hrs Max. Marks: 100 | Prerequisites if any | | |----------------------|--| | Learning objectives | The goal of the course (1BMACV101) is to | | | Familiarize the importance of calculus associated with one variable and two variables for civil engineering. Analyse Civil engineering problems by applying Ordinary Differential Equations. Develop the knowledge of Linear Algebra refereeing to matrices. | ## **Course Outcomes:** On the successful completion of the course, the student will be able to | | Bloom's level | | | | | |-----|---|---------|--|--|--| | CO1 | Apply foundational concepts of calculus and differential equations to analyse geometric properties of curves. | | | | | | CO2 | CO2 Solve first and higher-order ordinary differential equations, and model physical phenomena in science and engineering. | | | | | | CO3 | Apply the principles of linear algebra to solve systems of linear equations, determine eigenvalues and eigenvectors, and analyse real-world problems. | Analyse | | | | | CO4 | Develop familiarity with modern mathematical tools namely SCILAB/PYTHON/MATLAB and stimulates creative problem solving through experiential learning. | | | | | # Mapping with POs and PSOs: | COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 | PSO4 | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------| | CO1 | 3 | 2 | 3 | 2 | - | - | - | - | - | - | 3 | 3 | - | - | - | | CO2 | 3 | 2 | 3 | 2 | - | - | - | - | - | - | 3 | 3 | - | - | - | | CO3 | 3 | 2 | 3 | 2 | - | - | - | - | - | - | 3 | 3 | - | - | - | | CO4 | 3 | 2 | - | - | 3 | - | - | - | - | - | - | 3 | 2 | - | - | Strong: 3 Medium: 2 Low: 1 # **Course Content** | | Module – 1 Polar Curves and Curvature | No. of
Lecture
Hours | No. of
Tutorial
Hours | Self-
Learning
Hours | | |----------------------------------|--|----------------------------|-----------------------------|----------------------------|--| | 1.1 | Polar coordinates, Polar curves, angle between the radius vector | 3 | | | | | | and the tangent, angle between two curves. Pedal equations. | 3 | 1 | | | | 1.2 | Angle between the radius vector and the tangent-Pedal | 2 | 1 | | | | | equations. | 2 | | | | | 1.3 | Curvature and radius of curvature - Cartesian forms. | 2 | 1 | | | | 1.4 | Curvature and radius of curvature - pedal forms. | 1 | 1 | | | | | Module – 2 Series Expansion, Indeterminate Forms and Multivariable Calculus | | | | | | 2.1 | Statement and problems on Taylor's and Maclaurin's series expansion for one variable. | 2 | 1 | | | | 2.2 | Partial differentiation, total derivative. | 2 | 1 | | | | 2.3 | Differentiation of composite functions, Jacobian. | 2 | 1 | | | | 2.4 | Taylor's series expansion for two variables. | 1 | 1 | | | | 2.5 | Maxima and minima for the function of two variables. | 1 | 1 | | | | | Module – 3 Ordinary Differential Equations(ODEs) of First order | | | | | | 3.1 | Solution of ODE- Geometrical representation. Bernoulli's differential equation. | 2 | 1 | | | | 3.2 | Exact differential equations. | 1 | | | | | 3.3 | Reducible to exact differential equations with integrating factors - $\frac{1}{N} \left(\frac{\partial N}{\partial X} - \frac{\partial M}{\partial Y} \right)$ and $\frac{1}{M} \left(\frac{\partial N}{\partial X} - \frac{\partial M}{\partial Y} \right)$. | 2 | 1 | | | | 3.4 | Orthogonal trajectories (Cartesian and polar forms). | 2 | | | | | 3.5 | Law of natural growth and decay. | 1 | | | | | | Module -4 Ordinary Differential Equations of Higher Order | | | | | | 4.1 | Higher-order linear ordinary differential equations with constant coefficients, homogeneous equations. | 2 | 1 | | | | 4.2 | Undetermined coefficient method. | 2 | | | | | 4.3 | Method of variation of parameters. | 2 | 1 | | | | 4.4 | Legendre's homogeneous differential equations. | 1 | 1 | | | | 4.5 | Applications: Solving governing differential equations of Mass Spring. | 1 | | | | | | Module -5 Linear Algebra | | | | | | 5.1 | Elementary row transformation of a matrix, Rank of a matrix. | 2 | 1 | | | | 5.2 | Consistency of a matrix. | 1 | 1 | | | | 5.3 | Solution of system of linear equations - Gauss-elimination method. | 2 | | | | | 5.4 | Solution of system of linear equations - approximate solution by Gauss-Seidel method. | 1 | 1 | | | | 5.5 | Eigenvalues and Eigenvectors. | 2 | * | | | | ٥.٥ | Total No. of Lecture Hours | 40 | | | | | | Total No. of Tutor | | 12 | | | | | | | | 0 | | | Total No. of Self learning Hours | | | | | | ### **Text Books:** - 1) **B.S.Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44thEd. 2021. - 2) E.Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018. #### **Reference Books:** - 1. B. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017 - 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rd Ed., 2016. - **3. Tom Apostol** "Calculus: One variable calculus with an introduction to Linear Algebra", Vol. 1, Wiley publications, 2nd edition, 2007. - **4. Tom Apostol** "Calculus: Multi-Variable Calculus and Linear Algebra with applications to differential Equations And Probability, Vol.2, Wiley publications, 2nd edition, 2007 #### **Online Resources:** - 1. https://www.youtube.com/watch?v=ixDGaEqWuA0. - 2. https://www.youtube.com/results?search_query=nptel+linear+algebra