

Course Code: 1BMAEE201 Course: Applied Mathematics-II Electrical and

Electronics Engineering

Credits: 4 L:T:P:S: 3:2:0
SEE: 50% Marks
SEE Hours: 3 Hrs CIE: 50% Marks: 100

Prerequisites if any	None
Learning objectives	The goal of the course (1BMAEE201) is to
	 Develop the knowledge of Linear Algebra to solve the system of equations. Understand the geometry of linear transformations and its applications. Analyze EEE problems applying ODE using Laplace Transforms.

Course Outcomes:

On the successful completion of the course, the student will be able to

	Bloom's level			
CO1	Apply the concepts of vector spaces, discuss linear transformations and construct orthonormal basis.			
CO2	Apply diagonalization and singular value decomposition in dimensionality reduction.			
CO3	Apply the concepts of Laplace transforms to solve the ordinary differential equations.	Understand, Apply, Analyze		
CO4	Develop familiarity with modern mathematical tools namely SCILAB/PYTHON/MATLAB and stimulates creative problem solving through experiential learning.			

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	2	-	-	-	-	-	-	2	3	2	-
CO2	3	3	3	3	-	-	-	-	-	-	2	3	2	-
CO3	3	3	3	3	1	1	-	1	1	1	2	3	2	-
CO4	3	2	-	-	3	-	-	-	-	-	2	3	-	-

Strong: 3 Medium: 2 Low: 1

Course Content

		No. of Lecture	No. of Tutorial	Self- Learning		
		Hours	Hours	Hours		
	Module – I Linear Algebra-I					
1.1	Vector Spaces, The Nullspace.	2	1			
1.2	Solving AX=0 and RX=0, the Complete Solution to AX=b.	2	1			
1.3	Independence, Basis and Dimension.	2				
1.4	Dimension of four Fundamental Subspaces.	2				
	Module – II Linear Algebra-II					
2.1	Linear Transformations.	2	1			
2.2	The Matrix of Linear Transformations.	2	1			
2.3	Orthogonality of the four Subspaces.	1				
2.4	Orthonormal Bases, Projections.	1	1			
2.5	Gram-Schmidt Method.	2				
	Module –III Linear Algebra-III					
3.1	Determinants and some of its properties, Introduction to eigenvalues and eigenvectors.	2				
3.2	Diagonalization of a Matrix.	2	1			
3.3	Complex matrices-Hermitian and Unitary Matrices.	2	1			
3.4	Triangular form with Unitary matrices.	2				
	Module –IV Linear Algebra-IV					
4.1	Similarity transformations.	2	1			
4.2	Singular value decomposition.	2	1			
4.3	Least square solutions.	2				
4.4	PCA.	2	1			
	Module –V Laplace Transforms					
5.1	Laplace transform (LT): Definition and Formulae of Laplace Transform, LT of elementary functions.	1				
5.2	Properties—linearity, scaling, shifting property, differentiation in the s domain, division by t.	1				
5.3	LT of periodic functions, Heaviside Unit step function.	2	1			
5.4	Inverse Laplace Transform: Definition, properties, evaluation using completing square method, partial fractions method.	2				
5.5	Convolution theorem (without proof)-problems.	1	1			
5.6	Solving ordinary differential equation of higher order using Laplace transforms.	1	1			
	Total No. of Lecture Hours					
	Total No. of Tuto	12				
Total No. of Self learning Hours						

Textbooks:

- 1. **B.S.Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E.Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books:

- 1. **B.V. Ramana:** "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed.
- 2. **Gilbert Strang:** "Linear Algebra and its Applications" CENGAGE, 4th Ed.

Online Resources:

- 1. https://www.youtube.com/watch?v=ixDGaEqWuA0
- 2. https://www.youtube.com/results?search_query=nptel+linear+algebra