THE NATIONAL INSTITUTE OF ENGINEERING

Manandavadi Road, Mysuru

ESTD: 1946

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Curriculum Structure and Syllabus 2025-2026 2023 Admitted Batch

Semester: V

The National Institute of Engineering

Department: Electronics and Communication Engineering

Scheme of Teaching & Examination - 2022

Effective from the Academic Year 2025-26

B.E. 2023 Admitted Batch

SI.	Type of	Course	Course Title	Teaching	Paper Week Department				Examination			Credits		
No	Course	Code	OSGISC TIEC	(TD)	Setting Board (PSB)	L	Т	P	s	Duration in Hours	CIE Marks	SEE Marks	Total Marks	or cuits
1	HSMS	BEC501	Engineering Management and Entrepreneurship		EC	3	0	0		3	50	50	100	3
2	IPCC	BEC502	Integrated Professional Core Courses (IPCC): Control Systems		EC	3	2	0		3	50	50	100	4
3	PCC	BEC503	Professional Core Course (PCC) Communication Systems		EC	3	0	0		3	50	50	100	3
4	PCC	BEC504	Professional Core Course (PCC) Digital Signal Processing	EC	EC	3	0	2		3	50	50	100	4
5	PCCL	BECL505	Professional Core Course Laboratory (PCCL): Communication Systems Lab		EC	0	0	2		3	50	50	100	1
6	PEC	BEC515X	Professional Elective Course (Industry suggested course)		EC	2	0	2		3	50	50	100	3
7	PROJ	BEC586	Minor Project			0	0	2		-	50	-	50	1
8	AEC	BRMEC557	Research Methodology and IPR	Any Department	EC	2	0	0		2	50	50	100	2
9	МС	BESK508	Environmental Studies	TD: Civil/ Chemistry	Civil	1	0	0		-	50	-	50	1

			National Service Scheme (NSS)	NSS Coordinator								
10	MC	C BNSK559 Physical Education (PE) (Sports & Athletics) PED Yoga Yoga Teacher	0	0	2	_	100	_	100	0		
			Yoga	Yoga Teacher								
								Total	550	350	900	22

Professional Elective Course (Industry suggested course)							
BEC515A	Embedded Systems for Automotive						
BEC515B	Unified Verification Methodology						
BEC515C	Operating System						

The National Institute of Engineering

Department: Electronics and Communication Engineering

Scheme of Teaching & Examination - 2022

Effective from the Academic Year 2025-26

B.E. 2023 Admitted Batch Semester: VI

SI.	Type of	Course Code	Course Title	Teaching Department	Question Paper		achi / W	·		Exam	ination			Credits
No	Course	Course Code	Course Title	(TD)	Setting Board (PSB)	L	Т	Р	S	Duration in Hours	CIE Marks	SEE Marks	Total Marks	
1	IPCC	BEC601	Integrated Professional Core Courses (IPCC): Computer Networks	Department name - EC	EC	3	0	2		3	50	50	100	4
2	PCC	BEC602	Professional Core Course (PCC): Embedded System and Architecture	EC	EC	3	0	2		3	50	50	100	4
3	PEC	BEC613X	Professional Elective Course - Group II	EC	EC	3	0	0		3	50	50	100	3
4	OEC	BEC654X	Open Elective Course - Group II	EC	EC	3	0	0		3	50	50	100	3
5	PCC	BEC605	Professional Core Course (PCC): Wireless Communication	EC	EC	3	0	0		3	50	50	100	3
6	PCC	BEC606	Professional Core Course (PCC): Principles of Digital VLSI	EC	EC	3	0	0		3	50	50	100	3
7	PCCL	BECL607	Professional Core Course laboratory: VLSI Lab	EC	EC	0	0	2		-	50	50	100	1
						If	the	cour	se is	s a Theory				
	AEC/C		Ability Enhancement Course – Python for			1	0	0		1				
8	AEC/S DC	BEC657L	ML Application or E-waste management / Skill Development Course V /	EC	EC				OR		50	-	50	1
			PCB Design and Fabrication			If the course is a Laborator			a Laboratory					
						0	0	2		2				

		BNSK658	National Service Scheme (NSS)	NSS Coordinator	0	0	2	-	100	-	100	0
9	MC	BPEK658	Physical Education (PE) (Sports & Athletics)	PED								
9	IVIC	BYOK658	Yoga	Yoga Teacher				_	100	_	100	0
		BIKS609	Indian Knowledge System	Humanities								
							Total	500	400	900	22	

Pro	fessional Elective Course - Group II		Open Elective Course - Group II
BEC613A	ASIC Design	BEC654A	Internet of Things and Applications
BEC613B	Signal Processing and Machine Learning	BEC654B	Vehicular Electronics
BEC613C	Optical Fibre Communication	BEC654C	Multicore systems and programming
BEC613D	Industrial Internet of Things	BEC654D	Introduction to VLSI
BEC613E	Object Oriented Programming	BEC654E	Introduction to Radar systems for Autonomous driving
BEC613F	Transmission Lines and Radiating Systems		

The National Institute of Engineering

Department: Electronics and Communication Engineering

Scheme of Teaching & Examination - 2022

Effective from the Academic Year 2025-26

B.E. 2023 Admitted Batch Semester: VII

	Type of			Teaching	Question	Те	aching I	Hrs / We	ek		Examination				
SI. No	the Course	Course Code	Course Title	Department (TD)	Paper Setting Board (PSB)	L	Т	P	S	Duration in Hours	CIE Marks	SEE Marks	Total marks	Credits	
1	IPCC	BEC701	Integrated Professional Core Course: Real Time Operating Systems	EC	EC	3	0	2		3	50	100	100	4	
2	PCC	BEC702	Professional Core Course: Information Theory and Coding	EC	EC	3	2	0		3	50	100	100	4	
3	PEC	BEC713X	Professional Elective Course - Group III	EC	EC	3	0	0		3	50	100	100	3	
4	OEC	BEC754X	Open Elective Course - Group III	EC	EC	3	0	0		3	50	100	100	3	
5	PROJ	BEC785	Major Project	EC	EC	3	0	0		3	100	100	200	6	
		_			_					Total	300	300	600	20	

	Professional Elective Course - Group III										
BEC713A	Static Timing Analysis	BEC713H	Vehicular Electronics								
BEC713B	Mixed Signal Circuit Design	BEC713I	Radar and Lidar Systems for Autonomous Driving								
BEC713C	Deep Learning Techniques	BEC713J	Digital Image Processing								
BEC713D	Estimation Theory	BEC713K	Wireless Ad Hoc network								
BEC713E	Low Power VLSI Design	BEC713M	Information and Network Security								
BEC713F	Semiconductor IC technology	BEC713N	Data Science and Management								
BEC713G	5G Wireless Systems and Industry Applications	BEC713P	Integrated Sensing and Communications								
	Open Ele	ective Course - Group III									
BEC754A	Introduction to Quantum Computing	BEC754C	Mobile Communication								
BEC754B	Next-Gen Wireless: 5G Systems and Cross-Industry Use	BEC754D	Neuromorphic Engineering								
5207045	Cases	5201045	Trouternorphile Engineering								

The National Institute of Engineering

Department: Electronics and Communication Engineering

Scheme of Teaching & Examination - 2022

Effective from the Academic Year 2025-26

B.E. 2023 Admitted Batch Semester: VIII

SI.	Type of the	Course		Teaching Paper	Т		ng Hrs eek	s /						
No	Course	Code	Course Title	Department (TD)	Setting Board (PSB)	L	т	Р	s	Duration in Hours	CIE Marks	SEE Marks	Total marks	Credits
1	PEC	BEC801X	Professional Elective - Group IV (Online Course)	EC	EC	-	-	-		-	-	50	100	3
2	OEC	BEC802X	Open Elective - Group IV (Online Course)	EC	EC	-	-	-		-	-	50	100	3
3	INT	BEC803	Internship (Industry/ Research) (14-16 weeks)	EC	EC	0	0	20		3	100	100	200	10
	То							Total	100	200	400	16		

Professional	Elective Course - Group IV (Online Courses - NPTEL / Coursera)	Open Elective Course - Group IV (Online Courses - NPTEL / Coursera)				
BEC801A	Fibre Optic Communication Technology	BEC802A	Understanding Incubation and Entrepreneurship			
BEC801B	Microelectronics: Devices to Circuits	BEC802B	Data Analytics with Python			
BEC801C	Semiconductor device modelling and Simulation	BEC802C	Economics of Banking and Finance Markets			
BEC801D	Photonic integrated circuit	BEC802D	Patent Law for Engineers and Scientists			
BEC801E	Computer Vision and Image Processing Fundamentals and Applications	BEC802E	E-Business			

Course Code: BEC501 Course: Engineering Management and Entrepreneurship

Credits: 3 L:T:P – 3:0:0

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 3 Hrs Max. Marks: 100

Prerequisites	
if any	
	Students will be able to learn.
Learning	Functions of management, ownership types and organizations.
objectives	Analyse the Human Resource and Behavioural management of an organisation.
	Managing projects in an organization and marketing of products.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Understand the basic concepts of management, planning, organizing and staffing and evaluate the human behaviour	L2
	concepts and HRM.	
CO2	Apply the project management tools to manage projects	L3
СОЗ	Understand the development of management thought and Concept of Entrepreneurs.	L2
CO4	Acquire the knowledge of product development life cycle and marketing of products and ownership types.	L2

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2				3			2		2	2	3	
CO2	3	3	2				3			2		2	2	3	
CO3	3	3	2				3			2		2	2	3	
CO4	3	3	2				3			2		2	2	3	

3 - Strong 2 - Medium 1 - Low

Course Structure

		1
	Module – 1	No. of Lecture Hours
1.1	Introduction: Meaning, nature and characteristics of Management, Scope, and functional areas of management - Management as a science, art or profession	2
1.2	Management & Administration - Roles of Management, Levels of Management, Taylors Scientific Management, Functions of management.	3
1.3	Nature, importance, and purpose of planning process - Objectives - Types of plans (Meaning only) - Decision making - Importance of planning - steps in planning & planning premises - Hierarchy of plans.	3
	Module – 2	
2.1	Organizational Structure and Ownership Types: Organization definition, different types of organizations – Functional, Divisional, Matrix etc.	2
2.2	Staffing-Need and Importance, Recruitment and Selection Process.	2
2.3	Controlling: Meaning and nature of directing - Leadership styles, Motivation Theories.	4
	Module – 3	
3.1	Preparation of Project: Meaning of Project; Project Identification; Project Selection; Project Report.	2
3.2	Need and Significance of Report; Contents; formulation; Network Analysis; Errors of Project Report; Project Appraisal.	2
3.3	Project Management: Types of project management, Tools used in Project management, Network diagrams, Critical Path method, Quality concepts and 7 Q C Tools, PERT, TQM.	4
	Module – 4	
4.1	Entrepreneur: Meaning of Entrepreneur; Evolution of the Concept, Functions of an Entrepreneur	2

	Total No. of Lecture Hours	40					
5.3	Ownership types – Proprietorship, Partnership, LLP, Pvt Ltd, Public Ltd, Section 8 company etc. Societies, Non-profit Organizations, Trusts.	4					
5.2	Product positioning, Marketing – Selling vs Marketing, 4 Ps of marketing,	2					
5.1	Product Development and Marketing: Product Development Life Cycle, Innovation -Managing and protecting.	2					
	Module – 5						
4.3	Stages in entrepreneurial process; Role of entrepreneurs in Economic Development; Entrepreneurship in India; Entrepreneurship – its Barriers.	3					
4.2	Types of Entrepreneurs, Entrepreneur - an emerging Class. Concept of Entrepreneurship-Evolution of Entrepreneurship, Development of Entrepreneurship	3					

Textbooks:

- 1. Management and Entrepreneurship by K R Phaneesh, 6th Edition, Sudha Publication, 2013.
- 2. Principles of Management by P.C Tripathi, P.N Reddy, McGraw Hill Education, 6th Edition, 2017. ISBN13:978-93-5260-535-4.
- 3. Management and Entrepreneurship by Ramesh Burbure, Rohan publishers, 2009.

Online resource link

- 1. https://nptel.ac.in/courses/110107094
- 2. https://nptel.ac.in/courses/110106141
- 3. https://nptel.ac.in/courses/122106031

Reference Books:

- 1. Essentials of Management: An International, Innovation and Leadership perspective by Harold Koontz, Heinz Weihrich McGraw Hill Education, 10th Edition 2016. ISBN-978-93-392-2286-4.
- 2. Management and Entrepreneurship by NVR Naidu, T Krishna Rao

Code: BEC502 Subject: Control Systems

Credits: 4 L: T: P: 3:2:0

SEE: 50 Marks CIE: 50 Marks

SEE Hours: 3 hrs Max. Marks: 100

Prerequisites	Signals & Systems, Engineering Mathematics
if any	
	Students will be able to learn:
	Different mathematical models of feedback control systems.
Learning	To build different types of control systems using block diagram and
objectives	mathematical forms.
	To understand the performance characteristics and analysis of control
	systems in time and frequency domain.

Course Outcomes:

On the successful completion of the course, the student will be able to

CO's	Course Outcomes	Bloom's
		level
CO1	Understand & explain the mathematical modelling of the physical systems	Understand
CO2	Analyse performance parameters & properties of the control systems in time and frequency domain.	Apply
CO3	Design control systems in time and frequency domain using appropriate mathematical concepts	Analyse
CO4	Analyse the control systems using state space model	Analyse

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2									1	3		2
CO2	3	3	2		2							1	3	2	1
CO3	3	3	2		2							1	3	2	1
CO4	3	3	2									1	3		2

Mapping Strength: Strong-3 Medium -2 Low -1

Course Structure

		No. of	No. of
	Module - 1	Lecture	Tutorial
		Hours	Hours
1.1	Introduction: Terminology & basic structure of control systems and		
1.1	essence of feedback control systems	1	
1.2	Transfer function and state space models of electrical systems	1	5
1.3	Block diagram representation of feedback control system and its	6	
1.3	reduction techniques, Signal Flow Graphs, and Mason's gain rule.		
	Module – 2		
2.1	Time domain analysis of feedback control systems: Response of	3	
2.1	standard first- and second-order control systems.		
2.2	Derivations of time-domain performance specifications of second-	3	5
2.2	order systems, steady-state error constants, and analysis		3
2.3	Concept of stability, stability analysis using the Routh-Hurwitz	2	
2.3	method.		
	Module – 3		
3.1	Root locus technique: Root locus concepts, guidelines for sketching	3	
3.1	root loci.		6
3.2	Design of PI, PD, and PID Controllers.	3	

	Module – 4						
4.1	Frequency domain Analysis: Specifications in Frequency-Domain,	5					
7.1	Bode plots and Stability Margins.		5				
4.2	Introduction to Phase lead and lag compensators.	2					
4.3	Design of Phase Lead Compensator using Bode plot.	3					
	Module – 5						
	Control system analysis using state space: State space variables, state	2					
5.1	space representation, solutions of state equations, state transition		5				
	matrix.						
5.2	Concepts of controllability and observability	2					
5.3	Pole placement by state feedback, observer systems	3					
	Total No. of Lecture Hours 40						
	Total No. of Tutorial Hours						

Textbooks:

- 1. M Gopal, "Control Systems- Principles and Design," TMH, Second Edition, 2006.
- 2. **J.Nagarath and M.Gopal**, "Control Systems Engineering," New Age International (P) Limited, Publishers, Fifth edition-2005, ISBN: 81-224-2008-7.
- 3. **G.F. Franklin., G.D. Powell., A.E. Naeini,** "Feedback Control of Dynamic Systems," Pearson Education 5th Edition, 2002.

Reference Books:

- 1. **K. Ogata,** "Discrete-Time Control Systems," 2nd Edition. PHI, 2002.
- 2. Norman S. Nise, "Control Systems Engineering," 6th Edition.
- 3. M. Gopal, "Modern Control Systems Theory," Wiley Eastern, 1984.

Online Resources:

- https://www.digimat.in/nptel/courses/video/108102043/L13.html
- https://www.youtube.com/channel/UCq0imsn84ShAe9PBOFnoIrg
- https://nptel.ac.in/courses/107106081

Course Code: BEC503 Course: Communication Systems

Credits: 3 L:T:P – 3:0:0

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 3 Hrs Max. Marks: 50

	 Knowledge of signal processing, including time and frequency
	domain analysis,
Prerequisites	• Basic concepts of probability and statistical analysis.
	• 3. Proficiency in calculus, linear algebra, and differential
	equations.
	To gain knowledge on theoretical aspects of analog modulation,
Lagraina abiactivas	Digital modulation, comprehensive understanding of
Learning objectives	communication through AWGN channel and capacity of wireless
	channels.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Discuss and Analyse the theoretical aspects of analog modulation, gain practical experience and problem-solving skills.	L3
CO2	Develop a thorough understanding of digital modulation techniques.	L3
CO3	Develop a comprehensive understanding of communication through AWGN channels.	L3
CO4	Develop a comprehensive understanding of the capacity of wireless channels.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	2				1	1					2
CO2	3	2	2	1	-				1	1					1
CO3	3	3	2	2	2					1					1
CO4	3	3	3	3	2					1					2

3-Strong 2-Medium 1-Low

Course Structure

		No. of
	Module – 1: Analog Modulation	Lecture
		Hours
1.1	Introduction to modulation, Need for modulation in communication	1
1.2	Amplitude Modulation (AM) and Envelop Detection	1
1.3	DSB-SC Modulation, Coherent Detection,	1
1.4	SSB-SC Modulation	1
1.5	Nonlinear Modulations, Bandwidth of Angle Modulated Waves,	1
1.6	Generating of FM Waves by direct methods	1
1.7	Demodulation of frequency modulation	1
1.8	Phase-locked loop	1
	Module-2: Sampling and Analog to Digital Conversion	
2.1	Sampling and Analog to Digital Conversion Low Pass Sampling Theorem (Impulse, Pulse and Flat top),	2
2.2	Bandpass and equivalent low pass signal representation,	2
2.3	Quadrature Sampling of bandpass signals, Bandpass Sampling Theorem statement with Applications	2
2.4	ISI, Nyquist Criteria, Bandlimited channel with controlled ISI	2

Module – 3: Introduction To Digital Modulation Techniques	
3.1 Baseband Pulse Transmission (Line Codes) (RZ and NRZ) Unipolar, Polar, Bipolar, Manchester signaling,	1
3.2 Geometric Representation of Signals in terms of a low pass basis set,	1
3.3 Gram Schmidt procedure, conversion statement to bandpass basis set.	1
Geometric representation of signals: Baseband modulated signals with	
3.4 examples Bandpass band limited signals - BPSK, QPSK, M-PSK, M-	4
QAM.	
Transmitter Architectures and PSD, Power limited – FSK, DPSK, MSK	1
and applications.	
Module – 4: Communication through AWGN Channels	1
Detection: Centre point sampling, Matched Filter, and Correlation	
4.1 Receiver. Estimation Basics - MAP and MLI Estimation of Binary signals	3
with AWGN,	
Probability of error for binary signaling, Probability of error for binary 4.2	2
baseband pulses (Line codes).	2
Coherent demodulation scheme – BPSK, QPSK, BFSK Receiver	3
Architecture, Probability of symbol error.	
Module – 5: Multicarrier and spread spectrum technology	
Multicarrier Signaling: Single carrier vs Multicarrier, Multicarrier	2
Concepts	
5.2 Types of Multicarrier in AWGN channel, OFDM	2
Introduction to Spread Spectrum, Advantages of Spread Spectrum,	
5.3 Pseudo noise sequences, Direct sequence spread spectrum with coherent	2
binary PSK.	
5.4 Frequency hopped spread spectrum applications.	2
Total No. of Lecture Hours	40

Suggested Learning Resources:

Text Books:

1. Modern Digital and Analog communication Systems, B.P.Lathi and Zhi Ding, 4th Edition, 2010, Oxford University Press, ISBN: 9780198073802.

- 2. Digital Communications, John G. Proakis and Maoud Salehi 5th Edition, 2014, MacGraw Hill Education(India) Private Limited.
- 3. Analog & Digital Communication Systems, Simon Haykin, 1st Edition, 2014, John Wiley & sons, , ISBN 978-0-471-64735-5.
- 4. Principles of Communication Systems, Taub and Schilling, 4th Edition, 2020, MacGraw Hill Education(India) Private Limited.

Reference Books:

1. Communication Systems, Simon Haykin, 4th Edition, 2004, John Wiley, India Pvt. Ltd, ISBN 04711786913. Online resource link, if any.

Course Code: BEC504 Course: Digital Signal Processing

Credits: 4 L:T:P – 3:0:2

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 3 Hrs Max. Marks: 100

Prerequisites	Signals and Systems
	Understanding various transforms
Learning objectives	Analyze DFT in linear filtering methods
Learning objectives	 Designing of IIR and FIR
	Study of DSP architecture

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Analyze signals using various Transforms.	L1
CO2	Apply an efficient DFT in linear filtering methods.	L2
CO3	Able to Design IIR and FIR filters relative to specific performance parameters.	L3
CO4	To understand architecture for DSP applications- TMS32067x processor	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3				3				3	3	2
CO2	3	3	3	3	3				3				3	3	2
CO3	3	3	3	3	3				3				3	3	2
CO4	3	3	3	3	3				3				3	3	2

3 - Strong 2 - Medium 1 - Low

Course Structure

		No. of								
	Modula 1. Discusta Farmian Transforms (DET) & Dransation of DET.	Lecture								
	Module 1: Discrete Fourier Transform (DFT) & Properties of DFT:	Hours								
1.1	Frequency domain sampling and reconstruction of discrete-time signals	1								
1.2	Discrete Fourier Transform (DFT),									
1.3	DFT as a linear transformation									
1.4	Relationship of the DFT to other transforms.	1								
1.5	Properties of the DFT: linearity,	1								
1.6	Periodicity, multiplication of two DFTs,	1								
1.7	Circular convolution, and symmetry properties,	1								
1.8	Frequency analysis of signals using the DFT.	1								
	Module 2: Fast Fourier Transform Algorithms:									
2.1	Direct Computation of the DFT,	1								
2.2	Efficient Computation of the DFT,	1								
2.3	Radix-2 FFT algorithms- decimation-in-time FFT algorithm,	2								
2.4	Decimation-in-frequency FFT algorithm,	1								
2.5	IDFT- decimation-in-time,	1								
2.6	Decimation-in-frequency,	1								
2.7	Goertzel algorithm	1								
	Module 3: Design and Realization of FIR Filters:									
3.1	Properties of FIR digital filters,	1								
3.2	Different types of windows - Rectangular,	1								
3.3	Hanning window,	1								
3.4	Design of FIR filters using above windows.	2								
3.5	Realization of FIR filter structures- Direct form structure	2								
3.6	Linear phase and cascade FIR structure.	1								
	Module 4: Design and Realization of IIR Filters:									
4.1	Frequency transformations in the analog domain,	1								

4.2	Characteristics of commonly used analog filters,	1						
4.3 IIR filter design by impulse invariance method,								
4.4	Bilinear transformation,	1						
4.5	Application of above technique to the design of Butterworth & Chebyshev filters.	2						
4.6	4.6 Direct forms (I & II), cascade and parallel realizations,							
Module 5: Digital Signal Processors:								
5.1	Architectural features of a Digital Signal Processor,	2						
5.2	Fixed point and floating-point processors	2						
5.3	Different generations of DSPs,	2						
5.4	TMS 320C67X processors. (Text2)	2						
	Total No. of Lecture Hours	40						

Suggested Learning Resources:

Textbooks:

- 1. Proakis and Manolakis, "Digital Signal Processing Principles algorithm and application", Pearson Education 4th Edition, 2007.
- 2. Monson H Hayes, "Digital signal processing", Tata McGraw-Hill, New Delhi, 3rd edition, 2008.

Reference Books:

- 1. Oppenheim And Schaffer, "Discrete Time Signal Processing", PHI,2014.
- 2. Sanjit K. Mitra, "Digital Signal Processing", TMH, 2004.
- 3. Vinay K. Ingle and John G. Proakis, "Digital Signal Processing Using MATLAB: A Problem Solving Companion".

LIST OF EXPERIMENTS USING MATLAB / SCILAB / OCTAVE / WAB

- 1. Verification of sampling theorem.
- 2. Impulse response of a given system
- 3. Linear convolution of two given sequences.
- 4. Circular convolution of two given sequences
- 5. Solving a given difference equation.
- 6. Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.
- 7. Design and implementation of FIR filter to meet given specifications.
- 8. Design and implementation of IIR filter to meet given specifications.

II LIST OF EXPERIMENTS USING DSP PROCESSOR

- 1. Linear convolution of two given sequences.
- 2. Circular convolution of two given sequences.
- 3. Computation of N- Point DFT of a given sequence
- 4. Realization of an FIR filter (any type) to meet given specifications. The input can be a signal from function generator.
- 5. Realization of an IIR filter (any type) to meet given specifications. The input can be a signal from function generator.

Textbook:

1. Vinay K Ingle, John G Proakis, Digital Signal Processing using MATLAB, Fourth Edition, Cengage India Private Limited, 2017.

Course Code: BECL505 Course: Communication Systems Lab

Credits: 1 L:T:P-0:0:2

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 2 Hrs Max. Marks: 50

Prerequisites if any	
Learning objectives	To simulate various modulation techniques.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Demonstrate proficiency in using hardware (using discrete components) and Software Defined Radio (SDR) platforms for communication signal processing.	L4
CO2	Implement and analyse analog modulation and demodulation techniques such as AM and FM.	L4
CO3	Design and simulate digital modulation schemes like BPSK and QPSK, and evaluate their performance under noise.	L3
CO4	Analyse bit error rate (BER), eye diagrams, and signal integrity for digital modulation techniques. Integrate complete digital communication systems using SDR for real-time wireless transmission and reception.	L4

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
CO1	3	2	-	-	2				1	1					2
CO2	3	2	2	1	-				1	1					1
CO3	3	3	2	2	2					1					1
CO4	3	3	3	3	2					1					2

3 - Strong

2 – **Medium** 1 – **Low**

Tools and Platforms:

Hardware: Adlam Pluto SDR, RTL-SDR, DSO, Spectrum Analyser

Software: MATLAB + Communications Toolbox, GNU Radio, Simulink (optional), Python (for SDR interfacing) (optional)

Course Content:

- Introduction to the usage of software-defined radios and MATLAB
- Analog modulation and demodulation (Using discrete components)
- Digital modulation and demodulation BPSK and QPSK only

List of Experiments

- 1. Introduction to MATLAB and SDR Hardware
 - Objective: Familiarize students with MATLAB and SDR interface (e.g., USRP, RTL-SDR)
 - Tasks:
 - Installing and configuring MATLAB Communications Toolbox
 - o Basic signal generation and visualization
 - Interfacing SDR with MATLAB (e.g., receiving FM radio)
- 2. Amplitude Modulation (AM) and Demodulation (Using Discrete Components only modulation)
 - Objective: Study the principles of AM and demodulate an AM signal
 - Tasks:
 - o Generate AM signal using MATLAB
 - o Transmit AM using SDR (Adlam Pluto), receive and demodulate
 - Measure the modulation index and spectral content
- 3. Frequency Modulation (FM) and Demodulation (Using Discrete Components only modulation)
 - Objective: Implement and analyse FM transmission and reception
 - Tasks:
 - Generate FM signal in MATLAB

- Observe frequency deviation and bandwidth
- o Receive and demodulate FM using SDR
- 4. Study of Sampling Theorem and Reconstruction of Signals
 - Objective: Understand sampling and Nyquist criteria
 - Tasks: To verify the **Sampling Theorem** using MATLAB and/or hardware tools, and to demonstrate **aliasing effects** and signal **reconstruction** from samples.
- 5. Digital Baseband Signal Generation
 - Objective: Generate digital binary signals for BPSK and QPSK
 - Tasks:
 - Create binary data stream using random bit generators
 - Use MATLAB to simulate NRZ, RZ formats
- 6. BPSK Modulation and Demodulation
 - Objective: Implement Binary Phase Shift Keying
 - Tasks:
 - Simulate BPSK modulation and demodulation in MATLAB
 - Analyze the constellation diagram and BER
 - o Transmit/Receive BPSK using SDR in loopback or over-the-air
- 7. QPSK Modulation and Demodulation
 - Objective: Implement Quadrature PSK and analyze performance
 - Tasks:
 - Use MATLAB to simulate QPSK with Gray coding
 - Plot constellation diagram and calculate BER vs SNR
 - o Perform SDR-based QPSK transmission and reception
- 8. Noise and BER Analysis of Digital Modulation Schemes
 - Objective: Analyze how noise affects digital communication
 - Tasks:
 - Add AWGN to BPSK and QPSK signals in MATLAB
 - Compute BER for varying Eb/N0 values
 - Compare theoretical and simulated results
- 9. Eye Diagram and Signal Integrity in Digital Communication
 - Objective: Analyze timing jitter and inter-symbol interference
 - Tasks:
 - Plot eye diagram for received signals (BPSK/QPSK)
 - Identify factors degrading signal quality

10. SDR-Based Real-Time Communication Link

- Objective: Demonstrate a basic digital communication system
- Tasks:
 - Implement a complete transmitter-receiver chain (modulation, transmission, reception, demodulation)
 - Use GNU Radio or MATLAB with SDRs
 - Transmit simple text/image wirelessly using QPSK

Optional (if time/resources permit):

- Experiment on Channel Effects: Introduce Rayleigh fading and Doppler shift in MATLAB
- Comparative study of modulation schemes: Evaluate bandwidth efficiency and power efficiency

Course Code: BEC515A Course: Embedded Systems for Automotive

Credits: 3 **L:T:P – 3**:0:0

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 3Hrs Max. Marks: 50

Prerequisites if any	
Learning objectives	 Understanding Automotive Embedded Systems: Gain a comprehensive understanding of the architecture and components of embedded systems used in automotive applications. System Design and Architecture: Learn about the design principles and architectural considerations for developing reliable and efficient automotive embedded systems. Software Development and Testing: Acquire knowledge about the software development lifecycle, including design, coding, testing, and debugging of embedded software for automotive systems. Real-Time Systems: Understand the requirements and challenges of real-time systems in automotive applications, including scheduling, task management, and timing constraints. Communication Protocols: Familiarize yourself with various communication protocols used in automotive embedded systems, such as CAN, LIN, and Ethernet.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
	Learn about safety standards and reliability measures,	
CO1	including ISO 26262 for functional safety, and strategies for	L1
	ensuring the robustness of automotive embedded systems.	
	Explore the interaction between hardware and software in	
CO2	automotive embedded systems and the principles of co-	L1
	design to optimize performance and resource utilization.	
	Gain insights into the security challenges and solutions for	
CO3	protecting automotive embedded systems from various	L2
	threats.	
	Stay informed about the latest trends and advancements in	
CO4	automotive embedded systems, including the integration of	1.3
CO4	advanced driver-assistance systems (ADAS) and	L3
	autonomous driving technologies.	

Mapping with POs and PSOs:

COs	PO	PO	PO	РО	РО	PO	РО	PO	PO	PO	PO	РО	PSO	PSO	PSO
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	2								3	2	1
CO2	3	3	3	3	2								3	2	1
CO3	3	3	3	3	2								3	2	1
CO4	3	3	3	3	2								3	2	1

3 - Strong 2 - Medium 1 - Low

Course Structure

	Module – 1 :Automotive Architectures	No. of Lecture
		Hours
1.1	Vehicle Functional Domains and Their Requirements	2
1.2	Application of the AUTOSAR Standard	2
1.3	AUTOSAR in Practice	2
1.4	Intelligent Vehicle Technologies	2
	Module – 2 : Embedded Communications	
2.1	A Review of Embedded Automotive Protocols	2
2.2	FlexRay Protocol	2
2.3	Dependable Automotive CAN Networks	2
2.4	FTT-CAN	2
	Module – 3 :Embedded Software and Development Processes	
3.1	Product Lines in Automotive Electronics	2
3.2	Reuse of Software in Automotive Electronics	2
3.3	Automotive Architecture Description Languages	2
3.4	Model-Based Development of Automotive Embedded Systems	2
	Module – 4: Verification, Testing	
4.1	Testing Automotive Control Software	2
4.2	Control Software	2
4.3	Testing of FlexRay-Based Applications	2
4.4	Monitoring of FlexRay-Based Applications	2
	Module – 5: TimingAnalysis	
5.1	Timing Analysis of CAN-Based Automotive Communication	2
5.2	Scheduling Messages with Offsets	2
5.3	Controller Area Network with Performance boost	2
5.4	Formal Methods in the Automotive Domain	2
	Total No. of Lecture Hours	40

Suggested Learning Resources:

Text Books:

- Automotive Embedded Systems Handbook, Edited by Nicolas Navet and Françoise Simonot-Lion, CRC Press
- 2. Integration Technologies for Industrial Automated SystemsEdited by Richard Zurawski, , CRC Press

3. Electronic Design Automation for Integrated Circuits Handbook, Edited by Luciano Lavagno, Grant Martin, and Lou Scheffer, , CRC Press

Reference Books:

- 1. Embedded System Design: A unified Hardware / Software Introduction" Frank Vahid and Tony Givargis, Wiley India Publishers.
- A Practical Introduction to Hardware/Software Co-Design"- Patrick R. Schaumont, Springer Publishers
- 3. Embedded Systems Handbook, Edited by Richard Zurawski, , CRC Press
- Industrial Communication Technology Handbook, Edited by Richard Zurawski, , CRC
 Press

Course Code: BEC515B Course: Unified Verification Methodology

Credits: 3 **L:T:P – 3**:0:0

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 3Hrs Max. Marks: 50

Prerequisites if any	
Learning objectives	Learning VLSI verification using UVM techniques.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Understanding the writing testbench for UVM techniques	L1
CO2	Analysing the config of UVM and TLM implementation	L3
CO3	Understanding the RAL and UVM advanced concepts	L2

Mapping with POs and PSOs:

COs	РО	PO	РО	PO	РО	PSO	PSO	PSO							
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	2							2	3	2	1
CO2	3	3	3	3	2							2	3	2	1
CO3	3	3	3	3	2							2	3	2	1
CO4	3	3	3	3	2							2	3	2	1

3 - Strong 2 - Medium 1 - Low

Course Structure

		No. of Lecture
		Hours
1.1	Module – 1 : Introduction to UVM	2
1.1	Limitation of SV Test bench, Evolution of UVM, Features of UVM,UVM Class Hierarchy, UVM Phases, Factory Registration, TLM, RAL	2
1.3	UVM Phases: Motivation for Phases in UVM, UVM Phases Categorization	2
1.4	Built Time Phases, Run Time Phases, Clean Up Phases, Reporting mechanism	2
	Module – 2: UVM- Transaction Level Modeling (TLM)	
2.1	Introduction to TLM, Ports, exports, implementation, Analysis ports, TLM FIFO, Hierarchical Connections	2
2.2	Example of TLM Connections, TLM Implementation Ports Declaration Macros	2
2.3	UVM- Factory Registration and Methods: Introduction to Factory, Factory Registration, UVM Field Macros	2
2.4	UVM Field Macros, Create Methods, Factory Over ride	2
	Module – 3 : UVM- Construction of Universal Verification Components	
3.1	Virtual Interface,	2
3.2	UVM Config & Resource Database	2
3.3	Database Construction of UVC, Generating Sequences,	2
3.4	Sequence Drive Communication	2
	Module – 4: UVM- Register Abstraction Layer (RAL)	
4.1	Introduction to RAL, Register Model Building Block Classes	2
4.2	Register Model in UVM Environment	2
4.3	Access API	2
4.4	Front door and Backdoor Access	2
	Module – 5: UVM- Advanced Concepts	
5.1	Virtual Sequence and Virtual Sequencer	2
5.2	UVM Callbacks, UVM Event	2
5.3	Commonly used Command line Switches	2
5.4	Lab 1, Lab2	2
	Total No. of Lecture Hours	40

Suggested Learning Resources:

Text Books:

- 4. A Practical Guide to Adopting the Universal Verification Methodology (UVM), Sharon Rosenberg, Kathleen Meade, Second Edition Paperback Import, 29 January 2013
- 5. The UVM Primer: A Step-by-Step Introduction to the Universal Verification Methodology, Ray Salemi, Paperback 23 October 2013
- 6. Getting Started with UVM: A Beginner's Guide, Vanessa R Cooper Paperback 22 May 2013

Course Code: BEC515C Course: Operating Systems

Credits: 3 L:T:P: 2-0-2

CIE: 25 SEE: 50%

SEE Hours: 3 Max. Marks: 100

Prerequisites if any	
	• Understand the architecture and core concepts of the QNX RTOS.
	 Learn to develop and debug applications using the QNX
	Momentics IDE.
	• Gain knowledge of process and thread management, including
	synchronization techniques.
Learning objectives	• Explore inter-process communication (IPC) methods and their
	applications in QNX.
	 Understand hardware programming concepts, including
	interrupting handling and memory access.
	• Learn to build and configure QNX boot/OS images for embedded
	systems.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Describe the QNX OS architecture and its microkernel-based design.	L2
CO2	Develop and debug QNX-based applications using appropriate tools.	L3
СОЗ	Apply process/thread management and synchronization techniques in QNX.	L3
CO4	Implement inter-process communication methods for real-time systems.	L4
CO5	Develop strong knowledge on the POSIX standards that help in System Application Development.	L2

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1										2		
CO2	2		3		2					1		1	2	2	
CO3	3	2	3	2	2							1	3	2	1
CO4	3	2	3	2						1		2	3	2	2
CO5	2	2	2										2		

3 – Strong 2 – Medium 1 – Low

Course Structure

		No. of					
	Module – 1	Lecture					
		Hours					
1.1	Introduction to QNX OS Architecture: microkernel, process manager	2					
1.2	Introduction to inter-process communication IPC and synchronization.	2					
1.3	Interrupt handling, scheduling	2					
	Module – 2						
2.1	Process manager, resource manager	2					
2.2	Boot sequence, security, OS services	1					
2.3	Process and threads management: creation, termination and cleanup	2					
	Module – 3						
3.1	Synchronization techniques: mutexes and condition variables	2					
3.2	Overview of IPC methods in QNX: message passing	2					
3.3	Pulses, shared memory, and event delivery	1					
	Module – 4						
4.1	Introduction to hardware programming: Hardware IO	2					
4.2	Handling interrupts	2					
4.3	Introduction to timing architecture: Getting and setting the system clock	1					
	Module – 5						
5.1	Introduction to timers, high resolution timers	2					
5.2	Design considerations, kernel timeouts	2					

5.3	Build a QNX neutrino boot/OS image	1
	Total No. of Lecture Hours	26

Suggested Learning Resources:

Text Books:

- 1. QNX Neutrino RTOS User's Guide, QNX Software Systems.
- 2. Programming for Embedded Systems, Michael Barr, O'Reilly Media.
- 3. Hands-on RTOS with Microcontrollers, Brian Amos, Packt Publishing, 2020.
- 4. Operating System Concepts, Abraham Silberschatz, et al., 9th Edition, Wiley, 2018.

Online Resources:

- https://blackberry.qnx.com/en/products/qnx-everywhere
- https://gitlab.com/qnx
- https://www.reddit.com/r/QNX/
- https://stackoverflow.com/questions/tagged/qnx
- https://www.youtube.com/qnxcam
- https://gitlab.com/qnx/projects
- https://github.com/qnx-ports

Lab Experiments – 15 Hours

- 1. QNX configuration and application development using QNX Momentics IDE
- 2. Process and thread creation, management, and synchronization: Hands-on exercises: process/thread creation and synchronization.
- 3. Implementation of IPC methods: message passing and shared memory.
- 4. Hands-on exercises: message passing and shared memory.
- 5. Hands-on exercises: interrupt handling and timing mechanisms.
- 6. Building and deploying QNX boot/OS images.
- 7. Mini capstone project: Design and implement a QNX-based embedded system.

Course: Research Methodology & IPR Course Code: BRMEC557

Credits: 2 L: T: P: 2:0:0
CIE: 50 Marks
SEE Hours: 2 hrs Max. Marks: 50

Prerequisites if any	NIL
Learning Objectives	Describe research, process of research and different types of research. 1. Explain guidelines for data collection and data analysis. 2. Develop an understanding of different sampling techniques. 3. Select and define a research problem. 4. Prepare a research report.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Define Research and the process involved in it.	Understand
CO2	Develop an understanding of different sampling techniques	Understand
	and hypothesis testing.	
CO3	Describe various data collection and data analysis methods	Apply

Mapping with POs and PSOs:

CO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	2	2										
CO2	3	3	1	2	2										
CO3	3	3	1	2	2										

Mapping Strength: Strong-3 Medium - 2 Low - 1

Sl.		No. of				
No	Module	Lecture				
		Hours				
Module – 1:						
1.1	Basics: Meaning, Objectives of research, Motivation in research, Types ofresearch, Significance of research, Criteria of good research.	3				
1.2	Research Process : Formulating the research problem, Literature survey, Development Of working hypotheses, Preparing the research design, determining sample design, Collecting the data, Execution of the project, Analysis of data, Hypothesistesting, Generalizations and interpretation,	5				
	Module – 2:					
2.1	Research Hypothesis : Meaning, Characteristics of hypothesis, Types of hypothesis, level of significance, Type I & Type II errors, One tailed & two tailed tests, Procedure	5				
2.2	for hypothesis testing, Need for Sampling, Fundamental Definitions, Probability & Non- probability Sampling Designs,	4				
	Module – 3:					
3.1	Types & Sources of data, collection of data, measurement & scaling techniques, Techniques of data analysis	5				
3.2	Writing Thesis, writing article for journal and conference publication, IEEE and Harvard style of referencing, Effective Presentation.	4				
	Total No. of Lecture Hours	26				

Text Books:

- 1.C R Kotari, "Research Methodology", New Age International, 2nd revised edition, 2014.
- 2.Deepak Chawla, NeenaSandhi, "Research Methodology Concepts & Cases", Vikas Publications, 2nd edition, 2011.

Reference Books:

- 1.Garg B L, Karadia, R Agarwal and Agarwal, "An introduction to research methodology", RBSA Publishers, 2002.
- 2. Sinha S C and Dhiman A K, "Research Methodology", ESS Publications, 2002

Course Code: BEC601 Course: Computer Networks

Credits: 4 L:T:P – 3:0:2

CIE: 50% Marks
SEE Hours: 3 Hrs

Max. Marks: 100

Prerequisites if	Nil
any	
	Students will be able to learn.
Learning	 Develop awareness towards basic internetworking principles.
objectives	• Explain protocols operating at different layers of computer networks.
objectives	 Analyze various aspects involved in multiple access, addressing,
	network and congestion control.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Understanding the OSI and TCP/IP Protocol Stack, and analysing the	L2
CO1	Transmission Delays, the correlation between Data Transmission delay and Propagation Delay.	
CO2	Design different Networks, Class addresses, subnet and subnet masking	L3
CO3	Analysing the protocols and algorithms to illustrate the basic principles on which they are designed at different layers of the protocol stack.	L4
CO4	Analyze switching, different routing protocols and performance of various scheduling algorithm	L4
CO5	Implement communication protocols using TCP/UDP in network applications.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2		3							2	3	3	
CO2	3	3	2		3							2	3	3	
CO3	3	3	2		3							2	3	3	
CO4	3	3	2		3							2	3	3	

3 - Strong 2 - Medium 1 - Low

		No. of				
	Module - 1	Lecture				
		Hours				
	Introduction: Data communication: Components, Data representation, Data					
1.1	flow, Networks: Network criteria, Physical Structures, Network types: LAN,	2				
1.1	WAN, Switching Packet Switching: Datagram Approach, Virtual Circuit	2				
	Approach.					
	Network Models and Physical Layer:					
1.2	Layers in OSI Model, TCP/IP protocol suite, Addressing, Data Rate Limits.					
1.3	Performance Parameters, Bandwidth, Latency, Problem solving.	3				
	Module – 2					
2.1	Introduction: Nodes and Links, Services, Two Categories of link,	2				
2.1	Sublayers, Link Layer addressing: Types of addresses, ARP	2				
2.2	Framing, Flow and Error Control, Protocols, Noiseless and Noisy Channels,	2				
2.2	Random Access, Controlled Access.	2				
2.3	Wired LANs: Ethernet, Wireless LANs (IEEE 802.11), VLANs.	4				
	Module – 3					
3.1	Network Layer: Introduction, Network Layer services: Packetizing,	3				

	Routing and Forwarding, IPV4 Addresses: Address Space, Classful Addressing, Classless Addressing, DHCP.	
3.2	IPv4 and IPv6 Addresses, Structure, Address Space, Transition from IPV4 to IPV6.	2
3.3	Unicast routing: Inter and intra-domain routing, RIP, OSPF, BGP.	3
	Module – 4	
4.1	Introduction: Transport Layer Services, Connectionless and Connection oriented Protocols, Transport Layer Protocols: Simple protocol, Stop and wait protocol, Go-Back N Protocol, Selective repeat protocol, Piggybacking	2
4.2	User Datagram Protocol: User Datagram, UDP Services, UDP Applications, Transmission Control L1, L2, L3 Protocol: TCP Services, TCP Features, Segment, Connection, State Transition diagram,	3
4.3	Windows in TCP, Error control, TCP congestion control: Slow start, Fast retransmit and Fast recovery, Congestion avoidance mechanisms.	3
	Module – 5	
5.1	Application Layer: Application- layer paradigms, Client/Server Programming Concept.	3
5.2	Standard Client – Server Protocols: Hyper Text Transfer Protocol, FTP: Two connections, Control Connection, Data Connection, SMTP.	3
5.3	DNS: Name space, DNS in internet, Resolution, DNS Messages, Registrars, DDNS, security of DNS.	2
	Total No. of Lecture Hours	40

Suggested Learning Resources:

Textbooks:

- 1. "Data Communication and Networking" Behrouz A Forouzan, 5th Edition, McGraw Hill, 2013, ISBN: 1-25-906475-3.
- 2. "Computer Networks A System Approach" Larry. Peterson and Bruce S. Davie, Morgan Kaufmann Publications, 5thEdition.

List of Experiments					
1. Introduction to Packet Sniffing and Wireshark.					
2. Study of Network Administration and Configuration	1				
commands					
3. Study of IP, ARP, UDP, TCP and DNS using Wireshark	1				
4. Simulate a four-node point-to-point network and analyse the	1				
network by changing the bandwidth and latency using NS2.					
5. Simulate and analyse the routing protocols and deduce the relevant					
inference from the observations using NS2.					
6. Simulate a 6 node Ethernet LAN network using NS2.					
7. Simulation of STOP and WAIT Protocol.					
8. NETSIM experiment 1	1				
9. NETSIM experiment 2					
10. Introduction to Cisco packet tracer					
11. Network design using Cisco packet tracer					
Total No. of Practical Hours	15				

Online resource link

- 1. https://www.e-booksdirectory.com/details.php?ebook=10361
- 2. https://www.e-booksdirectory.com/details.php?ebook=7190
- 3. http://nptel.ac.in/video.php?subjectId=106105081
- 4. http://freevideolectures.com/Course/2278/Data-Communication
- 5. https://cosmolearning.org/courses/computer-networks-524/video-lectures/
- 6. https://www.eecis.udel.edu/~bohacek/videoLectures/ComputerNetworking/ComputerNetworking_v2.html

Reference Books:

- "Computer Communication Networks", Andrew S Tannenbaum, Prentice Hall of India Pvt. Ltd., 4th Edition.
- 2. "Computer Networks", James F. Kurose, Keith W. Ross, 2nd Edition, 2003, Pearson Education.

Course Code: BEC602 Course: Embedded System and Architecture

Credits: 4 L:T:P:3:0:2

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites	Digital electronics, Microprocessors/microcontrollers
if any	
	 Apply logic design conventions to construct and analyse simple data paths and control schemes. Evaluate cache performance and implement cache controllers using
Learning objectives	 finite-state machines. Utilize embedded hardware building blocks for processor selection, memory allocation, and interfacing. Implement and troubleshoot device drivers for parallel and serial communication devices in embedded systems.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Understand the principles of logic design conventions, Datapath building, pipelining, and hazards in computer architecture.	L2
CO2	Analyze memory hierarchy including memory technologies, cache performance, and parallelism in memory systems.	L3
CO3	Apply knowledge of embedded hardware building blocks, memory selection, interfacing processors, and system performance in embedded systems.	L3
CO4	Demonstrate proficiency in embedded software tools and techniques including assemblers, boot loaders, system design, and debugging.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	2	2									2	2	2
CO2		3	2	2									2	2	2
CO3		3	2	2		1							2	2	2
CO4		3	2	2		1							2	2	2

3 - Strong 2 - Medium 1 - Low

	Module – 1: Processor	No. of Lecture				
		Hours				
1.1	Introduction, Logic Design Conventions.	2				
1.2	Building a Datapath, A Simple Implementation Scheme.	2				
1.3	An Overview of Pipelining, Pipelined Datapath and Control.	2				
1.4	Hazards, Parallelism via Instructions.	2				
	Module – 2: Register Transfer And Micro-Operations					
2.1	Register Transfer Language, Register Transfer, Bus and Memory Transfers,	2				
2.2	Arithmetic Micro-Operations, Logic Micro-Operations, Shift Micro-Operations, Arithmetic logic shift unit.	2				
2.3	MICRO-PROGRAMMED CONTROL: Control Memory, Address Sequencing,	2				
2.4	Micro-Program example, Design of Control Unit.	2				
	Module – 3: Memory Hierarchy					

3.1	Introduction, Memory Technologies, The Basics of Caches, Measuring and Improving Cache Performance	2
3.2	Dependable Memory Hierarchy, A Common Framework for Memory Hierarchy, Using a Finite-State Machine to Control a Simple Cache	2
3.3	Parallelism and Memory Hierarchies: Cache Coherence, Parallelism and Memory Hierarchy: Redundant Arrays of Inexpensive Disks	2
3.4	Advanced Material: Implementing Cache Controllers	2
	Module – 4: Embedded Hardware	
4.1	Embedded hardware building blocks, Structural units in a processor, Processor selection for an embedded system.	2
4.2	Memory selection of an embedded system, Allocation of memory, DMA, Interfacing processor.	2
4.3	Memories, and I/O devices, Timers and counting devices.	2
4.4	Serial and parallel communication devices, processor performance.	2
	Module – 5: Device Drivers	
5.1	Introduction, parallel port device drivers, serial port device drivers, internal programmable timing devices.	2
5.2	Interrupt servicing, Context switching deadline and latency.	2
5.3	Examples-Initializing an Ethernet Driver.	2
5.4	Initializing an USB Driver.	2
	Total No. of Lecture Hours	40

List of Experiments

To implement the below experiments, use any embedded architecture tools like Mucos / Gem 5 / Vx works / oc MPI / MIPS Simulator/ etc.

- Design, implement and test: The Seven Segment Display and A simple Arithmetic Logic Unit (ALU)
- 2. Design, implement and test: Register File, Read only Memories ROMs, Random Access Memories RAMs
- 3. Design implement and test: Associative / Direct Mapped Cache memory design
- 4. Study, design, implement and test: Single-Cycle MIPS CPU
- Study, design, implement and test: Instruction Fetch Unit for the 16-bit Single-Cycle MIPS CPU
- 6. Study, design, implement and test: MIPS 16 CPU, pipeline version
- 7. Study, design, implement and test: Serial Communication

Suggested Learning Resources:

Textbooks:

- 1. David A. Patterson and John L. Hennessey, Computer Organization and Design: The Hardware/Software Interface, 5th ed., Morgan Kaufmann, 2014.
- 2. Tammy Noergaard, "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Elsevier, 2005.
- 3. Gene Sally, "Professional Linux Embedded System", Academic Press 2010.

Reference Books:

- 1. Frank Vahid, Tony D. Givargis, "Embedded system Design: A Unified Hardware/Software Introduction", John Wily & Sons Inc.2002.
- 2. Peter Marwedel, "Embedded System Design", Science Publishers, 2007.
- 3. Arnold S Burger, "Embedded System Design", 2002.
- 4. Rajkamal, "Embedded systems", McGraw Hill, 4th Edition, 2020

Code: BEC613A Course: ASIC Design

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites if any	Digital Electronics and Circuit Theory
	Students will be able to learn
Learning objectives	ASIC Design Flow.
Learning objectives	Analyse the design of FPGAs and ASICs
	Analyse data path elements for ASIC cell libraries

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Understand the concepts of ASIC design methodology, data path elements, logical effort and FPGA architectures.	L2
CO2	Analyse the design of FPGAs and ASICs suitable for specific tasks, perform design entry and explain the physical design flow.	L4
СОЗ	Analyse data path elements for ASIC cell libraries and compute optimum path delay.	L4

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	-	2				1			1	3	2	2
CO2	3	2	3	-	2				1			1	3	2	2
СОЗ	3	2	3	-	3				1			1	3	2	2

Strong-3 Medium - 2 Low - 1

		No. of
	Module – 1- Introduction to ASICs	Lecture
		Hours
1.1	Full custom, Semi-custom and Programmable ASICs,	1
1.2	ASIC Design flow, ASIC cell libraries, CMOS Logic, Address	3
1.3	Carry Skip, Carry saves, Carry selects, Conditional sum, Multiplier (Booth)	2
1.4	Datapath Operators, I/O cells, Cell Compilers.	2
	Module-2- ASIC Library Design	
2.1	Logical effort: Predicting Delay, Logical area and logical efficiency paths, Multi stage cells	2
2.2	Optimum delay and number of stages, library cell design. Programmable ASIC Logic Cells: MUX as Boolean function generators,	3
2.3	Schematic entry: Hierarchical design, The cell library, Names, Schematic Icons & Symbols, Nets, Schematic Entry for ASICs, Connections vectored instances & buses, Edit in place, attributes, Net list screener. ASIC Construction: Physical Design, CAD Tools System partitioning, Estimating ASIC size.	3
	Module-3- Low-level design entry	
3.1	Partitioning: Goals and objectives, Constructive Partitioning, Iterative Partitioning Improvement, KL, FM and Look Ahead algorithms.	4
3.2	Goals and objectives, Measurement of delay in Floor planning, Floor planning tools, Channel definition, I/O and Power planning and Clock planning.	4
	Module 4: Placement and CTS	
4.1	Placement: Goals and Objectives, Min-cut Placement algorithm, Iterative	
	Placement Improvement, Time driven placement methods, Physical Design Flow, Clock tree synthesis – CTS, Clock tree Optimization -CTO	5

4.2	2 Global Routing: Goals and objectives, Global Routing Methods, Global								
	routing between blocks, Back-annotation.								
	Module 5: Routing and Timing Closure								
5.1	Detailed Routing: Goals and objectives, Measurement of Channel								
	Density, Left-Edge Algorithm, Area-Routing Algorithms,	4							
	Multilevel routing, Special Routing, Circuit extraction and DRC.								
5.2	Timing Closure: Timing Analysis and Performance Constraints,								
	Timing-Driven Placement, Timing-Driven Routing, Physical	4							
	Synthesis, Performance-Driven Design Flow								
	Total No. of Theory	40							

Text books:

- Application -Specific Integrated Circuits Michael John Sebastian Smith Addison Wesley Professional 2005
- 2. VLSI Design: A Practical Guide for FPGA and ASIC Implementations Vikram Arkalgud Chandrasetty, Springer, ISBN: 978-1-4614-1119-2. 2011
- 3. An ASIC Low Power Primer Rakesh Chadha, Bhasker J Springer, ISBN: 978-14614-4270-7
- VLSI Physical Design: From Graph Partitioning to Timing Closure, Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu, Springer, ISBN 978-90-481-95909,2011

Course Code: BEC613B Course: Signal Processing and Machine Learning

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites	NIL
if any	
Learning	Students will be able to learn:
objectives	 Adaptive filter and wavelets for signal processing.
	Estimate and analyse signal characteristics.
	ML Algorithms used in signal processing applications.

Course Outcomes:

On the successful completion of the course, the student will be able to

CO's	Course Outcomes	Bloom's level
CO1	Understand the concepts of adaptive filter and Multi rate signals.	L2
CO2	Estimate spectral characteristics of signals.	L4
CO3	Analyse signals using Wavelets and multiresolution methods.	L4
CO4	Apply ML algorithm for signal processing applications.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			1							1	3	2	1
CO2	3	2			1							1	3	2	1
CO3	2	3			1							1	2	3	1
CO4	2	2			1							1	2	2	1

Mapping Strength: Strong-3 Medium-2 Low-1

		No. of
	Module – 1	Lecture
		Hours
1 1	Multi Rate Signal Processing - Review of sampling, Nyquist rate, aliasing,	2
1.1	reconstruction, anti-aliasing filters.	3
1.2	Decimation and interpolation, Sampling rate conversion and implementation.	3
1.3	Digital filter banks, Sampling rate conversion for multistage and bandpass signals.	2
	Module – 2	
2.1	Adaptive Filters - Adaptive filter applications – System identification channel	2
2.1	equalization.	3
2.2	Echo cancellation, Adaptive line enhancer.	2
2.3	Adaptive noise cancellation, LPC of speech signals, LMS and RLS algorithms.	3
	Module – 3	
	Power Spectral Estimation – Estimation of power spectra, non- parametric	
3.1	estimation - Barlet, Welch methods, characteristics of nonparametric power	3
	spectrum estimators.	
3.2	parametric power spectrum estimation – Auto correlation model parameters.	3
3.3	Yule-walker method, unconstrained least squares, AR model parameters.	2
	Module – 4	
4.1	Wavelets - Continuous time wavelets, CWT as operator	3
4.2	Inverse CWT, DWT and vector subspaces	2
4.3	MRA, Formal definition, scaling functions and subspaces Wavelet basis for MRA	3
	Module – 5	
5.1	Machine Learning for Signal Processing - Supervised learning, Classification	4
J.1	models to predict class models.	т
5.2	Regression models.	2
5.3	classifying iris species.	2
_ 	Total No. of Lecture Hours	40

Suggested Learning Resources:

- 1. https://www.deeplearningbook.org/
- 2. NPTEL Courses:

 $https://www.youtube.com/watch?v=HVGW85eGPQQ\&list=PLyqSp\\ QzTE6M \ h5UgZWpybzBVDGmHGhQQb.$

- 3. https://www.microsoft.com/en-us/research/people/cmbishop/prml-book/
- 4. https://www.sp4comm.org/

Textbooks

- 1. Digital Signal Processing, by Tarun Kumar Rawat, Oxford university press, New Delhi, 2015.
- 2. Fundamentals of Wavelets theory algorithms and applications, by Jaideva C Goswami and Andres K Chan, Wiley India 2006.
- 3. Pattern Recognition and Machine Learning, by Christopher M Bishop, Springer, 2011.

Course Code: BEC613C Course: Optical Fiber Communication

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites if any	Electromagnetic Theory
Learning objectives	 Understand Basic Blocks of Optical Fiber Communication System Analyze Different types of Errors and losses Analyze Different types of optical sources and Optical Detectors Understand and Design optical communication receivers Analyze optical fiber networks

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Identify the basic elements of optical fiber transmission link, fiber modes configurations and structures.	L1
CO2	Analyse the different kinds of losses, signal distortion in optical waveguides and their signal degradation factors and the various optical source materials, LED structures, Laser diodes. Principles of Photo diodes.	L3
CO3	Apply the fiber optical receiver's concepts in communication, basics of optical amplifiers, receiver operation and configuration.	L3
CO4	Analyse the fiber optical networks like SONET/SDH and Operational principles of WDM.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1									1	3	1	2
CO2	3	2	1									1	3	1	2
CO3	3	2	1									1	3	1	2
CO4	3	2	1									1	3	1	2

3 - Strong 2 - Medium 1 - Low

		No. of				
	Module – 1: Overview of optical fiber communication	Lecture				
		Hours				
1.1	Key elements of optical fiber systems, Advantages and Disadvantages of optical	1				
1.1	fiber Communication,	1				
1.2	Basic optical laws and definitions	2				
1.3	optical fiber modes and configuration	2				
1.4	Mode theory of circular waveguides: Overview, summery of key modal concepts	1				
1.5	single mode fibers, graded index fibers,	2				
1.6	fiber materials.	1				
	Module – 2: Signal Degradation in Optical Fibers	,				
2.1	Attenuation	1				
2.2	signal losses in optical waveguides: Absorption	1				
2.3	Scattering losses	1				
2.4	Bending losses	2				
2.5	Signal distortion in Fibers	2				
	Module – 3: Optical Sources and Detectors					
3.1	Introduction to semiconductor materials,	1				
3.2	LEDs and Types	1				

3.3	LASER diodes: LASER diodes	1				
3.4	LASER Modes and threshold conditions	1				
3.5	Single mode Lasers					
3.6	Principles of Photo diodes	3				
	Module – 4: Optical Receiver and Digital Transmission System					
4.1	Fundamental receiver operation: Digital signal transmission	2				
4.2	Error sources	1				
4.3	Receiver configurations	3				
4.4	4.4 Overview of analog links					
	Module – 5: Optical Amplifiers and Optical Networks					
5.1	Basic applications and types of optical amplifiers	2				
5.2	semiconductor optical amplifiers	2				
5.3	Erbium doped fiber amplifiers	2				
5.4	SONET / SDH	3				
5.5	Operational principles of WDM					
	Total No. of Lecture Hours	40				

Suggested Learning Resources:

Textbooks:

1. Gerd Keiser, "Optical Fiber Communication", MGH, 4th Ed., 2011.

Reference Books:

1. John M. Senior, "Optical Fiber Communications", Pearson Education. 3rd Impression, 2007.

Suggested Learning Resources:

- 1. https://www.youtube.com/playlist?list=PLbMVogVj5nJQxs7jmzJkGENCYYLWnP F
- 2. https://www.youtube.com/watch?v=ap00IUJm7k&list=PLFW6lRTa1g83Yaqm M9r2MAAiJVY93bOP7

Course Code: BEC613D Course: Industrial Internet of Things

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks
SEE Hours: 3 hrs

CIE:50% Marks
Max.Marks:100

Prerequisites	
if any	
Learning objectives	 Gain an understanding of the various industrial revolutions and the role of IoT and IIoT in modern industry. Develop the ability to implement IIoT systems using sensors, actuators, microcontrollers, embedded PCs, and relevant network technologies and protocols. Acquire skills in monitoring and controlling IIoT data through edge system programming, cloud computing, and data analytics while ensuring cybersecurity. Become familiar with cyber-physical systems and advanced technologies such as AI, big data, augmented reality, and virtual reality in the context of Industry 4.0.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Understand the role and impact of IoT and IIoT in Industry 4.0, including smart factories and reference architecture.	L2
CO2	Learn about IIoT implementation systems, encompassing sensors, actuators, microcontrollers, embedded PCs, network technologies, and protocols.	L2
CO3	Develop skills in IIoT data monitoring and control, including edge systems programming, cloud computing, data analytics, predictive maintenance, and cybersecurity.	L3
CO4	Explore cyber-physical systems, focusing on next-generation sensors, collaborative platforms, augmented reality, virtual reality, AI, big data, and advanced analytics.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	2		2	1	1					1			
CO2		3	2		2	1	1					1			
CO3		3	2		2	1	1					1			
CO4		3	2		2	1	1					1			

3 - Strong 2 - Medium 1 - Low

		1				
	Madala 1. Istoria de Cara de Indonésia I. T. (II. T.) C. d	No. of				
	Module – 1: Introduction to Industrial IoT (IIoT) Systems:	Lecture				
		Hours				
1.1	The Various Industrial Revolutions, Role of Internet of Things (IoT)	2				
1.2	& Industrial Internet of Things (IIoT) in Industry, Industry 4.0 revolutions,	2				
1.3	Support System for Industry 4.0, Smart Factories.	2				
1.4	IIoT Reference Architecture	2				
	Module – 2: Implementation systems for IIoT					
2.1	Sensors and Actuators for Industrial Processes, Sensor networks,	2				
2.1	Process automation and Data Acquisitions on IoT Platform,					
2.2	Microcontrollers and Embedded PC roles in IIoT	2				
2.3	Designing Industrial Internet Systems, Examining the Access Network	2				
2.3	Technology and Protocols, Examining the Middleware Transport Protocols	2				
2.4	IIoT WAN Technologies and Protocols	2				
	Module – 3: IIoT Data Monitoring & Control					
3.1	IoT Gate way, IoT Edge Systems and It's Programming,	2				
3.2	Cloud computing, Real Time Dashboard for Data Monitoring,	2				
3.3	Data Analytics and Predictive Maintenance with IIoT technology.	2				
3.4	Cybersecurity in Industry 4.0	2				
		1				

	Module – 4: Cyber Physical Systems					
4.1	Industry 4.0: Cyber Physical Systems and Next Generation Sensors,	2				
4.2	Collaborative Platform and Product Lifecycle Management,	2				
4.3	Augmented Reality and Virtual Reality,	2				
4.4	Artificial Intelligence, Big Data and Advanced Analysis	2				
	Module – 5: Applications					
5.1	Healthcare, Power Plants,	2				
5.2	Inventory Management & Quality Control,	2				
5.3	Plant Safety and Security (Including AR and VR safety applications),	2				
5.4	Facility Management.	2				
	Total No. of Lecture Hours					

Suggested Learning Resources:

Textbooks:

- 1. Industry 4.0: The Industrial Internet of Things Alasdair Gilchrist Publications: Apress.
- 2. Industrial Internet of Things: Cyber manufacturing Systems, Sabina Jeschke, Christian Brecher, Houbing Song, Danda B. Rawat Editors, Springer.
- 3. The Concept Industry 4.0 An Empirical Analysis of Technologies and Applications in Production Logistics Authors: Bartodziej, Christoph Jan Springer: Publication in the field of economic science.
- 4. Embedded System: Architecture, Programming and Design by Rajkamal, TMH3.
- 5. Dr. Ovidiu Vermesan, Dr. Peter Friess, "Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems", River Publishers

Online resources: https://www.youtube.com/watch?v=BRTxpGUmn_Q

Course Code: BEC613E Course: Object Oriented Programming

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites if any	C Programming or Some Programming Concepts
Learning objectives	Students will be able to learn
	1. To Provide the knowledge of fundamental principles of
	Object Oriented Programming
	2. To introduce the concepts of any language as a class object,
	inheritance, overloading, Data structures.

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Explain principles of Object-Oriented Programming using class and objects	L2
CO2	Implementation of Inheritance and Polymorphism	L3
CO3	Identify the importance of Abstract classes and methods and implementation of Exceptions	L3
CO4	Design Implementation of Data Structures such as Stack, Queues and Linked Lists	L3
CO5	Design and analyse Searches and Trees	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3
CO1	3		2	1	2				1	1	1	2		3	
CO2	3		3	1	2				1	1	1	2		3	
CO3	3		2	1	3				1	1	1	2		3	
CO4	3		2	1	3				1	1	1	2		3	
CO5	3		2	1	3				1	1	1	2		3	

Mapping Strength: Strong-3 Medium - 2 Low - 1

		No. of
	Module – 1 Introduction to OPS	Lecture
		Hours
1.1	Introduction to procedure oriented	1
1.2	Object Oriented programming,	1
1.3	Types of Variable, Namespaces,	2
1.4	Types of Methods – Instance methods, Class methods, Static methods	2
1.5	Passing Members of one class to Another Class	2
	Module – 2 Inheritance and Polymorphism	
2.1	Constructors in Inheritance, Static and Dynamic memory allocation - > Deep	1
	copy and shallow constructor, Destructors (Specific to C++)	
2.2	Overriding Super Class Constructors and Methods	1
2.3	Types of Inheritance – Single and Multiple Inheritance, Diamond Problem	2
2.4	Method Overloading and Overriding	2
	Module – 3 ADT and Exceptions	
3.1	Abstract Methods and Class	1
3.2	Interfaces, Comparison between Abstract and Interfaces	1
3.3	Exceptions: Why exceptions	2
3.4	Exception handling, Types of Exceptions	2
3.5	Except Block, Assert and User-Defined Exceptions	2
	Module – 4 Data Structures	
4.1	Stack, Implementation	2
4.2	Queues – Implementation	2
4.3	Linked List – Single and Double, Circular	2
4.4	Deques and its Implementation	2
	Module – 5 Searches and Trees	ı

5.1	Binary Search Tree – Traversal Order (In order, Post order and Preorder	1		
	implementation)			
5.2	Introduction to Graphs, DFS and BFS	2		
5.3	Linear – Binary Search Tree, AVL Tree	2		
5.4	Sorting Algorithm – Merge Sort	2		
5.5	Quick Sort and Comparison	1		
Total No. of Lecture Hours				

Text Books:

- 1. Herbert Schmidt, "The Complete Reference C++", Tata McGraw-Hill., 4th Edition.
- 2. A.M. Tenenbaum, Data Structures Using C, Pearson Education. 3. Y. Langsam, M. Augenstein and A.M. Tenenbaum, "Data Structures using C and C++", Prentice Hall India.

Suggested Learning Resources:

1.https://www.youtube.com/watch?v=1VKZhiuMeM&list=PLI4OVrCFuY56E57FdYzFN SWcEDS-ZKK26&index=34

Reference Books:

- 1. Stanley B. Lippmann, Josee Lajore, Sartaj Sahni, "Data Structures using C++", Tata McGraw Hill.
- 2. "C++Primer", Addison Wesley, 4th Edition, 2005.
- 3. Owen L. Astrachan, "Programming with C++ A Computer Science Tapestry", Tata McGraw-Hill., Special Indian Edition 2007.
- 4. E. Horowitz, and Sartaj Sahni, "Fundamentals of Data Structures", Galgoti Publications.

Course Code: BEC613F Course: Transmission Lines and Radiating Systems

Credits: 3 L:T:P:S – 3-0-0-0

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 3 Hrs Max. Marks: 100

Prerequisites	Engineering Electromagnetics
if any	
	To understand the EM wave characteristics along transmission lines
	To study and learn the EM wave characteristics on TL lines and to
Learning	learn impedance matching.
objectives	To study and learn guiding structures (waveguides) and their
	characteristics for high frequency applications.
	• To understand and learn about radiating systems and their parameters.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Understand the EM propagation on Transmission lines	L1
CO2	Analyze impedance matching problems in transmission lines.	L3
CO3	Understand the working principles of waveguides.	L1
CO4	Understand analyse radiation mechanism of radiating systems.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2									2	3		2
CO2	3	2	2									2	3		2
CO3	3	2	2									2	3		2
CO4	3	2	2									2	3		2

3 - Strong 2 - Medium 1 - Low

		No. of
	Module – 1: Transmission Lines: Finite and Infinite	Lecture
		Hours
1.1	Introduction	1
1.2	Transverse EM wave along parallel-plate Transmission lines—lossy parallel-plate transmission lines	2
1.3	General transmission line equations, Wave characteristics on an infinite TL, TL parameters	3
1.4	Wave characteristics on finite TL, TL as circuit element, Lines with resistive termination	2
	Module – 2: Transmission Lines: The Smith chart and Stub Matching	
2.1	The Smith ChartIntroduction, Derivations.	2
2.2	Smith chart calculations for lossy line	2
2.3	TL impedance matching, Impedance by quarter wave transformer	2
2.4	Single stub matching,	2
	Module – 3: Wave Guiding Structures	
3.1	Introduction	1
3.2	General wave behaviours along uniform guiding structures—TE waves and TM waves, properties	3
3.3	Parallel plate waveguideTE waves, TM waves, Properties, Attenuation	4
3.4	Rectangular waveguide—TE Waves, TM waves, Properties, Attenuation	3
	Module – 4: Antennas	
4.1	Introduction	1
4.2	Radiation MechanismSingle wire, Two-wires, Dipole	2
4.3	Fundamental Parameters of AntennasRadiation Pattern, Radiation Power Density, Radiation Intensity, Beam Width, Directivity, Efficiency, Gain, Radiation Efficiency	2
	Module – 5: Types of Antennas	

5.1	Types of antennaWire Antennas, Aperture Antennas, Microstrip Antennas, Array Antennas, Reflector Antennas, Lens Antenna, Dipole Antenna	2	
5.2	Antenna arrayIntroduction, Two-element array, N-Element Linear Array, Planar array, Circular array, Three-dimensional characteristics	2	
5.3	Antenna Design Procedure and Simulation	4	
Total No. of Lecture Hours			

Suggested Learning Resources:

Text Books:

- 1. David K. Cheng, "Field and Wave Electromagnetics", Pearson Education, Second Edition, 2002.
- 2. Constantine A. Balanis, "Antenna Theory: Analysis and Design",4th Edition, 2016.

Reference Books:

- 1. Clayton R. Paul, Keith W. Whites, Syed A. Nasar, "Introduction to Electromagnetic Fields", Tata McGraw-Hill Education Private Limited, Third Edition (Fifth Reprint), 2009.
- 2. David M Pozar, "Microwave Engineering", John Wiley, 3rd Edition, 2005.

Course Code: BEC654A Course: Internet of Things & its Applications

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Pre requisites	NIL
if any	
Learning	Students will be able to learn:
Objectives	• Principles and components of the IoT ecosystem, including sensors,
	actuators, connectivity, data collection, and analysis.
	• Identify and analyse various contexts where IoT can be implemented,
	such as smart homes, healthcare systems, industrial automation, or
	environmental monitoring.
	Apply suitable machine learning techniques/algorithms for data collected
	through the Internet of things.

Course Outcomes:

On the successful completion of the course, the student will be able to

CO's	Course Outcomes	Bloom's level
CO1	Understand building blocks of the Internet of Things, challenges.	L2
CO2	Identify various protocols for communication with different sensors and actuators.	L3
CO3	Use and validate data analytics and security for IoT using tools.	L3
CO4	Apply data science and machine learning algorithm in IoT.	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									1
CO2	3	2	3									1
CO3	3	2	3		3		2					1
CO4	3	3	2		3		2					1

Mapping Strength: Strong-3 Medium - 2 Low - 1

		No. of			
	Module - 1	Lecture			
		Hours			
1 1	What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact,	2			
1.1	Convergence of IT and IoT, IoT Challenges,	2			
1.2	IoT Network Architecture and Design, Drivers Behind New Network	2			
1.2	Architectures, Comparing IoT Architectures.	2			
1.3	A Simplified IoT Architecture, The Core IoT Functional Stack.	3			
	Module-2				
2.1	Smart Objects: The "Things" in IoT, Smart Objects, Sensor Netwo	2			
2.1	Connecting Smart Objects, Communications Criteria	3			
	The need for Optimization, Optimizing IP for IoT. Application				
2.2	Protocol for IoT: The Transport Layer, IoT Application				
	Transport Methods, SCADA				
2.3	IoT Application Layer Protocols, CoAP, Message Queuing	3			
2.3	Telemetry Transport (MQTT)	3			
	Module-3 Data and Analytics				
	Data and Analytics for IoT, An Introduction to Data Analytics for IoT:				
3.1	Structured Versus Unstructured Data, Data in Motion	2			
	Versus Data at Rest,				
3.2	IoT Data Analytics Overview, IoT Data Analytics Challenges.	2			
	Data Analytics for IoT: Introduction, Apache Hadoop, Using Hadoop Map				
3.3	Reduce for Batch Data Analysis, Apache Oozie, Apache Spark, Apache	4			
	Storm, Using Apache Storm for Real- time Data Analysis.				
Module 4: Floor planning and placement					
	Industrial Internet of Things, Industry 4.0, IoT Architecture, Basic				
4.1	Technologies, Applications and Challenges, Security and Safety, Generic	4			
	Application Security				

	Total No. of Theory Hours	40
5.2	Regression and classification algorithms	4
5.1	Machine Learning Overview, Supervised Learning, Unsupervised Learning, Neural Networks.	4
	Module – 5	
	and Dependability	
4.2	IoT Applications, Run-Time Monitoring, The ARMET Approach, Privacy	4
	Application Process Security and Safety, Reliable-and-Secure- by-Design	

Textbooks

- 1. "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", Daniel Minoli, Wiley, 2013.
- 2. "Internet of Things: A Hands on Approach" Arshdeep Bahga, Vijay Madisetti", Universities Press, 2015.
- 3. "Internet-of-Things (IoT) Systems Architectures, Algorithms, Methodologies" Dimitrios Serpanos, Marilyn Wolf, Springer International Publishing 2018.
- 4. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.

Reference Books:

- 1. "The Internet of Things", Michael Miller, First edition, Pearson, 2015.
- 2. "Designing Connected Products", Claire Rowland, Elizabeth Goodman et.al, First edition, O'Reilly, 2015.
- 3. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014. (ISBN: 978-8173719547)

Course Code: BEC654B Course: Vehicular Electronics

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites if any Basic Circuit theory and mechanical dynamics			
Learning	Students will be able to learn:		
objectives	Electronics Automotive systems.		
	Electronics Hybrid vehicles.		

Course Outcomes:

On the successful completion of the course, the student will be able to

CO's	Course Outcomes	Bloom's level
CO1	Understand constraints and opportunities of sensors and actuators used in the modern vehicle design.	L2
CO2	Use basic measurement tools to determine the real-time performance of vehicles and Automotive Instrumentation, Safety factors and diagnostics of Automobile systems.	L2
СОЗ	Analyse the implementation of the interconnected wireless embedded sensor networks and the Electronic Control Systems	L2

Mapping with Pos and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2						1			1
CO2	3	2	3						1			1
CO3	3	2	3						1			1

Mapping Strength: Strong-3 Medium - 2 Low - 1

	Module – 1-Introduction	No. of Lecture Hours			
1.1	Automotive fundamentals overview: four stroke cycle, engine control	2			
1.2	Ignition system, spark plug, sparks pulse generation, ignition timing	3			
1.3	Drive train, transmission, brakes, steering system, Power Brakes, AntiLock Brake				
	System (ABS), Electronic Steering Control, Power Steering, Traction Control,				
	Electronically controlled suspension, starting system.	3			
	Module-2- Sensors				
2.1	Oxygen (O2/EGO) Sensors, Throttle Position Sensor (TPS), Engin Crankshaft	3			
	Angular Position (CKP) Sensor, magnetic reluctance, position sen speed sensor,				
	ignition timing sensor, hall effect position sensor				
2.2	Shielded field sensor, optical crankshaft position, sensor, Manifold	3			
	Absolute Pressure (MAP) Sensor - strain gauge and capacitor capsule,				
	Engine Coolant Temperature (ECT) sensor, Intake Air Temperature (IAT) sensor,				
	knock sensor, airflow rate sensor, Operating Principles of Fuel Cells, Electrode				
	Potential and Current-Voltage Curve.				
2.3	Actuators: Automotive Engine Control Actuators, Fuel Injection,	2			
	Exhaust Gas Recirculation Actuator, Variable Valve Timing, Electric Motor				
	Actuators, fuel metering actuator, Ignition actuator, catalytic converter.				
Module-3-Electronic Engine Control and Automotive Networking					
3.1	Electronic Engine Control: Engine parameters, variables, engine performance	4			
	terms, electronic fuel control system, electronic ignition control, idle speed				
	control, air/fuel systems fuel handling, air intake system, Protection, Remote				
	Keyless Entry,				

3.2	Automotive communication/networking: Automotive networking, cross system	
	function, Requirements for bus systems, Classification of bus systems,	
	Applications in the vehicle, Coupling of networks, Examples of networked	4
	vehicles. Bus systems: CAN, LIN.	
	Module 4: Diagnostics and Battery systems	
4.1	On and Off board diagnostics: Electronic Control System Diagnostics,	
	Service Bay Diagnostic Tool, Onboard Diagnostics, Model-Based Sensor	4
	Failure Detection, Expert Systems in Automotive Diagnosis, Occupant Protection	
	Systems.	
4.2	Battery Systems: Energy Storages: Batteries in Electric and Hybrid	
	Vehicles, Battery Basics, Battery Parameters, Electrochemical Cell	4
	Fundamentals, Battery Modelling, Electrochemical Batteries, Ultra capacitors,	
	Battery Pack Management.	
	Module 5: Electric and Hybrid Vehicles	
5.1	Electric Vehicles: Configurations of Electric Vehicles, Performance of Electric	
	Vehicles, Tractive Effort in Normal Driving.	3
5.2	Hybrid Electric Vehicles: Concept of Hybrid Electric Drive Trains, Architectures	3
	of Hybrid Electric Drive Trains.	
5.3	Fuel Cell Vehicles: Fuel and Oxidant Consumption, Fuel Cell System	
	Characteristics, Fuel Cell Technologies, Fuel Supply, Non Hydrogen Fuel Cells.	2
	Total No. of Lecture Hours	40

Text Books:

- 1. William B. Ribbens, "Understanding Automotive Electronics," 6th Edition, SAMS / Elsevier Publisher, 2010.
- 2. Robert Bosch GMBH, "Automotive Electrics Automotive Electronics Systems and Components," 5th Edition, John Wiley& Sons Ltd., 2007.
- 3. Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles- Fundamentals, Theory, and Design," CRC Press, 2004.
- 4. Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals," 2nd edition, CRC press.

Course Code: BEC654C Course: Multicore Systems and Programming

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites if any	C Programming, Computer Architecture
Learning objectives	Students will be able to learn:
	Limitation of single core systems and the need for multicore
	To port multithreading to multicore and synchronize the operations

Course Outcomes:

On the successful completion of the course, the student will be able to

CO's	Course Outcomes	Bloom's level
CO1	Identify performance related parameters in the field of Computer Architecture and need for multicore architecture	L2
CO2	Apply the concept of multithreading and OPENMP to parallelise a process.	L3
CO3	Analyse the features of different multi-core architectures and how they apply parallelism.	L4

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1				1					1
CO2	2	2	1		3		1					1
CO3	3	2	1				1					1

Mapping Strength: Strong-3 Medium - 2 Low - 1

		No. of	
	Module – 1: Module 1: Introduction To Multi-Core Architecture:	Lecture	
		Hours	
	Motivation for Concurrency In Software, Parallel Computing Platforms,	2	
1.1	Parallel Computing in Microprocessors		
	Differentiating Multi-Core Architectures from Hyper Threading Technology,		
1.2	Multi-Threading on Single-Core Versus Multi-Core Platforms, Understanding	2	
	Performance, Amdahl's Law, Growing Returns: Gustafson's Law.		
	Defining Threads, System View of Threads, Threading Above The Operating		
1.3	System, Threads Inside The OS, Threads Inside The Hardware, What Happens	2	
	When A Thread Is Created		
1.4	Application Programming Models and Threading, Virtual Environment:	2	
1.4	1.4 VMs And Platforms, Runtime Virtualization		
Module – 2: Concepts of Parallel Programming			
2.1	Designing for Threads, Task Decomposition, Data Decomposition,	3	
2.1	Decomposition, Implications of Different Decompositions		
2.2	Challenges, Parallel Programming Patterns, Motivating Problem: An Error	3	
2.2	Diffusion Algorithm		
2.3	Alternate Approach: Parallel Error Diffusion and other alternatives	2	
	Module – 3: Threading and Parallel Programming Constructs		
	Synchronization, Critical Sections, Deadlock, Synchronization Primitives,	3	
3.1	Semaphores, Locks, Messages, Flow Control- Based Concepts, Fence, Barrier,		
	Implementation-Dependent Threading Features.		
3.2	Threading APIS For Microsoft Windows, Win32/MFC Thread APIS,	2	
3.2	Threading APIS For Microsoft. NET Framework		
3.3	Creating Threads, Managing Threads, Thread Pools, Thread Synchronization,	2	
3.3	POSIX Threads		
3.4	Signalling, Compilation and Linking	1	
	Module – 4: OpenMP - A Portable Solution For Threading		

	Challenges in Threading A Loop, Loop-Carried Dependence, Data-Race			
4.1	Conditions, Managing Shared and Private Data, Loop Scheduling and	2		
	Portioning			
4.2	Effective Use of Reductions, Minimizing Threading Overhead, Work-Sharing	2		
4.2	Sections, Performance-Oriented Programming			
	Using Barrier and No Wait, Interleaving Single-Thread And Multi-Thread			
4.3	Execution, Data Copy-In and Copy-Out, Protecting Updates of Shared	2		
	Variables			
4.4	Intel Task Queuing Extension to OpenMP, OpenMP Library Functions,	2		
4.4	OpenMP Compilation, Debugging, Performance			
Module -5				
	Too Many Threads, Data Races, Deadlocks, And Live Locks, Heavily			
5.1	Contended Locks, Priority Inversion, Solutions For Heavily Contended Locks,	2		
	Non-Blocking Algorithms, ABA Problem			
	Cache Line Ping-Ponging, Memory Reclamation Problem, Recommendations,			
5.2	Thread-Safe Functions and Libraries, Memory Issues, Bandwidth, Working in	3		
	The Cache, Memory Contention, Cache-Related Issues,			
5.3	False Sharing, Memory Consistency	1		
5.4	Current IA-32 Architecture, Itanium Architecture, High-Level	2		
3.4	Languages, Avoiding Pipeline Stalls On IA-32			
Total No. of Lecture Hours				

Suggested Learning Resources:

https://www.youtube.com/playlist?list=PLwdnzlV3ogoU0TR333JyxG8T3H Dg52 S0h (John Jose)

Text Books:

- Multicore Programming, Increased Performance through Software Multithreading, by Shameem Akhter and Jason Roberts, Intel Press, 2006
- 2. Computer Architecture A Quantitative Approach, by Hennessey and Patterson, 4thEdition, Elsevier, 2012
- 3. Advanced Computer Architecture Parallelism, Scalability, Programmability by Kai Hwang, Naresh Jotwani, Tata McGraw Hill, 2nd Edition, 2011.

Course Code: BEC654D Course: Introduction to VLSI

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites if any

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Summarize on Digital system design	L1
CO2	Understand the construction, Design, Analyse the Digital circuit through testing and verification in different phases of the design cycle	L2
CO3	Verify the design of combinational and sequential circuits using Verilog HDL	L2

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1								2	2		2
CO2	3	2	1	1								2	2		2
CO3	3	2	1	1								2	2		2
CO4	3	2	1	1								2	2		2

 $3 - Strong \quad 2 - Medium \quad 1 - Low$

	Module – 1: Review of Digital Circuits	No. of Lecture Hours
1.1	Digital system design options and trade-offs, Number System, Boolean Algebra,	2
1.2	Demorgan's Theorem, Logic Gates, SOP and POS forms, MVP techniques,	2
1.3	Combinational circuits: Adders, Mux & Demux,	2
1.4	Sequential design: Latches, Flip-Flops, Counters (Synchronous and Asynchronous), state machine design: FSM,	2
	Module – 2 : Introduction	
2.1	VLSI design Flow, Analog and Digital design flow, ASIC and FPGA design Flow and Y chart	2
2.2	Fabrication: Wafer Processing, oxidation, Epitaxial, deposition, Ion- implantation and Diffusion, Silicon gate process, n-well & p- well process, Twin-tube process.	4
2.3	Design of digital circuits using Switch & Gate logic and CMOS logic	2
	Module – 3: Introduction to Verilog	
3.1	Introduction to Verilog and Dataflow descriptions: Program structure, Logic systems	2
3.2	Nets, Variables and Constants, Vectors and Operators, Arrays, Logical operators, and expressions	2
3.3	Dataflow Design elements: Continuous assignments, delay specification	2
3.4	expressions, rise, fall, and turn-off delays, Structural description	2
	Module – 4: Behavioural Description	
4.1	Behavioural Design elements: Structured procedures, initial and always	2
4.2	blocking and non-blocking statements,	1
4.3	Delay control, generate statement, event control	1
4.4	Conditional statements, multiway branching, loops, sequential and parallel blocks, Simulation, Test benches	2

4.5	ASM charts, FSM code development,	2			
	Module – 5: VLSI design Verification				
5.1	Introduction to Verification and Verification Plan, Verification Tools,	2			
3.1	Stimulus and Response				
	Introduction to UVM: UVM Classes, UVM Factory, Sequence Item, Sequencer,				
5.2	Virtual Sequences, Transaction Level Modelling, UVM Reporting Methods,	3			
	Development of Reusable Verification Environment				
	Introduction to formal methods for design verification, Introduction and Basic				
5.3	Operations on Temporal Logic, Syntax and Semantics of CLT, Equivalences	3			
3.3	checking, Introduction to Model Checking, Introduction to Binary Decision	3			
	Diagram.				
	Total No. of Lecture Hours				

Text Books:

- 1. Neil H E Weste and Kamran Eshraghian, "Principles of CMOS VLSI design, A system perspective," 2nd edition, Addison Wesley. (Module 2)
- 2. UVM reference Manual (Module 5)
- 3. M. Morris Mano, Michael D. Ciletti, "Digital Design with an Introduction to the Verilog HDL", 5th Edition. (Module-1)
- Samir Palnitkar, "Verilog HDL", Published by Pearson Education 2003.(Module 3 &
 4)

Suggested Learning Resources:

https://www.youtube.com/watch?v=H34hLpUU9PA

Course Code: BEC654E

Course: Introduction to Radar Systems for Autonomous Driving

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites	
if any	
	Learn principles of radar systems.
	• To use radar techniques for target detection and tracking in
	autonomous driving scenario.
Learning	To understand real-world case studies and applications of radar
objectives	and Lidar systems in autonomous cars, including adaptive cruise
	control (ACC), collision avoidance, pedestrian detection, and
	intersection management.
	• To learn principles of LiDAR systems.

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Explain working principle of radar systems	L2
CO2	Understand radar techniques for target detection and tracking in autonomous driving scenario.	L2
CO3	Understand real-world case studies and applications of radar systems in autonomous cars, including adaptive cruise control (ACC), collision avoidance, pedestrian detection and intersection management.	L2
CO4	Explain working principles of LiDAR systems	L2

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2					3		2		3	2	
CO2	3	3	2	2					3		2		3	2	
CO3	3	3	2	2					3		2		3	2	
CO4	3	3	2	2					3		2		3	2	

3 - Strong 2 - Medium 1 - Low

Course Structure

		No. of		
	Module − 1: Fundamentals of Radar Systems	Lecture		
		Hours		
1.1	Introduction, Essential Functions of Radar, Radar System Fundamentals,	2		
1.2	1.2 Antennas for Radar Measurements, Challenges for Automotive Radar Developers (Basic level)			
1.3 Mathematical model of Radar Range Equation (Basic level)				
1.4 Radar Equation for Automotive Applications. (Basic level)				
Module – 2: FMCW Radars				
2.1	Fundamentals, Block diagram of FMCW radars, Range and Velocity measurement using FMCW radars, (Basic level)	4		
Range resolution, velocity resolution, Application of FMCW radars for Autonomous driving, Case Study: TI FMCW Radar. (Basic level)				
	Module – 3: LiDAR for Autonomous Driving			
3.1	Introduction to LiDAR, Types of LiDAR, Components and architecture of a typical LiDAR system, Role of LiDAR in autonomous vehicles (Basic level)	4		
Object detection and classification using LiDAR, Range measurement using LiDAR, Current limitations and challenges in LiDAR technology				
	Module – 4: Modern Radar Sensors			

	Total No. of Lecture Hours	40			
5.2	Future Roadmaps Automotive Applications, Future Contributions of Automotive Applications (Basics)	4			
5.1	Introduction, Short-Range Radar (SRR, Long-Range Radar (LRR), Trends in Automotive Applications (Basics)	4			
	Module – 5: Automotive Radar Applications				
4.2	Vehicle Network and Compute Considerations, Design Considerations for Automotive Radar. (Fundamentals)	4			
4.1	Modern Radar Sensors in Advanced Automotive Architectures: Motivation for Advanced Systems, The Evolving Automotive Radar Landscape, Vehicle Network and Compute Considerations, Design Considerations for Automotive Radar. (Fundamentals level)	4			

Suggested Learning Resources:

Text Books:

- 1. Jonah Gamba "Radar Signal Processing for Autonomous Driving", Springer, 2020
- 2. Matt Markel" Radar for Fully Autonomous Driving", Artech House, 2022.

Reference Books:

- 1. Merrill I. Skolnik Handbook of Radar Systems, McGraw Hill; 3rd edition, 2008.
- 2. Pinliang Dong LiDAR Remote Sensing and Applications, CRC Press, 2017.

E-Resources:

- 1. https://www.coursera.org/specializations/self-driving-cars.
- 2. https://www.edx.org/course/self-driving-cars-with-duckietown

Course Code: BEC605 Course: Wireless Communication

Credits: 3 L: T: P: 3:0:0

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 3 hrs Max.Marks:100

Prerequisites if any	Linear Algebra, Signal Processing, Communication					
	Students will be able to learn:					
	To understand the issues involved in mobile communication system					
	design and analysis in terms of fading.					
Learning objectives	To understand the concept of frequency reuse capacity and Spectrum					
	Sharing.					
	To know the fundamentals of MIMO and OFDM wireless channels.					
	To Know the basics of LTE Networks					

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Review and classify the different generations of wireless	L1
COI	cellular communication systems and fading concepts.	
CO2	Apply and study the cellular communication concepts to	L3
CO2	identify the cellular capacity.	
CO3	Apply and examine the multiple antennas systems using	L3
003	symbolic representations to further enhance wireless capacity.	
CO4	Research on Multicarrier modulation (OFDM) and its	L4
CO4	implementation for a better utilization of wireless system.	
CO5	Understand the basics of LTE Network Architecture.	L2

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	-	2				1		2	2	2	2	3
CO2	3	2	3	-	2				1		2	2	2	2	3
CO3	3	2	2	1	3				1		2	2	2	2	3
CO4	3	3	3	1	2				1		2	2	2	2	3
CO5	3	2	3	-	3				1		2	2	2	2	3

 $3 - Strong \quad 2 - Medium \quad 1 - Low$

Course Structure

	Module – 1	No. of Lecture Hours
1.1	Different generations of wireless cellular networks: 1G cellular systems, 2G cellular systems, 2.5G cellular systems, 3G cellular systems, 4G cellular systems and beyond, wireless standard organizations,	2
1.2	Small Scale Fading: Small Scale Multipath Propagation, Impulse Response Model of a Multipath Channel,	2
1.3	Small Scale Multipath Measurements, Parameters of Mobile Multipath Channels,	3
1.4	Types of Small-Scale Fading, Rayleigh, and Rician Distributions.	2
	Module – 2	
2.1	Mobile Communication Concepts: Introduction, Concept of cellular communications, Cell Fundamentals, Frequency Reuse concepts, Concept of cell cluster,	2
2.2	Cellular layout for frequency reuse, Geometry of hexagonal cell, Frequency Reuse Ratio, Co-channel, and Adjacent Channel Interference,	2
2.3	Various mechanisms for capacity increase, Cell Splitting, Sectoring, Microcell Zone Concept, Channel Assignment Strategies, Handoff Strategies.	3
	Module – 3	1

3.1	Multiple Antennas: Narrowband MIMO Model, Parallel Decomposition of the	4					
	MIMO Channel,						
3.2	MIMO Channel Capacity,	2					
3.3	MIMO Diversity Gain: Beamforming, Diversity-Multiplexing Trade-offs,	2					
	Frequency-Selective MIMO Channels, Smart Antennas	2					
	Module – 4						
4.1	Multicarrier Modulation: Data Transmission using Multiple Carriers,	3					
	Multicarrier Modulation with Overlapping Subchannels,						
4.2	Mitigation of Subcarrier Fading, Discrete Implementation of Multicarrier	3					
	Modulation,						
4.3	Challenges in Multicarrier Systems	2					
	Module – 5						
5.1	Overview and Channel Structure of LTE: Introduction to LTE, Channel Structure	3					
	of LTE,						
5.2	Downlink OFDMA Radio Resource,	3					
5.3	Uplink SC-FDMA Radio Resource.	2					
	Total No. of Lecture Hours						

Suggested Learning Resources:

NPTEL :: Electronics & Communication Engineering - Wireless Communication

SWAYAM: Introduction to Wireless and Cellular Communications - Course (nptel.ac.in)
Virtual Labs: Fading Channels and Mobile Communications (iitkgp.ac.in)

Textbooks:

- Andrea Goldsmith, "Wireless Communications," 1st edition, Cambridge University Press, 2005
- 2. Sanjay Sharma, "Wireless Cellular Communications," 2nd Edition, Katson, 2007.
- 3. Rappaport Theodore, "Wireless Communications: Principles and Practice," 2nd Edition, Pearson Education India, 2009.

4. Mullet, "Introduction to Wireless Telecommunications Systems and Networks," 6thEdition, Cengage Learning, 2010.

Reference books:

- William C.Y. Lee, "Wireless & cellular Telecommunication systems," 3rd edition, McGraw Hill, 2006
- 2. Arunabha Ghosh, Jan Zhang, Jefferey Andrews, Riaz Mohammed, "Fundamentals of LTE," 1st edition, Pearson, 2010

Course Code: BEC606 Course: Principles of Digital VLSI

Credits: 3 L:T:P – 3:0:0

CIE: 50% Marks SEE: 50% Marks

SEE Hours: 3 Hrs Max. Marks: 100

Prerequisites if	Digital Electronics and Circuit Theory
any	
	Students will be able to
Lagraina	Understand IC fabrication process
Learning	• Understand various design aspects of CMOS inverter, CMOS logic families
objectives	Design combinational & sequential circuits.
	Understand the basic concepts of design verification & testing

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Understand the fabrication process, layout design rules, technology scaling and design aspects of a CMOS Inverter.	L2
CO2	Sketch the stick diagrams and Layout diagram.	L3
CO3	Design combinational, sequential logic circuits and realize logic functions using various logic families.	L3
CO4	Analyze verification and testing aspects of Digital Circuits	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3											2	3		
CO2	3	3										2	3		
CO3	3	3	3			3	3					2	3		
CO4	3											2	3		

 $3 - Strong \quad 2 - Medium \quad 1 - Low$

	Module – 1: Introduction & CMOS Inverter	No. of Lecture Hours			
1.1	Digital VLSI Design Flow, Y Chart	1			
1.2	Fabrication: Wafer Processing, Oxidation, Epitaxial deposition, Ion-implantation and Diffusion, Silicon gate process, n-well & p-well process, Twin-tube process, CMOS Process Enhancements.	1			
1.3	Static Load Inverter DC Characteristics, CMOS Inverter DC Characteristics, Switching Threshold (V_M), Effect of β_n/β_p variation on Characteristics, Noise Margin (NM _H , NM _L)	4			
1.4	Inverter Capacitances, Switching Characteristics (t _r , t _f , t _p), Sizing a chain of inverters, Power & Energy Consumption	2			
Module – 2: Logic Families, Layout & Scaling					
2.1	CMOS Logic, Pseudo NMOS logic, Bi-CMOS Logic, Dynamic CMOS Logic, Clocked CMOS Logic, CMOS Domino Logic, NP Domino Logic, CVSL, Pass Transistor Logic, Transmission Gate Logic, Elmore delay model, Logical effort, Transistor sizing for optimizing area, power & delay.	4			
2.2	Stick Diagrams, λ based layout design rules, Layouts, Resistance, Capacitance & Inductance estimation, Latch up problem, Standard Cell Design.	4			
2.3	Scaling, Scaling Models & factors, Scaling factors for device parameters, Limitations of scaling	2			
	Module – 3: Combinational & Sequential Logic Circuits	I			
3.1	Adders (CSA, CLA, Tree Adder)	2			
3.2	Multipliers (Baugh-Wooley, Booth & Wallace Tree)	2			
3.3	Latches & Registers (Static & Dynamic)	2			
3.4	Memory (ROM, SRAM, DRAM), Memory Peripheral Circuitry (Row/Column Decoders & Read/Write Circuitry)	2			
	Module – 4: Design Verification				

	Total No. of Lecture Hours	40
5.4	Fault Diagnosis for Combinational Circuits	1
5.3	Design for testability: Ad-Hoc testing, scan based test techniques, BIST, IDDQ Testing	3
5.2	Test generation for combinational logic circuits (Only Basic), Test generation for sequential circuits (Only Basic)	2
5.1	Introduction to Testing - Need for testing, Faults in digital circuits, Modelling of faults and its logics, Fault detection, Logic Simulation, ATPG	2
	Module – 5 : Testing & Testability	
4.3	Introduction to formal methods for design verification, Introduction and Basic Operations on Temporal Logic, Syntax and Semantics of CLT, Equivalences checking, Introduction to Model Checking, Introduction to Binary Decision Diagram.	2
4.2	Introduction to UVM · UVM Classes · UVM Factory · Sequence Item, Sequencer, Virtual Sequences · Transaction Level Modelling · UVM Reporting Methods · Development of Reusable Verification Environment	2
4.1	Introduction to Verification and Verification Plan, Verification Tools, Stimulus and Response	2

Suggested Learning Resources:

Textbooks:

- 1. Neil H E Weste and Kamran Eshraghian, "Principles of CMOS VLSI design, A system perspective", 4th edition, Addison Wesley.
- 2. Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, "Digital Integrated Circuits: A Design Perspective", 2nd Edition, PHI Learning
- 3. Douglas A Pucknell and Kamran Eshraghian, "Basic VLSI design", 3rd Edition, PHI Learning.

- 4. M. Abramovici, M.A. Breuer and A.D. Friedman, "Digital Systems and Testable Design", Jaico Publishing House.
- 5. 5.UVM reference Manual

Reference Books:

- 1. Eugene D. Fabricius, "Introduction to VLSI design", McGraw-Hill, 1990
- 2. S.M. Kang and Y. Leblebici, "CMOS Digital Integrated Circuits", McGraw-Hill.
- 3. M.L. Bushnell and V.D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers.

Course Code: BECL607 Course: VLSI Lab

Credits: 3 L: T: P: 0:0:2

SEE: 50% Marks

CIE:50% Marks

SEE Hours: 2 hrs Max. Marks: 50

Prerequisites if any	Digital Electronics & Circuit Theory
	Students will be able to
	Understand the dc and transient analysis of digital gates
Learning	Understand the dc, transient and ac analysis of analog circuits
objectives	Understand the layout design rule using Design Rule Check &
	Layout versus Schematic and the parasitic associated with layout
	Implement the layout of digital & analog circuits

Course Outcomes:

On successful completion of the course, the student will be able to:

COs	Course Outcomes	Bloom's level
CO1	Design & simulate various digital & analog circuits	L3
CO2	Implement the layout of various digital & analog circuits	L3

Mapping with POs and PSOs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3		3		3		3	2	3	3	2
CO2	3	3	3	3	3		3		3		3	2	3	3	2

 $3 - Strong \quad 2 - Medium \quad 1 - Low$

List of Experiments

Sl. No	Part 1 : Schematic Design & Simulation	No. of Practical Sessions
1.1	Analyze the DC characteristics, Switching Characteristics, Noise Margin and Power Consumption of CMOS Inverter by varying the transistor sizing.	2
1.2	Analyze the DC characteristics, Switching Characteristics and Power Consumption of NAND gate by varying the transistor sizing	1
1.3	Analyze the logic design using Pass transistor logic with & without logic restoration	1
1.4	Design an inverter chain with optimum number of stages and sizing of transistors in order to reduce the propagation delay while driving a larger capacitive load.	1
1.5	Analyze a CS Amplifier (DC, Transient & AC analysis).	1
1.6	Analyze a two stage Operational Amplifier (DC, Transient & AC analysis)	1
	Part 2 : Layout Design & Post Layout Simulation	
2.1	Implement the layout of the above circuits. Verify DRC, LVS and perform RC-parasitic extraction. Perform post layout simulation and compare it with schematic simulation.	5
2.2	Design Project	2
	Total No. of Practical Sessions	14

Course Code: BEC657L Course: Python for Machine Learning

Credits: 1 L: T: P: 1:0:0

SEE: CIE:50 Marks

SEE Hours: Max. Marks: 50

Prerequisites if any	Python Programming Basics and Mathematics for Machine Learning
Learning Objectives	 Understand Core Python Concepts Handle and Manipulate Data Visualize Data

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Apply Python programming and data handling skills to prepare and pre- process datasets for machine learning tasks.	L3
CO2	Build and evaluate machine learning models using Scikit-learn to solve classification, regression, and clustering problems.	L3
СОЗ	Interpret machine learning results and communicate insights using data visualization and performance metrics.	L3

Mapping with POs and PSOs:

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			3				1	1		1	3	3	
CO2	3	3	3	3	3				1	1		1	3	3	
CO3	3	3	3	3	3				1	1		1	3	3	

Mapping Strength: Strong-3 Medium - 2 Low - 1

		No. of
	Module – 1: Data analysis and Exploration	Lecture
		Hours
1.1	Introduction to Data Analysis & visualization	1
1.2	Numpy arrays and mathematical operations	1
1.3	Panda utilization for analysis of data	4
1.4	Matplotlib visualization, Scipy operations for scientific analysis	2
	Module – 2: Introduction to Machine learning	
2.1	Introduction to machine learning	2
2.2	Supervised machine learning, Unsupervised machine learning	4
2.3	Reinforcement machine learning, Classification and Regression	4
	Module – 3: Applications of machine learning	
3.1	K-Nearest neighbor	2
3.2	K-Means clustering	2
3.3	Logistic Regression, Support Vector Machines (SVM)	2
3.4	Decision Tree algorithms	2
	Total No. of Lecture Hours	26

Text book:

- 1. Python Programming- A modular Approach (with Graphics, database, Mobile and Web Applications by Sheetal Taneja and Naveen Kumar, Pearson.
- 2. Machine Learning an algorithmic Perspective by Stephen Marshland

Reference Books:

- 1. Beginning Programming with Python Dummies by John Paul Meuller.
- 2. Introduction to Machine Learning with python by Andreas C Muller, Sarah Guido.

Course Code: BEC657L Course: E-waste management

Credits: 1 L: T: P: 1:0:0

SEE: CIE:50 Marks

SEE Hours: Max. Marks: 50

	Basic Environmental Science Awareness, Knowledge of							
Prerequisites if any	Electronic Devices and Materials and Awareness of E-Waste							
	Issues.							
	Understand the Scope and Impact of E-Waste							
Learning	• Analyze the Composition and Lifecycle of Electronic							
Objectives	Products							
	Learn E-Waste Management Strategies and Technologies							

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Identify and analyze various types of electronic waste and assess their environmental and health impacts.	L2
CO2	Apply appropriate methods and technologies for the collection, recycling, and safe disposal of e-waste.	L2
СОЗ	Interpret and evaluate national and international e-waste policies, and propose sustainable management strategies based on regulatory frameworks.	L2

Mapping with POs and PSOs:

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			3				1	1		1	3	3	
CO2	3	3	3	3	3				1	1		1	3	3	
CO3	3	3	3	3	3				1	1		1	3	3	

Mapping Strength: Strong-3 Medium - 2 Low - 1

		No. of					
	Module – 1	Lecture					
		Hours					
1.1	Introduction, Electronic waste Environment and society	1					
1.2	Current and new electronic waste recycling techniques	1					
1.3	Materials used in manufacturing electrical and electronic product	4					
1.4	Dumping, burning, and landfill, recycling and recovery	2					
	Module – 2						
2.1	Integrated approach to e-waste recycling management	2					
2.2	key learning from around the world current international flows of electronic wastes	4					
2.3	future perspectives on electronic scrap	4					
Module – 3							
3.1	Case Studies	8					
	Total No. of Lecture Hours	26					

Text Books:

- 1. Hester, Ronald E and Roy M Harrison, Electronic waste management. V.27, Royal society of chemistry, 2009
- 2. Hieronymi, Klaus, Ramzu Kahhat and Eric Williams eds. E-waste management: From waste to resource. Routledge, 2012

Course Code: BEC657L Course: PCB Design and Fabrication

Credits: 1 L: T: P: 0:0:2

SEE: - CIE:50 Marks

SEE Hours: - Max. Marks: 50

Prerequisites if any	Knowledge of analog and digital circuits
Learning Objectives	 The need for PCB Design and steps involved in PCB design and fabrication process. To familiarize schematic and layout design flow using Electronic Design Automation (EDA) Tools.

Course Outcomes:

On the successful completion of the course, the student will be able to

COs	Course Outcomes	Bloom's level
CO1	Understand the steps involved in schematic, layout, fabrication, and assembly process of PCB design.	L1
CO2	Design (schematic and layout) PCB for analog circuits, and digital circuits.	L4
CO3	Design (schematic and layout) and fabricate PCB for simple circuits.	L4

Mapping with POs and PSOs:

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			3				1	1		1	3	3	
CO2	3	3	3	3	3				1	1		1	3	3	
СОЗ	3	3	3	3	3				1	1		1	3	3	

Mapping Strength: Strong-3 Medium - 2 Low - 1

	List of Experiments	No. of Practical
	•	Hours
1	Introduction to PCB design steps of Schematic design, layout design, create new schematic components and component footprint.	2
2	Regulator circuit using 7805	2
3	Full-wave Rectifier	2
4	Astable multivibrator using IC555	2
5	Monostable multivibrator using IC555	2
6	Full-Adder using half-adders.	2
7	Design an 8051-development board having serial communication section consisting of Max232 capacitor, DB9 connector, jumper, and LED.	2
8	Fabricate single-sided PCB, mount the components, and assemble in a cabinet for any one of the circuits mentioned above 1	2
9	Fabricate single-sided PCB, mount the components, and assemble in a cabinet for any one of the circuits mentioned above 2	2
10	Identification of various types of PCB and soldering techniques	2
	Total No. of Practical Hours	20

Tools: OrCAD / NI Multisim / Proteus 8 / TINAPRO / KiCad

Text books:

- 1. Printed Circuit Board by RS Khandpur, Tata McGraw Hill Education Pvt Ltd., New Delhi
- 2. Electronic Product Design Volume-I by S D Mehta, S Chand Publications Online Resources
- 3. Open source EDA Tool KiCad Tutorial: http://kicad-pcb.org/help/tutorials/

- 4. PCB Fabrication user guide page: http://www.wikihow.com/Create-Printed-Circuit-Boards
- 5. PCB Fabrication at home(video):

https://www.youtube.com/watch?v=mv7Y0A9YeUc,

https://www.youtube.com/watch?v=imQTCW1yWkg