
Do MLLMs Understand Pointing? Benchmarking and Enhancing
Referential Reasoning in Egocentric Vision

Anonymous ACL submission

Abstract001

Egocentric AI agents, such as smart glasses,002
rely on pointing gestures to resolve referen-003
tial ambiguities in natural language commands.004
However, despite advancements in Multimodal005
Large Language Models (MLLMs), current sys-006
tems often fail to precisely ground the spatial007
semantics of pointing. Instead, they rely on008
spurious correlations with visual proximity or009
object saliency—a phenomenon we term “Ref-010
erential Hallucination.” To address this gap,011
we introduce EgoPoint-Bench, a comprehen-012
sive question-answering benchmark designed013
to evaluate and enhance multimodal pointing014
reasoning in egocentric views. Comprising015
over 11k high-fidelity simulated and real-world016
samples, the benchmark spans five evaluation017
dimensions and three levels of referential com-018
plexity. Extensive experiments demonstrate019
that while state-of-the-art proprietary and open-020
source models struggle with egocentric point-021
ing, models fine-tuned on our synthetic data022
achieve significant performance gains and ro-023
bust Sim-to-Real generalization. This work024
highlights the importance of spatially-aware025
supervision and offers a scalable path toward026
precise egocentric AI assistants. The code and027
samples are available at https://anonymous.028
4open.science/r/EgoPoint-BFBD/.029

1 Introduction030

Egocentric Vision AI agents, particularly intelli-031

gent assistants integrated into wearable devices032

such as smart glasses, are fundamentally reshaping033

the paradigms of Augmented Reality and Human-034

Computer Interaction (Li et al., 2025). By perceiv-035

ing the physical world through the user’s perspec-036

tive, these systems aim to provide precise, context-037

aware Question Answering (QA) services. In such038

naturalistic interaction scenarios, users exhibit a039

strong preference for minimalistic spoken com-040

mands. These utterances often blend explicit ob-041

ject descriptions with highly ambiguous deictic042

[...] D. To place books.
Reasoning: Your finger is pointing to 
a shelf within a bookcase [...]

What is the use of the 
object I am pointing to? 
A. To show the price.  
B. To make people relax. 
C. To block the light. 
D. To place books.

D. To place books.

What is the primary purpose 
of this object? Please output
the answer directly.

The primary purpose of this object is to 
provide a safe exit route [...]

To hang clothes.

Scene 1: User is pointing at Curtains

Scene 2: User is pointing at Clothes hangers

(Ground Truth)

(Ground Truth)

[...] I’m focusing on the white 
rectangular object [...] the object being 
pointed at is a fire extinguisher box

GT Pointing Area Confused Area Pointing Ray

Figure 1: Spatial ambiguity in egocentric pointing. Two
examples where current VLMs (e.g., Gemini 3, Qwen3-
VL) fail to recognize the target spatially aligned with
the pointing gesture. This highlights a critical gap in
fine-grained 3D spatial reasoning. Note that neither
bboxes nor rays were in the model inputs.

expressions (e.g., “How do I use this?” or “How is 043

the stuff over there?”). When retrieving informa- 044

tion from complex visual scenes, relying solely on 045

unimodal language is often insufficient to resolve 046

such referential ambiguity. Conversely, pointing 047

gestures—instinctual and high-frequency actions 048

in human communication—have been empirically 049

proven to significantly enhance referential clarity 050

and reduce the requisite length of natural language 051

instructions (Mane et al., 2024; Chen et al., 2021). 052

Consequently, endowing multimodal models with 053

the capability to precisely comprehend “egocentric 054

pointing” is critical for egocentric AI agents. 055

Despite the remarkable semantic understanding 056

demonstrated by Multimodal Large Language Mod- 057

els (MLLMs) in general image captioning and QA 058

tasks (OpenAI, 2024; Liu et al., 2023b), our in- 059

vestigation reveals a critical deficiency in spatial 060
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reasoning when adapting current state-of-the-art061

models to egocentric pointing QA. Specifically, as062

depicted in Fig. 1, instead of tracing the precise063

geometric projection of the pointing finger, models064

frequently fixate on objects proximal to the hand or065

visually salient entities, leading to referential hal-066

lucination. This indicates that these models fail to067

grasp the intrinsic spatial mechanism of “pointing”,068

relying instead on spurious correlations based on069

visual proximity.070

A critical bottleneck is the scarcity of071

high-quality, unambiguous data aligned within072

the “Vision-Language-Space”. While visual073

grounding is well-studied, benchmarks like Re-074

fCOCO (Kazemzadeh et al., 2014) and Visual075

Genome (Krishna et al., 2017) rely on third-person076

internet imagery, lacking the wide-angle nature077

of egocentric vision. Conversely, large egocentric078

datasets like Ego4D (Grauman et al., 2022) and079

EPIC-KITCHENS (Damen et al., 2022) prioritize080

action recognition or hand-object interactions (Liu081

et al., 2022), missing dense QA annotations that082

capture “pointing-object” geometry. Without this083

spatially-aware supervision, MLLMs fail to sepa-084

rate hand appearance from spatial pointing intent,085

hindering deictic referencing performance.086

To address this challenge, we propose087

EgoPoint-Bench, a benchmark designed to088

systematically evaluate and enhance multi-modal089

spatial reasoning in egocentric views. To balance090

data scale with realism, our construction process091

involves two complementary phases: In the092

simulation phase, we introduce a physics-based093

synthesis pipeline leveraging ray-casting to094

generate noise-free pointing labels in 3D envi-095

ronments; in the real-world phase, we collect096

real-scenario data to validate practical applicability.097

For QA construction, we implemented a hybrid098

“machine-generation, human-verification” pipeline099

to ensure rigorous standards. Crucially, to capture100

interaction diversity and enable fine-grained as-101

sessment, we incorporated three referring language102

patterns ranging from explicit descriptions to103

implicit instructions, and structured the benchmark104

across five core capability dimensions. In total, the105

dataset comprises 10,567 high-fidelity simulation106

QA pairs and 1,162 real-world samples.107

To evaluate generalization, we employed a hy-108

brid test set combining held-out simulation data109

(in-domain) and real-world data (zero-shot cross-110

domain). We benchmarked open-source (e.g.,111

Qwen3-VL) and proprietary models (e.g., GPT-5),112

followed by LoRA fine-tuning on simulation data. 113

The fine-tuned models significantly outperformed 114

baselines, including top proprietary ones. These 115

results validate the efficacy of high-quality syn- 116

thetic data and highlight the scarcity of egocentric 117

pointing examples in current foundation models. 118

The main contributions of this paper are summa- 119

rized as follows: 120

• We propose EgoPoint-Bench, a novel bench- 121

mark designed to evaluate multi-modal spatial 122

reasoning in egocentric views. Our extensive 123

benchmarking reveals that current state-of-the- 124

art MLLMs significantly lack the capability to 125

understand fine-grained pointing gestures in first- 126

person scenarios. 127

• We develop a physics-driven data generation 128

pipeline that ensures both geometric precision 129

and linguistic diversity. By leveraging ray- 130

casting in simulation and incorporating hierar- 131

chical referring patterns (from explicit descrip- 132

tions to implicit instructions), we construct a 133

high-quality dataset containing over 11k pairs 134

across simulation and real-world domains. 135

• We demonstrate the efficacy of sim-to-real gen- 136

eralization. Models fine-tuned on our high- 137

fidelity synthetic data significantly outperform 138

strong proprietary models on real-world test sets, 139

validating the potential of synthetic data in ad- 140

dressing data scarcity for egocentric interaction. 141

2 Related Work 142

To contextualize our contributions, we compare 143

EgoPoint-Bench with representative benchmarks 144

in visual grounding, embodied perception, and 145

pointing-based interaction (see Table 1). 146

2.1 Third-Person Grounding 147

Foundational visual grounding benchmarks, rang- 148

ing from 2D (Mao et al., 2016; Krishna et al., 2017) 149

to 3D (Chen et al., 2020; Achlioptas et al., 2020) 150

and robotic settings (Qi et al., 2020), rely predomi- 151

nantly on third-person views and explicit linguistic 152

descriptions. Critically, they lack the egocentric 153

pointing signal essential for intuitive HCI, often 154

causing models to rely on semantic priors rather 155

than geometric cues. 156

2.2 Egocentric Vision Perception 157

Large-scale datasets like Ego4D (Grauman et al., 158

2022) and EPIC-KITCHENS (Damen et al., 2018) 159
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Table 1: Comparison with existing datasets. Unlike benchmarks that rely on third-person views or pure text,
EgoPoint-Bench uniquely combines egocentric vision with natural 3D hand pointing. It supports diverse question
types and multi-level linguistic granularity. R: Real-world data, S: Synthetic data.

Dataset Egocentric Scenes Natural Pointing Task Annotation Granularity Size

RefCOCOg (Mao et al., 2016) ✗ R ✗ Grounding Image + BBox + Text 26k imgs
ScanRefer (Chen et al., 2020) ✗ R ✗ Grounding 3D BBox + Text 11k scenes
YouRefIt (Chen et al., 2021) ✗ R ✓ Grounding BBox + Gesture + Text 3k clips
Ego4D (Grauman et al., 2022) ✓ R ✗ Forecasting Activity Labels 3.6k hrs
Look & Point (Nguyen et al., 2024) ✓ R ✓ Grounding Gaze/Point Vector 1.3k hrs
Ges3ViG (Mane et al., 2024) ✗ S ✗ Grounding 3D Grounding + Gesture 35k samples
EOC-Bench (Dang et al., 2025) ✓ R ✗ QA Temporal/Cognitive QA 3.2k QAs

EgoPoint-Bench (Ours) ✓ R+S ✓ QA Image + Name + BBox + QA 11.7k QAs

capture rich first-person activities. However, they160

focus primarily on passive observation, such as ac-161

tion recognition. They lack active interaction sce-162

narios. Attempts to add language, like RefEgo (Ku-163

rita et al., 2023), still rely on pure text without ges-164

ture signals. Recent works like EOC-Bench (Dang165

et al., 2025) introduce open-ended QA to ego-166

centric videos. Yet, they rely on artificial visual167

prompts, such as red boxes drawn on images. This168

reliance creates a domain gap for Augmented Re-169

ality (AR). In real AR scenarios, systems should170

interpret natural, unaugmented user gestures.171

2.3 Pointing-based Interaction172

To enable pointing-driven interaction,173

Ges3ViG (Mane et al., 2024) introduces 3D174

directional gestures through synthesized avatars;175

however, it focuses on object localization within176

3D scenes rather than question-answering (QA)177

interaction and lacks validation on real-world178

datasets. While COSM2IC (Weerakoon et al.,179

2022) achieves deictic interaction using virtual180

environments, it is limited by a lack of diver-181

sity in both object categories and scene types.182

Furthermore, most existing datasets rely on183

exhaustive descriptive language to resolve target184

ambiguity, creating a significant gap between these185

benchmarks and real-life interaction scenarios. In186

contrast, EgoPoint-Bench integrates high-fidelity187

synthetic and real-world data. We shift linguistic188

inputs from explicit descriptions (e.g., “the object189

I point at”) to implicit deictics (e.g., “this”),190

evaluating MLLMs’ pointing comprehension191

across diverse semantic dimensions.192

3 EgoPoint-Bench193

3.1 Overview194

As shown in Fig. 2, we propose EgoPoint-Bench,195

a multimodal question-answering benchmark fo-196

cused on first-person pointing gestures. It is de- 197

signed to quantitatively evaluate the understanding 198

and reasoning capabilities of MLLMs regarding 199

pointing gestures and referring language in ego- 200

centric visual perception. Given the scarcity of la- 201

beled data in this domain, we employ a dual-source 202

data construction strategy combining simulation 203

and real-world data. On one hand, we introduce 204

the Point-sim fully automated simulation frame- 205

work, which utilizes 42 hand models to generate 206

10,567 synthetic samples across 1,838 high-fidelity 207

3D scenes (sourced from Ai2-THOR (Kolve et al., 208

2017; Deitke et al., 2022), HSSD (Khanna et al., 209

2023), ReplicaCAD (Szot et al., 2021), and HM3D 210

(Ramakrishnan et al., 2021)). On the other hand, to 211

enhance the realistic diversity of the dataset, we col- 212

lected 1,162 samples featuring natural pointing in- 213

teractions in diverse real-world environments. Fur- 214

thermore, the benchmark covers five core dimen- 215

sions and includes three question types—multiple- 216

choice, true/false, and open-ended questions—with 217

established standard splits for training, validation, 218

and testing. 219

3.2 Image Collection 220

3.2.1 Point-Sim Simulation Framework 221

To synthesize diverse and high-fidelity scene-object 222

pairs, we utilized the Habitat-Sim 3.0 simula- 223

tor (Puig et al., 2023) and integrated static envi- 224

ronments sourced from the AI2-THOR, HSSD, 225

ReplicaCAD, and HM3D datasets. Specifically, 226

we acquired high-quality 3D arm-hand models 227

from ArtStation (ArtStation, 2025) and leveraged 228

the Blender package (Blender Online Community, 229

2018) to manipulate parameters—such as joint ar- 230

ticulation and scaling—thereby introducing struc- 231

tural diversity into the generated pointing gestures. 232

Furthermore, we applied textures representing 3 233

distinct skin tones and 7 clothing styles across both 234
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Simulation

1,838 3D Scenes 
910 Object Categories

+ Point-Sim
Framework

42 Hand Meshes

AI2THOR HSSD

ReplicaCAD HM3D

L3

L2

L1

Implicit 
Pronoun “this/that”, “it”, “this one”

Visual
Locative

Explicit
Action

“this object right 
here/over there”

“the object I am 
pointing at”

txt

img...

Various places

Generate

Check/Annotate

① True/False QA

② Single Choice QA

③ Open-ended QA

Yes No

A. B. C. D.
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EgoPoint
Bench

Real-world

Mixed-format QA pairs Deixis Level Dimension

(a) Distribution of obj attributes in 
synthetic data. (b) Frequency of  top-20 object categories in real-world data. (c) Distribution of Deixis Levels. (d) Train/Val/Test splits of EgoPoint-Bench. 

Figure 2: Overview of EgoPoint-Bench. Top: We construct the dataset using a scalable simulation pipeline
(Point-Sim) alongside real-world collection to ensure visual diversity. Middle: The QA generation process spans five
capability dimensions (Basic Perception, Function State, Spatial Context, OCR, and Adversarial Resilience) and
incorporates a hierarchical deixis level taxonomy (L1: Explicit Action, L2: Visual Locative, L3: Implicit Pronoun),
challenging models to resolve referential ambiguity based on finger-pointing gestures. Bottom: Detailed statistics
showing object attributes, category frequency, and data distribution.

left and right hands, resulting in a total of 42 unique235

pointing models.236

Simulation Initialization. To ensure domain ro-237

bustness, we initialize the simulation with a di-238

verse set of intrinsic and extrinsic parameters.239

To replicate the wide-angle optical characteristics240

of modern smart glasses, the camera’s vertical241

field of view (FOV) is uniformly sampled from242

[100◦, 115◦]. The agent is modeled with an ocu-243

lar height heye ∼ U(1.45, 1.70) meters, equipped244

with a multi-modal sensor suite capturing aligned245

RGB, Depth, and Semantic observations. Hand246

dominance (left/right) is randomized to balance the247

dataset distribution.248

Target-Oriented Spatial Arrangement. For a249

selected target object O centered at Pobj ∈250

R3, we compute the navigable manifold of251

the scene, represented as a Navigation Mesh252

(NavMesh) (Mononen, 2009). We sample a candi-253

date agent position Pagent on this manifold within254

a constrained radius rsearch (default ≤ 3.0m), con-255

ditioned on a minimum collision clearance of 0.4m.256

To mitigate scale ambiguity, the sampling distance257

is dynamically scaled based on the object’s volu- 258

metric size; this prevents scenarios where the object 259

is either imperceptible or encompasses the entire 260

field of view. 261

Once Pagent is fixed, we orient the agent’s cam- 262

era to face the target. We construct the camera 263

rotation matrix Rcam ∈ SO(3) by aligning the 264

optical axis with the forward vector f = (Pobj − 265

Pagent)/∥Pobj − Pagent∥. The rotation is defined 266

compactly as: 267

Rcam =

[
f × uw

∥f × uw∥
,

(f × uw)× f

∥f × uw∥
, −f

]⊤
(1) 268

where uw is the global up vector. 269

Kinematic Hand Alignment. We instantiate the 270

hand model within the lower visual field of the cam- 271

era. The core objective is to align the index finger’s 272

direction vector with the line of sight to the object. 273

Let urest denote the normalized initial directional 274

vector of the index finger and utarget be the nor- 275

malized vector pointing from the hand to the object. 276

We compute the minimal rotation Rhand via Ro- 277

drigues’ rotation formula. The rotation is parame- 278
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Figure 3: Point-sim Simulation Framework.

terized by the unit rotation axis k =
urest×utarget

∥urest×utarget∥279

and angle θ = arccos(urest · utarget):280

Rhand = I + [k]× sin θ + [k]2×(1− cos θ) (2)281

where [k]× denotes the skew-symmetric matrix of282

k. Subsequently, to simulate realistic human point-283

ing behavior, we apply small stochastic perturba-284

tions to the pitch and yaw of the computed camera285

orientation.286

Validation and Data Format. We enforce a287

validity check by casting a ray from the in-288

dex finger tip toward Pobj . An instance is dis-289

carded if the ray intersects with any obstacle be-290

fore reaching the target. The pipeline explic-291

itly exports a comprehensive data tuple D =292

{Irgb, Idepth, Isem,bobj , P2D, yid}, containing the293

images, 2D bounding boxes, projected coordinates,294

and semantic identifiers. This pipeline is general-295

ized to support any scene compatible with Habitat-296

Sim.297

3.2.2 Real-world Data Collection298

We recruited eight volunteers equipped with MLVi-299

sion smart glasses (MLVision, 2025) to collect data300

on objects of interest in diverse real-world envi-301

ronments. The data collection scenarios spanned302

a broad spectrum of settings, including but not303

limited to indoor places like furniture stores, con-304

venience stores, and apartments, as well as outdoor305

locations such as shopping malls, zoos, and streets.306

Participants were instructed to record a video when-307

ever they encountered an object of interest, explic-308

itly pointing at the target while verbally stating309

its name to serve as the ground truth and posing310

a relevant description or question. In total, 1,162311

valid image frames were curated from the collected312

footage (see Appendix C.1 for details).313

3.3 Capability Taxonomy314

Inspired by canonical multimodal benchmarks like315

MMBench (Liu et al., 2024b) and MME (Fu et al.,316

2025a), we design a five-dimensional taxonomy 317

to comprehensively evaluate MLLMs within first- 318

person pointing interactions. This framework is 319

structured to bridge the gap between low-level per- 320

ception and high-level robust reasoning: 321

• Basic Perception (BP): Identifies fundamental 322

attributes (category, color, texture) and visual 323

distinctiveness for gesture alignment. 324

• Function & State (FS): Infers semantic prop- 325

erties (e.g., edibility, operability) and dynamic 326

functional states. 327

• Spatial Context (SC): Perceives egocentric spa- 328

tial relationships, including localization, scene 329

compatibility, and reachability. 330

• OCR: Extracts textual info from targets, such as 331

brand names, slogans, and instructions. 332

• Adversarial Resilience (AR): Maintains reliabil- 333

ity against adversarial inputs like counterfactuals, 334

fallacies, and void references. 335

3.4 QA Pair Construction 336

For comprehensive deictic evaluation, our dataset 337

employs a hierarchical taxonomy and hybrid ques- 338

tion format. 339

Hierarchical Deixis Taxonomy. We design three 340

levels of deixis to cover the broadest possible se- 341

mantic range of referential inquiries: L1 (Explicit 342

Action) describes the gesture directly (e.g., “the 343

object I am pointing at”); L2 (Visual Locative) 344

implies spatial proximity (e.g., “that thing over 345

there”); and L3 (Implicit Pronoun) relies purely on 346

visual context (e.g., “this”). 347

Task Formulation. To balance ecological validity 348

with objective evaluation, we adopt diverse ques- 349

tion formats. We incorporate Open-ended ques- 350

tions to reflect the natural, unrestricted nature of 351

human inquiry. However, to ensure a fair, consis- 352

tent, and automated testing benchmark, we also 353

construct True/False and Single-Choice Questions. 354

This hybrid composition retains the semantic com- 355

plexity of realistic user intent while facilitating rig- 356

orous quantitative comparison. 357

Human-Machine Collaborative Data Curation. 358

To ensure both diversity and scalability, we es- 359

tablished a collaborative data generation pipeline. 360

For the simulation subset, we leveraged a gen- 361

erative model to synthesize QA pairs, thereby 362

mitigating the rigidity of fixed templates and 363

expanding the dimensionality of potential ques- 364

tions (Liu et al., 2023b). To prevent model 365

hallucinations—specifically the misidentification 366

of pointed-at objects—we implemented a visual 367
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Table 2: Main results on real-world and simulation testsets. We highlight the best Direct results in blue and the
best LoRA results in orange. The Gain column shows the improvement of LoRA over Direct.

Model Method Simulation testset Real-world testset Overall
BP FS SC OCR AR Mean BP FS SC OCR AR Mean Avg. Gain

Random - 27.95 26.83 38.89 43.24 52.17 31.14 25.19 22.74 37.30 26.32 45.76 28.94 30.24 -
Human - 91.86 97.14 100 93.33 100 95.80 96.24 98.04 96.39 95.65 89.09 96.00 95.90 -

Closed-source Models
Gemini-3.0-pro Direct 52.47 51.39 70.47 74.85 57.16 56.44 66.63 75.44 79.06 83.28 60.16 72.00 62.29 -
Gemini-3.0-flash Direct 54.39 53.33 66.58 73.64 58.39 57.21 67.04 73.98 78.89 80.90 63.02 71.84 62.71 -
GPT-5-2-Instant Direct 54.14 49.81 66.14 75.45 50.88 54.80 55.31 67.49 81.62 69.55 71.27 66.76 59.29 -
GPT-5-mini Direct 59.96 58.22 67.65 68.79 36.09 57.66 52.81 66.73 67.32 66.27 52.38 60.57 58.75 -

Open-source Models (Direct vs. LoRA)

Llava-1.5-7B
Direct 50.83 46.89 54.86 50.91 41.92 48.82 36.48 45.85 62.13 22.69 69.37 47.19 48.21 -
LoRA 76.41 72.06 60.63 66.06 86.44 73.18 37.50 56.55 64.17 33.43 95.40 54.54 66.17 +17.96

Llava-Next-7B
Direct 47.42 45.42 55.92 53.33 46.59 48.17 31.68 51.75 60.09 39.40 56.19 46.44 47.52 -
LoRA 80.39 80.86 79.56 72.42 86.13 80.93 40.10 66.32 71.23 40.90 90.63 59.64 72.93 +25.41

GLM-4.6V-Flash
Direct 56.16 50.81 66.14 61.52 36.17 53.29 48.32 59.77 67.32 72.84 43.49 56.42 54.47 -
LoRA 77.16 73.28 82.01 80.00 64.21 74.86 53.88 60.70 66.55 67.16 72.70 61.26 69.74 +15.27

InternVL-3.5-2B
Direct 51.97 55.14 61.50 66.97 26.05 51.74 44.85 60.47 62.55 59.40 43.65 53.73 52.49 -
LoRA 71.40 75.36 76.61 78.79 81.99 75.43 46.33 64.04 71.83 57.31 89.68 62.03 70.39 +17.90

InternVL-3.5-8B
Direct 52.86 52.50 63.51 66.36 35.63 52.62 50.05 60.88 63.32 68.96 50.79 57.09 54.30 -
LoRA 74.60 77.81 82.76 78.79 86.21 78.86 50.56 69.88 74.47 63.88 90.00 66.13 74.07 +19.77

InternVL-3.5-14B
Direct 46.79 51.14 62.07 71.52 33.56 49.99 47.76 65.09 72.51 65.07 45.24 58.59 53.23 -
LoRA 75.99 76.00 83.01 76.36 86.51 78.59 54.03 73.10 80.26 68.66 82.86 68.92 74.95 +21.72

Qwen3-VL-8B
Direct 57.55 54.00 70.34 77.58 52.11 58.29 47.81 58.42 74.55 68.96 53.17 58.14 58.23 -
LoRA 81.31 80.92 80.56 84.24 82.91 81.36 60.36 72.28 81.96 71.94 88.57 71.96 77.83 +19.60

Qwen3-VL-32B
Direct 56.52 53.75 65.64 79.39 60.23 58.28 56.38 65.03 76.09 79.70 56.83 64.30 60.54 -
LoRA 80.75 82.50 83.39 83.03 82.84 82.20 62.09 71.35 81.96 73.43 83.81 71.84 78.30 +17.76

prompting strategy (Yang et al., 2023): ground-368

truth bounding boxes were rendered directly onto369

the input images to explicitly guide the model’s370

focus. Furthermore, ground-truth category labels371

and attributes were injected into text prompts to372

ensure context-aware responses. We validated the373

fidelity of this automated pipeline through a manual374

inspection of the test set, identifying and correcting375

a minimal 3% error rate. The real-world dataset376

followed a rigorous human-in-the-loop workflow.377

Annotators labeled the bounding boxes of target378

objects based on raw open-ended descriptions or379

questions. Additionally, they provided factual an-380

swers and underwent strict cross-verification.381

3.5 Dataset Statistics382

EgoPoint-Bench comprises 10,567 simulation and383

1,162 real-world QA pairs, with an average ques-384

tion length of 9.81 words. The simulation sub-385

set is partitioned into 8,638 samples for train-386

ing/validation (9:1 split) and 1,929 for testing,387

while the real-world data serves exclusively as388

a test set. To ensure rigorous evaluation, each389

(scene, object) tuple in the simulation data390

appears exactly once. The dataset covers 1,838391

unique scenes and 910 object categories. Fig. 2392

presents detailed statistics regarding (a) synthetic393

object attributes, (b) top-20 real-world object cate-394

gories, (c) deixis levels, and (d) dataset splits.395

4 Experiments 396

4.1 Experimental Setup 397

We conduct a comprehensive evaluation across a 398

wide spectrum of MLLMs, spanning both propri- 399

etary and open-source architectures. For propri- 400

etary models, we test the latest iterations includ- 401

ing Gemini-3.0 (Pro/Flash) (Team et al., 2025a) 402

and the GPT-5 series (5.2-Instant/5-Mini) (Ope- 403

nAI). For open-source models, we select represen- 404

tative baselines with varying scales: InternVL-3.5 405

(2/8/14B) (Wang et al., 2025), Qwen3-VL (8/32B) 406

(Bai et al., 2025), LLaVA v1.5 (Liu et al., 2023a), 407

LLaVA-NeXT (Liu et al., 2024a), and GLM-4.6v- 408

Flash (Team et al., 2025b). To establish perfor- 409

mance bounds, we incorporate a random baseline 410

for choice-based tasks and report human perfor- 411

mance evaluated on 1,000 samples (balanced be- 412

tween simulation and real-world data) by three vol- 413

unteers. The evaluation operates under two settings: 414

(1) Zero-shot Inference, where models directly 415

predict answers from visual-textual inputs; and (2) 416

Instruction Tuning, where we apply LoRA-based 417

(Hu et al., 2022) parameter-efficient fine-tuning. 418

Crucially, our training set consists exclusively of 419

simulation data to assess sim-to-real generaliza- 420

tion. Implementation details are provided in Ap- 421

pendix A. 422
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Table 3: Detailed Breakdown by Question Type. Types: Single-Choice (SCQ), True/False(T F ), Open-Ended questions
(OQ). Dimensions: Basic Perception (BP), Function & Affordance (FS), Spatial Context (SC), OCR & Text (OCR), Adversarial
Relation (AR). Blue indicates best Direct performance; Orange indicates best LoRA performance.

Model Method
BP FS SC OCR AR

SCQ T F OQ SCQ T F OQ SCQ T F OQ SCQ T F OQ SCQ T F OQ

Random - 26.25 40.62 - 23.28 49.37 - 29.44 48.06 - 26.67 46.67 - 26.67 50.26 -
Closed-source Models

Gemini-3.0-pro Direct 60.39 50.00 33.23 61.70 64.56 35.14 80.95 74.27 60.34 95.56 76.67 67.59 53.33 67.69 48.02
Gemini-3.0-flash Direct 61.44 59.38 33.87 61.81 70.89 37.84 79.22 69.90 60.51 91.11 70.00 70.34 60.00 69.74 49.04
GPT-5-2-Instant Direct 55.87 56.25 36.45 57.80 62.03 32.79 76.19 69.90 70.77 73.33 80.00 67.93 66.67 73.85 38.76
GPT-5-mini Direct 57.72 62.50 44.52 62.61 78.48 35.50 67.10 74.76 55.56 71.11 70.00 63.45 33.33 55.90 26.10

Open-source Models (Direct vs. LoRA)

Llava-1.5-7B
Direct 44.83 56.25 40.65 48.74 45.57 30.09 60.61 62.14 45.30 26.67 80.00 22.07 13.33 75.38 27.01
LoRA 60.16 53.12 68.06 71.79 40.51 48.83 67.53 63.11 49.74 44.44 90.00 32.76 73.33 98.97 80.11

Llava-Next-7B
Direct 40.77 56.25 35.81 49.20 54.43 28.83 58.87 61.65 48.38 44.44 83.33 28.62 46.67 64.10 34.12
LoRA 63.41 78.12 62.58 79.01 77.22 53.15 79.65 83.50 55.73 51.11 93.33 41.72 86.67 95.38 79.10

GLM-4.6V-Flash
Direct 53.08 71.88 41.29 54.70 70.89 33.51 67.10 68.93 61.71 75.56 60.00 64.48 46.67 46.67 28.93
LoRA 67.71 81.25 59.03 70.87 81.01 47.93 77.92 77.18 67.52 73.33 83.33 68.62 80.00 76.41 55.48

InternVL-3.5-2B
Direct 49.83 62.50 31.29 60.89 67.09 17.84 66.23 68.45 42.05 64.44 76.67 55.17 26.67 43.08 19.77
LoRA 60.98 81.25 52.58 74.89 79.75 41.08 78.79 82.04 53.16 62.22 90.00 61.03 80.00 92.82 75.71

InternVL-3.5-8B
Direct 52.85 56.25 33.55 58.72 64.56 20.90 71.43 65.05 44.79 71.11 73.33 62.07 46.67 54.36 24.86
LoRA 64.69 78.12 58.39 78.56 79.75 46.13 83.55 84.47 61.54 66.67 96.67 61.72 80.00 94.36 80.45

InternVL-3.5-14B
Direct 47.62 65.62 31.61 58.83 64.56 24.14 71.00 69.90 51.62 71.11 83.33 58.28 46.67 49.74 22.94
LoRA 67.71 78.12 50.97 78.33 78.48 47.03 84.42 86.41 68.72 77.78 86.67 61.03 86.67 89.23 80.90

Qwen3-VL-8B
Direct 54.36 62.50 37.74 57.68 62.03 32.97 73.16 76.70 62.05 73.33 76.67 71.38 53.33 58.97 45.20
LoRA 73.17 78.12 63.55 81.31 81.01 51.17 80.52 89.32 68.03 77.78 93.33 70.34 73.33 91.79 77.97

Qwen3-VL-32B
Direct 57.61 65.62 35.81 59.98 67.09 30.09 74.89 68.93 62.56 80.00 80.00 78.97 60.00 65.13 52.43
LoRA 73.64 75.00 64.52 81.65 88.61 50.45 82.68 88.83 72.31 77.78 86.67 74.14 80.00 85.13 81.24

4.2 Evaluation Metrics423

EgoPoint-Bench comprises three task types:424

True/False (TF), Single Choice Questions (SCQ),425

and Open-ended Questions (OQ). Following es-426

tablished protocols (Fu et al., 2025b; Li et al.,427

2024), we adopt exact matches for the TF and SCQ428

tasks. For the OQ task, evaluating open-ended re-429

sponses remains challenging; therefore, we employ430

an LLM-as-a-Judge approach (Zheng et al., 2023).431

Specifically, GPT-4o (OpenAI, 2024) scores the432

model predictions against ground-truth answers on433

a scale of 0 to 1 (with an increment of 0.2). Further434

details can be found in Appendix A.4.435

4.3 Main Results436

Table 2 presents the performance of proprietary437

and open-source models across simulation and real-438

world test sets. We reported 3 key observations:439

Off-the-shelf VLMs struggle with fine-grained440

egocentric deictic understanding. In the Direct441

inference setting, even the most advanced propri-442

etary models (e.g., Gemini-3.0-pro, GPT-5-mini)443

and open-source models fail to achieve satisfac-444

tory performance, hovering around 60% accuracy445

overall. A significant gap remains compared to446

human performance (95.90%), particularly in tasks447

requiring precise spatial geometric reasoning (AR448

and BP metrics). This underscores that general-449

purpose pre-training is insufficient for comprehend-450

ing complex “finger-pointing” semantics in egocen- 451

tric views. 452

Simulation-based tuning yields significant gains. 453

Fine-tuning with our generated simulation data via 454

LoRA brings substantial improvements across all 455

open-source models. As shown in the “Gain” col- 456

umn, we observe a consistent performance boost 457

ranging from +15.27% to +25.41%. Notably, 458

LLaVA-Next-7B achieves a remarkable 25.41% im- 459

provement, demonstrating that the visual-semantic 460

alignment provided by our synthetic data effec- 461

tively unlocks the models’ potential for pointing- 462

oriented VQA tasks. 463

Strong Sim-to-Real generalization. Crucially, the 464

models trained on simulation data generalize excep- 465

tionally well to the Real-world testset. For instance, 466

Qwen3-VL-8B improves its real-world mean accu- 467

racy from 58.14% to 71.96% after tuning on sim- 468

ulation data. This suggests that the geometric and 469

semantic features of finger-pointing learned from 470

our high-fidelity simulation environment are robust 471

and transferrable, validating the efficacy of our data 472

generation pipeline for real-world applications. 473

4.4 Detailed Analysis 474

Analysis Across Different Question Types. Ta- 475

ble 3 dissects model performance across three an- 476

swer formats (SCQ, T F ,OQ), revealing three crit- 477

ical insights: (1) Generative bottleneck. Direct 478
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Table 4: Performance evaluation of representative
MLLMs on Sim and Real test sets across three deixis
levels (L1-L3). The best results are highlighted in bold.

Model Method
Sim Real

L1 L2 L3 L1 L2 L3

Gemini-3.0-pro Direct 51.03 59.00 59.53 72.57 65.20 72.76

GPT-5-mini Direct 58.22 59.82 56.02 59.32 54.40 64.38

InternVL-3.5-2B
Direct 52.51 53.83 49.96 56.25 48.20 50.73

LoRA 74.71 74.60 76.47 59.03 61.40 67.50

Llava-1.5-7B
Direct 48.11 51.47 47.98 42.27 52.60 54.48

LoRA 72.01 75.60 72.83 51.21 60.80 58.80

Qwen3-VL-32B
Direct 50.52 62.72 62.28 64.31 62.40 64.79

LoRA 83.77 81.63 81.20 69.59 71.80 75.83

models exhibit a sharp performance drop in Open-479

Ended questions (OQ) compared to discrimina-480

tive formats (SCQ, T F ), indicating that while pre-481

trained models can distinctively recognize correct482

references, they struggle to actively formulate pre-483

cise spatial descriptions without specific tuning.484

(2) Geometric alignment in Adversarial Rela-485

tions. The AR dimension, which requires dis-486

tinguishing targets from spatial distractors, sees487

the most dramatic gains from LoRA (e.g., Llava-488

1.5-7B AR-OQ jumps from 27.01% to 80.11%).489

This proves that our dataset effectively teaches the490

specific “logic of pointing” absent in general pre-491

training. (3) Spatial-semantic saturation. While492

text-heavy tasks (OCR) show robust baseline per-493

formance, spatial tasks (BP, SC, AR) benefit dis-494

proportionately from fine-tuning, confirming that495

our method primarily enhances fine-grained spatial496

capabilities rather than basic visual recognition.497

Impact of different deixis levels. Contrary to the498

intuition that explicit instructions should mitigate499

ambiguity, our results reveal that L1 (Explicit Ac-500

tion) does not consistently outperform L2 (Visual501

Locative) or L3 (Implicit Pronoun). For instance, in502

the Sim dataset, the Direct Qwen3-VL-32B model503

shows a significant drop in L1 (50.52%) compared504

to L2 (62.72%) and L3 (62.28%). This counter-505

intuitive finding underscores a critical deficiency506

in current MLLMs: even when explicitly prompted507

to attend to a pointing gesture, models struggle to508

grounded the spatial action, indicating a lack of509

genuine understanding of fine-grained geometric510

cues. Furthermore, L3 often achieves the high-511

est accuracy in the Real dataset (e.g., 75.83% for512

Qwen3-VL-32B LoRA). This suggests that instead513

of resolving the specific deictic gesture, models514

may over-rely on object saliency or scene priors to515

infer the target.516

Figure 4: Distribution of error types and rescue scores.

4.5 Error Types 517

To probe the limitations of current VLMs in finger- 518

pointing VQA, we conducted a manual analysis on 519

400 error cases generated by Qwen3-VL-8B and 520

Gemini-3-Pro (balanced between simulated and 521

real-world data). We classified errors into three pri- 522

mary categories: (1) Proximal Distraction (PD), 523

where the model fails to follow the pointing ray and 524

instead grounds the answer to a distractor immedi- 525

ately adjacent to the finger; (2) Gesture Neglect 526

(GN), where the model ignores the gesture entirely, 527

attending to visually salient or distant objects; and 528

(3) Reasoning Failure (RF), where the target is 529

correctly localized, but the model fails in down- 530

stream reasoning. Fig. 4 (Left) illustrates the error 531

distribution, revealing that PD and GN are the most 532

prevalent failure modes. Fig. 4 (Right) demon- 533

strates the efficacy of our approach by reporting 534

the “Rescue Score”—defined as the percentage of 535

these specific failure cases successfully corrected 536

by our LoRA-finetuned Qwen3-8B. Our method 537

achieves Rescue Scores ranging from 57.0% to 538

72.4% across datasets, confirming its capability to 539

effectively recover from the spatial ambiguity and 540

gesture perception issues inherent in the baselines. 541

More examples are provided in Appendix B.2. 542

5 Conclusion 543

We introduced EgoPoint-Bench to evaluate and 544

enhance MLLMs’ understanding of egocentric 545

finger-pointing gestures. Our evaluation reveals 546

that while existing MLLMs struggle with this task, 547

fine-tuning on high-quality synthetic data miti- 548

gates referential hallucinations, enabling robust 549

real-world generalization. This work paves a scal- 550

able path toward precise egocentric AI assistants. 551
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Limitations552

While EgoPoint-Bench provides a benchmark for553

evaluating current egocentric multimodal finger-554

pointing understanding, it possesses two primary555

limitations: 1) Although fine-tuning with automat-556

ically synthesized simulation data has proven ef-557

fective on real-world datasets, we observed that558

the performance gain on real-world data is smaller559

than that on simulated data. This suggests that real-560

world user pointing behaviors, along with environ-561

mental complexities such as arm backgrounds, are562

significantly more intricate and challenging than563

those in simulation. Simulated data struggles to564

sufficiently cover the behavioral characteristics of565

the real world. 2) To facilitate easier evaluation,566

current dataset questions and answers are relatively567

brief, which diverges from the complex, multi-turn568

dialogue patterns found in real-world interactions.569

We focus first on whether MLLMs can explicitly570

understand the fundamental meaning of “pointing,”571

as our experimental results indicate that even this572

poses a significant challenge for current models.573

Mastering these basic comprehension skills is a574

vital prerequisite before addressing more difficult575

and complex multi-turn interaction tasks.576

Ethical Statement577

University ethics review board approves human-578

subjects research and they approved this project.579

In our real-world data collection environment, we580

have anonymized all human faces and any identi-581

fying information within the images by applying582

a blurring treatment. This ensures that no privacy583

leaks occur and that the dataset contains no harmful584

content. All datasets used in this work, including585

HM3D, AI2-THOR, ReplicaCAD, and HSSD, are586

properly cited and used strictly for non-commercial587

academic research purposes.588
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A Experimental Setup 811

A.1 Model Configurations 812

Regarding the configurations of the mainstream 813

MLLMs we evaluated: specifically, for the 814

Qwen3-VL and InternVL-3.5 series, we utilized 815

their Instruct variants. Furthermore, for all open- 816

source models, we set Do Sample=False during 817

inference; and for all closed-source models, we 818

set Temperature=0.0 and Top-P=1. This implies 819

that we employed deterministic decoding strategies 820

(i.e., greedy search) to eliminate randomness dur- 821

ing generation, thereby ensuring the reproducibility 822

of the evaluation results and fairness in compar- 823

isons across different models. 824

A.2 Additional Implementation Details 825

To systematically evaluate the performance of 826

Multi-modal Large Language Models (MLLMs) 827

on EgoPoint-Bench, we utilized the official open- 828

source implementations of each model. All evalua- 829

tion experiments and instruction tuning processes 830

were conducted on NVIDIA A100 GPUs. Our eval- 831

uation framework is built upon the Hugging Face 832

Transformers library1 and leverages the LLaMA- 833

Factory framework (Zheng et al., 2024) for efficient 834

fine-tuning. 835

To ensure fair comparison and reproducibility, 836

we standardized training configurations across all 837

models using LoRA (r = 8) applied to all linear 838

layers. We utilized a global batch size of 64 (per- 839

device batch size 8 with 8 accumulation steps), 840

enabled bfloat16 precision, and trained for 3 epochs 841

with a learning rate of 1 × 10−4 using a Cosine 842

learning rate scheduler. 843

A.3 Curated Prompt Templates 844

The text data utilized for both zero-shot inference 845

and LoRA fine-tuning remains consistent across all 846

models, formatted as follows: 847

Prompt Templates

Single Choice
USER: {Question} \n {Options} \n Answer
directly using the letters of the options
given.

True/False
USER: {Question} \n Answer directly with
‘True’ or ‘False’

848

1https://huggingface.co/docs/transformers
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Open Ended
USER: {Question} \n Please output the
answer directly.

849

A.4 Scoring Open-ended Question850

We use the following carefully crafted prompts and851

to score each open-ended question:852

Evaluation Prompt Template

Role: You are a helpful assistant
evaluation judge.
Please evaluate the candidate answer
against the reference answer based on
the question.
Assign a score from 0 to 5.

Scoring Criteria:
0: Completely incorrect or irrelevant.
1: Contains some keywords but fails to
answer the question logic.
2: Partially correct but misses key
constraints.
3: Mostly correct, but contains minor
hallucinations or ambiguity.
4: Correct meaning, but phrased
awkwardly or includes unnecessary fluff.
5: Perfect match in meaning and accuracy.

Input:
Question: {question}
Reference Answer: {answer}
Candidate Answer: {model_output}

Output Format:
You MUST return a valid JSON object
strictly adhering to the following
structure:
{

"score": <integer_0_to_5>,
"reason":

"<short_explanation_string>"
}

853

B Additional Analysis854

B.1 Detailed Dataset Statistics855

Fig. 5 illustrates the top 50 most frequent ob-856

ject categories in the simulation dataset. These857

categories primarily encompass complex indoor858

scenes, where high spatial coupling and environ-859

mental complexity pose significant challenges for860

model understanding. Consequently, the dataset861

demonstrates high sample diversity and task diffi-862

culty.863

Fig. 6 illustrates the word cloud of all ques-864

tions within EgoPoint-Bench. The results reveal a865

prevalence of deictic expressions (e.g., this, point-866

ing at, here, that), indicating a strong emphasis867

on both explicit pointing and ambiguous reference. 868

This distribution aligns perfectly with the core de- 869

sign philosophy of EgoPoint-Bench: to evaluate 870

the model’s capability in referential understanding 871

during egocentric multimodal interactions. 872

Table 5 provides a detailed breakdown of the 873

data sources across the training, validation, and 874

testing sets. Extensive samples were drawn from 875

HM3D due to its high-fidelity rendering of real- 876

world environments. Conversely, ReplicaCAD was 877

sampled sparingly and utilized only for training 878

and validation, given its limited variety of scenes 879

and objects. Notably, real-world data was reserved 880

exclusively for testing to evaluate zero-shot gener- 881

alization. Furthermore, the average question length 882

of 9.81 underscores the distinctive nature of deictic 883

language in egocentric VQA tasks. 884

Table 5: Dataset Statistics and Split Details

Source Subset Train Val Test Total Avg. QA Len.

Sim

HM3D 3227 365 718 4310 10.12
HSSD 1964 214 605 2783 8.68
AI2-THOR 1982 220 606 2808 10.22
ReplicaCAD 601 65 - 666 8.67

Real - - - 1162 1162 11.02

Figs. 7 and 8 illustrate the distribution of ques- 885

tion dimensions and types in the test set, respec- 886

tively. The dataset primarily evaluates Basic Per- 887

ception and Affordance, mirroring common queries 888

in daily life regarding object attributes and func- 889

tional utilities. To ensure objective benchmark- 890

ing, the questions are predominantly binary and 891

multiple-choice, while open-ended questions are 892

included to better simulate real-world QA scenar- 893

ios. 894

Furthermore, Fig. 9 shows a balanced distribu- 895

tion of question types in the training set, preventing 896

the model from developing a preference bias to- 897

ward specific answer labels. 898

B.2 Error Analysis 899

Figs. 10 and 11 illustrate three representative error 900

types made by Gemini-3-Pro and Qwen3-VL-8B 901

on real-world and simulation datasets, respectively 902

(where Q denotes the question, A the model’s re- 903

sponse, and GT the ground-truth intent). The re- 904

sults indicate that these models are highly suscepti- 905

ble to interference from objects in close proximity 906

to the hand or prominent objects in the background. 907

Fig. 12 presents two examples of random in- 908

quiries conducted in real-world environments. In 909
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Figure 5: Frequency of top-50 object categories in simulation data.

Figure 6: Worldcloud of questions in EgoPoint-Bench.

the first example, both Gemini-3-Pro and Qwen3-910

VL-8B provide incorrect and inconsistent an-911

swers, highlighting their tendency to make arbi-912

trary guesses in the background when the reference913

is unclear. In the second example, featuring a white914

and a brown jacket, the user points toward the white915

one; however, due to perspective effects, the finger916

region appears closer to the brown jacket in the im-917

age. Consequently, both base models consistently918

fail this task. In contrast, our Qwen3-VL-8B model,919

fine-tuned with LoRA on simulation data, is able920

to answer both questions with complete accuracy.921

C Additional Information922

C.1 Real-World Data Construction923

To bridge the domain gap between simulation and924

reality, we constructed a high-quality real-world925

dataset focusing on egocentric pointing interac-926

tions.927

Figure 7: Distribution of 5 dimensions in
EgoPoint-Bench testset.

Figure 8: Distribution of 3 question types in
EgoPoint-Bench testset.

C.1.1 Data Acquisition and Automated 928

Pre-processing 929

Automated Alignment Pipeline. We designed 930

a precision pipeline combining automated extrac- 931

tion with manual verification to achieve alignment 932

across “Pointing Action – Target Object – Speech 933

Description – Semantic QA.” 934

• Voice-Driven Keyframe Localization: The 935

process begins with speech recognition. We 936
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Figure 9: Option distribution of training set.

employed the industrial-grade open-source937

model FunASR2 (paraformer-zh) to gener-938

ate timestamped transcriptions.939

– We defined a specific trigger word (e.g.,940

“Start”) to mark the onset of a pointing941

action.942

– The system automatically detects the943

timestamp of this trigger and extracts the944

immediately following object noun as945

the candidate target.946

– This process defines a temporal window947

of interest for visual extraction.948

• Clarity-Aware Frame Selection: To miti-949

gate motion blur caused by head movements950

and device jitter, we implemented a Multi-951

Metric Clarity Assessment algorithm rather952

than random frame sampling. This algorithm953

fuses three complementary metrics:954

1. Laplacian Variance: Captures high-955

frequency components to detect general956

focus blur.957

2. Frequency Domain Analysis: Analyzes958

the spectral energy distribution to iden-959

tify motion blur patterns.960

3. Edge Density: Evaluates the sharpness961

of structural edges within the frame.962

By normalizing and computing a weighted963

fusion of these metrics (with all weighting964

coefficients set to 1.0), we assign a compre-965

hensive clarity score to every frame within the966

identified time window. The top-performing967

frames with the highest scores are selected as968

candidate representative images.969

2https://github.com/modelscope/FunASR

C.1.2 Human-in-the-Loop Annotation 970

To ensure high quality, we employed a rigorous 971

Human-in-the-Loop (HITL) pipeline. The process 972

involves close collaboration between annotators 973

and data collectors to guarantee that annotations 974

faithfully reflect the original pointing intent. 975

Manual Annotation Workflow. Based on the 976

candidate clear frames selected by the automated 977

algorithm, human annotators perform the following 978

steps: 979

1. Frame Selection & Privacy Protection: 980

Manually select the frames that clearly con- 981

tain the hand gesture from the top candi- 982

dates. Any visible faces in the background 983

are blurred to protect privacy. 984

2. Transcription Verification: Verify the cor- 985

rectness of the object name and description 986

automatically transcribed by the ASR system. 987

3. BBox Annotation: Manually draw Bound- 988

ing Boxes (BBox) around the pointed-at ob- 989

ject. This step requires deep cooperation and 990

communication with the original data collec- 991

tors to ensure the annotated object and BBox 992

strictly align with the user’s original pointing 993

intention, especially in cluttered scenes. Each 994

collector and annotator was paid $15 per hour. 995

C.2 QA Generation 996

To synthesize QA pairs, Gemini-3-Pro is employed 997

across our simulated and real-world datasets. We 998

ensure the generation of high-fidelity labels by 999

leveraging simulator-derived ground truth, specifi- 1000

cally by superimposing red bounding boxes on the 1001

target objects. To further guide the model’s rea- 1002

soning, visual inputs are supplemented with exact 1003

object nomenclature and exhaustive descriptions. 1004

Regarding real-world samples, the original open- 1005

ended user queries are utilized as description for 1006

prompting. After manual validation, the refined 1007

prompt templates are formulated as follows: 1008

Data Generation Specialist Prompt

SYSTEM_PROMPT
# Role
You are an expert Data Generation
Specialist for Vision-Language Models.
Your goal is to create ONE single,
high-quality Question-Answer pair for
an egocentric image based strictly on
the specific constraints provided by the
user.

1009
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Gemini-3-Pro

Qwen3-VL-8B

Q: Is this a brown cabinet?
A: True
GT: False (TV)

Q: Is this object a bicycle?
A: True
GT: False (Traffic Cone)

Q: Does the packaging of the object right here 
feature an image of a broom?
A: True
GT: False (Garbage bag)

Q: What kind of flowers are these?...
A: Yellow Sunflowers
GT: White Carnations

Q: What is the primary function of the 
item I am pointing at?
A: To hang clothes
GT: To hold trash or store items

Q: What type of produce is being 
pointed at here?
A: Oranges
GT: Apples

1 2 3

1 2 3

Figure 10: Error examples of three types in two methods from real-world data.

# Context
You will be provided with:
1. The Target Object name (Ground
Truth).
2. The Target Object description or
question.
3. The specific Dimension (e.g.,
Affordance, Basic Perception).
4. The specific Deixis Level (how the
object is referenced).
5. The specific Question Type (e.g.,
Multiple Choice).

# Critical Constraint: The “Red Box”
Rule
- The target object is highlighted with
a red bounding box in your internal
vision.
- NEVER mention “red box”, “rectangle”,
“highlight”, or “outline” in the text.
- Pretend the user is pointing at the
object with their finger.

# Guidelines for Quality
## 1. Anti-Cheating Option Generation
(Crucial for Multiple Choice)

1010

You must avoid “lazy” distractors.
Follow this logic to generate options:
- Correct Answer: The ground truth label
or attribute.
- Distractor 1 (Scene Hard Negative): An
object that is present elsewhere in the
image but NOT being pointed at.
- Distractor 2 (Visual Hard Negative):
An object sharing similar color, shape,
or texture with the target.
- Distractor 3 (Contextual Hard
Negative): An object plausibly found
in this specific environment, but
definitely NOT the target.
- Verification: Ensure the correct
answer is unique and unambiguous among
options.

## 2. Zero-Leakage Question Formulation
- The “Blindfold” Test: If a human
can guess the answer just by reading
the question (without the image), the
question is BAD.
- Bad: “What is this red round fruit?”
(Reveals color, shape, category).
- Good: “What is the name of this
object?” (Reveals nothing).

1011
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Gemini-3-Pro

Qwen3-VL-8B

Q: What is the primary function of 
this?...
A: Supporting a laptop
GT: Providing illumination

Q: Does this object display any visible 
words?
A: True
GT: False (airconditioner)

Q: Is this a living organism?
A: True
GT: False (Sculptural decoration)

Q: What type of object am I pointing 
at?...
A: Duvet
GT: Pillow

Q: What kind of item is this?
A: book
GT: plush toy

Q: What is the primary function of the 
object I am pointing at?...
A: To illuminate the room below
GT: To circulate or distribute airflow

1 2 3

1 2 3

Figure 11: Error examples of three types in two methods from simulation data.

# Definitions of Constraints
## Deixis Levels (Reference Style)
- L1 (Explicit Action): “the object I am
pointing at”, “what is indicated by my
finger”.
- L2 (Visual Locative): “this object
right here”, “that thing over there”.
- L3 (Implicit Pronoun): “this”, “it”,
“this one”.

## Dimensions (Question Topic)
- Basic Perception: category, color,
shape, material, counting.
- Affordance & Function: Edibility,
operation method, state, safety,
utility.
- Context & Relation: Spatial position,
scene compatibility.
- OCR & Text: Reading text on the object.
- Adversarial: Asking about non-existent
parts or false premises.

## Question Types
- True_False: Answer is “True” or
“False”.
- Multiple_Choice: Provide 4 options

1012

(A/B/C/D).
- Open_Ended: Answer is a concise phrase.

# Output Format
Output ONLY a pure JSON object containing
the single generated pair.
JSON Structure:
{

“qa_pairs”: [
{

“question”: “string”,
“options”: [“A. string”, “B.

string”, “C. string”, “D. string”] OR
null,

“answer”: “string”,
“dimension”: “string”,
“deixis_level”: “string”,
“type”: “string”,
“rationale”: “string”

}
]

}

1013
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D. Basket.

Q: What is this? A. clock. B. 
Price tag. C. Photo. D. Basket.

A. clock. (ground truth)

User is pointing at a clock

B. Pricetag.

(Fine-tuned)
A. Clock.

[...], it appears to be 
a brown jacket.

Q: what is the color of the 
object I am pointing at?

White. (ground truth)

User is pointing at a white jacket

[...], you are 
pointing at is brown.

(Fine-tuned)
White.

Figure 12: Comparison of model performance on real-
world pointing tasks.

USER
I need you to generate a QA pair for the
following object based on these strict
requirements:

1. Target Object (Ground Truth):
{{obj_name}}
2. Desription or Question:
{{description}}
3. Required Dimension: {{dimension}}
4. Required Deixis Level:
{{deixis_level}}
5. Required Question Type: {{q_type}}

Instruction: Generate a question that
strictly fits the dimension above.
Use the specified deixis phrasing style.
Format the answer according to the
question type.
Ensure no leakage of the object’s name
in the question.

1014
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