

Do MLLMs Understand Pointing? Benchmarking and Enhancing Referential Reasoning in Egocentric Vision

Anonymous ACL submission

Abstract

Egocentric AI agents, such as smart glasses, rely on pointing gestures to resolve referential ambiguities in natural language commands. However, despite advancements in Multimodal Large Language Models (MLLMs), current systems often fail to precisely ground the spatial semantics of pointing. Instead, they rely on spurious correlations with visual proximity or object saliency—a phenomenon we term “Referential Hallucination.” To address this gap, we introduce EgoPoint-Bench, a comprehensive question-answering benchmark designed to evaluate and enhance multimodal pointing reasoning in egocentric views. Comprising over 11k high-fidelity simulated and real-world samples, the benchmark spans five evaluation dimensions and three levels of referential complexity. Extensive experiments demonstrate that while state-of-the-art proprietary and open-source models struggle with egocentric pointing, models fine-tuned on our synthetic data achieve significant performance gains and robust Sim-to-Real generalization. This work highlights the importance of spatially-aware supervision and offers a scalable path toward precise egocentric AI assistants. The code and samples are available at <https://anonymous.4open.science/r/EgoPoint-BFBD/>.

1 Introduction

Egocentric Vision AI agents, particularly intelligent assistants integrated into wearable devices such as smart glasses, are fundamentally reshaping the paradigms of Augmented Reality and Human-Computer Interaction (Li et al., 2025). By perceiving the physical world through the user’s perspective, these systems aim to provide precise, context-aware Question Answering (QA) services. In such naturalistic interaction scenarios, users exhibit a strong preference for minimalistic spoken commands. These utterances often blend explicit object descriptions with highly ambiguous deictic

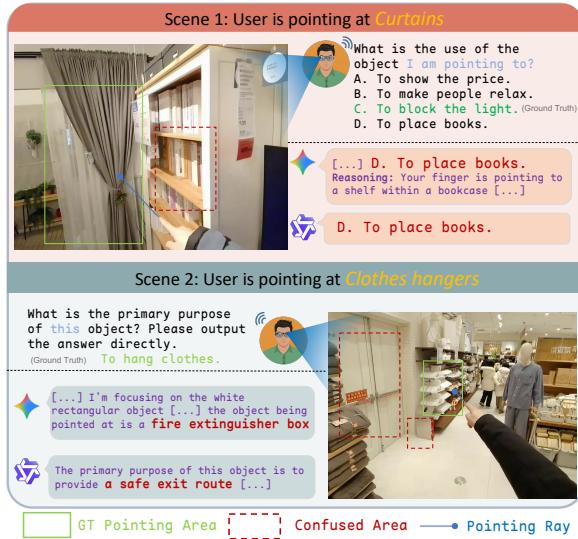


Figure 1: Spatial ambiguity in egocentric pointing. Two examples where current VLMs (e.g., Gemini 3, Qwen3-VL) fail to recognize the target spatially aligned with the pointing gesture. This highlights a critical gap in fine-grained 3D spatial reasoning. Note that neither bboxs nor rays were in the model inputs.

expressions (e.g., “*How do I use this?*” or “*How is the stuff over there?*”). When retrieving information from complex visual scenes, relying solely on unimodal language is often insufficient to resolve such referential ambiguity. Conversely, pointing gestures—instinctual and high-frequency actions in human communication—have been empirically proven to significantly enhance referential clarity and reduce the requisite length of natural language instructions (Mane et al., 2024; Chen et al., 2021). Consequently, endowing multimodal models with the capability to precisely comprehend “egocentric pointing” is critical for egocentric AI agents.

Despite the remarkable semantic understanding demonstrated by Multimodal Large Language Models (MLLMs) in general image captioning and QA tasks (OpenAI, 2024; Liu et al., 2023b), our investigation reveals a critical deficiency in spatial

061 reasoning when adapting current state-of-the-art
062 models to egocentric pointing QA. Specifically, as
063 depicted in Fig. 1, instead of tracing the precise
064 geometric projection of the pointing finger, models
065 frequently fixate on objects proximal to the hand or
066 visually salient entities, leading to *referential hal-
067 lucination*. This indicates that these models fail to
068 grasp the intrinsic spatial mechanism of “pointing”,
069 relying instead on spurious correlations based on
070 visual proximity.

071 A critical bottleneck is the scarcity of
072 high-quality, unambiguous data aligned within
073 the “Vision-Language-Space”. While visual
074 grounding is well-studied, benchmarks like Re-
075 fCOCO (Kazemzadeh et al., 2014) and Visual
076 Genome (Krishna et al., 2017) rely on third-person
077 internet imagery, lacking the wide-angle nature
078 of egocentric vision. Conversely, large egocentric
079 datasets like Ego4D (Grauman et al., 2022) and
080 EPIC-KITCHENS (Damen et al., 2022) prioritize
081 action recognition or hand-object interactions (Liu
082 et al., 2022), missing dense QA annotations that
083 capture “pointing-object” geometry. Without this
084 spatially-aware supervision, MLLMs fail to sepa-
085 rate hand appearance from spatial pointing intent,
086 hindering deictic referencing performance.

087 To address this challenge, we propose
088 EgoPoint-Bench, a benchmark designed to
089 systematically evaluate and enhance multi-modal
090 spatial reasoning in egocentric views. To balance
091 data scale with realism, our construction process
092 involves two complementary phases: In the
093 simulation phase, we introduce a physics-based
094 synthesis pipeline leveraging ray-casting to
095 generate noise-free pointing labels in 3D environ-
096 ments; in the real-world phase, we collect
097 real-scenario data to validate practical applicability.
098 For QA construction, we implemented a hybrid
099 “machine-generation, human-verification” pipeline
100 to ensure rigorous standards. Crucially, to capture
101 interaction diversity and enable fine-grained as-
102 sessment, we incorporated three referring language
103 patterns ranging from explicit descriptions to
104 implicit instructions, and structured the benchmark
105 across five core capability dimensions. In total, the
106 dataset comprises 10,567 high-fidelity simulation
107 QA pairs and 1,162 real-world samples.

108 To evaluate generalization, we employed a hy-
109 brid test set combining held-out simulation data
110 (in-domain) and real-world data (zero-shot cross-
111 domain). We benchmarked open-source (e.g.,
112 Qwen3-VL) and proprietary models (e.g., GPT-5),

113 followed by LoRA fine-tuning on simulation data.
114 The fine-tuned models significantly outperformed
115 baselines, including top proprietary ones. These
116 results validate the efficacy of high-quality syn-
117 synthetic data and highlight the scarcity of egocentric
118 pointing examples in current foundation models.

119 The main contributions of this paper are summa-
120 rized as follows:

- 121 • We propose EgoPoint-Bench, a novel bench-
122 mark designed to evaluate multi-modal spatial
123 reasoning in egocentric views. Our extensive
124 benchmarking reveals that current state-of-the-
125 art MLLMs significantly lack the capability to
126 understand fine-grained pointing gestures in first-
127 person scenarios.
- 128 • We develop a **physics-driven data generation**
129 **pipeline** that ensures both geometric precision
130 and linguistic diversity. By leveraging ray-
131 casting in simulation and incorporating hierar-
132 chical referring patterns (from explicit descrip-
133 tions to implicit instructions), we construct a
134 high-quality dataset containing over 11k pairs
135 across simulation and real-world domains.
- 136 • We demonstrate the efficacy of **sim-to-real gen-
137 eralization**. Models fine-tuned on our high-
138 fidelity synthetic data significantly outperform
139 strong proprietary models on real-world test sets,
140 validating the potential of synthetic data in ad-
141 dressing data scarcity for egocentric interaction.

2 Related Work

142 To contextualize our contributions, we compare
143 EgoPoint-Bench with representative benchmarks
144 in visual grounding, embodied perception, and
145 pointing-based interaction (see Table 1).

2.1 Third-Person Grounding

147 Foundational visual grounding benchmarks, rang-
148 ing from 2D (Mao et al., 2016; Krishna et al., 2017)
149 to 3D (Chen et al., 2020; Achlioptas et al., 2020)
150 and robotic settings (Qi et al., 2020), rely predom-
151 inantly on third-person views and explicit linguistic
152 descriptions. Critically, they lack the *egocentric*
153 *pointing signal* essential for intuitive HCI, often
154 causing models to rely on semantic priors rather
155 than geometric cues.

2.2 Egocentric Vision Perception

157 Large-scale datasets like Ego4D (Grauman et al.,
158 2022) and EPIC-KITCHENS (Damen et al., 2018)
159

Table 1: Comparison with existing datasets. Unlike benchmarks that rely on third-person views or pure text, EgoPoint-Bench uniquely combines egocentric vision with natural 3D hand pointing. It supports diverse question types and multi-level linguistic granularity. **R**: Real-world data, **S**: Synthetic data.

Dataset	Egocentric	Scenes	Natural Pointing	Task	Annotation Granularity	Size
RefCOCOg (Mao et al., 2016)	✗	R	✗	Grounding	Image + BBox + Text	26k imgs
ScanRefer (Chen et al., 2020)	✗	R	✗	Grounding	3D BBox + Text	11k scenes
YouRefIt (Chen et al., 2021)	✗	R	✓	Grounding	BBox + Gesture + Text	3k clips
Ego4D (Grauman et al., 2022)	✓	R	✗	Forecasting	Activity Labels	3.6k hrs
Look & Point (Nguyen et al., 2024)	✓	R	✓	Grounding	Gaze/Point Vector	1.3k hrs
Ges3ViG (Mane et al., 2024)	✗	S	✗	Grounding	3D Grounding + Gesture	35k samples
EOC-Bench (Dang et al., 2025)	✓	R	✗	QA	Temporal/Cognitive QA	3.2k QAs
EgoPoint-Bench (Ours)	✓	R+S	✓	QA	Image + Name + BBox + QA	11.7k QAs

capture rich first-person activities. However, they focus primarily on passive observation, such as action recognition. They lack active interaction scenarios. Attempts to add language, like RefEgo (Kurita et al., 2023), still rely on pure text without gesture signals. Recent works like EOC-Bench (Dang et al., 2025) introduce open-ended QA to egocentric videos. Yet, they rely on artificial visual prompts, such as red boxes drawn on images. This reliance creates a domain gap for Augmented Reality (AR). In real AR scenarios, systems should interpret natural, unaugmented user gestures.

2.3 Pointing-based Interaction

To enable pointing-driven interaction, Ges3ViG (Mane et al., 2024) introduces 3D directional gestures through synthesized avatars; however, it focuses on object localization within 3D scenes rather than question-answering (QA) interaction and lacks validation on real-world datasets. While COSM2IC (Weerakoon et al., 2022) achieves deictic interaction using virtual environments, it is limited by a lack of diversity in both object categories and scene types. Furthermore, most existing datasets rely on exhaustive descriptive language to resolve target ambiguity, creating a significant gap between these benchmarks and real-life interaction scenarios. In contrast, EgoPoint-Bench integrates high-fidelity synthetic and real-world data. We shift linguistic inputs from explicit descriptions (e.g., “the object I point at”) to implicit deictics (e.g., “this”), evaluating MLLMs’ pointing comprehension across diverse semantic dimensions.

3 EgoPoint-Bench

3.1 Overview

As shown in Fig. 2, we propose EgoPoint-Bench, a multimodal question-answering benchmark fo-

cused on first-person pointing gestures. It is designed to quantitatively evaluate the understanding and reasoning capabilities of MLLMs regarding pointing gestures and referring language in egocentric visual perception. Given the scarcity of labeled data in this domain, we employ a dual-source data construction strategy combining simulation and real-world data. On one hand, we introduce the **Point-sim** fully automated simulation framework, which utilizes 42 hand models to generate 10,567 synthetic samples across 1,838 high-fidelity 3D scenes (sourced from Ai2-THOR (Kolve et al., 2017; Deitke et al., 2022), HSSD (Khanna et al., 2023), ReplicaCAD (Szot et al., 2021), and HM3D (Ramakrishnan et al., 2021)). On the other hand, to enhance the realistic diversity of the dataset, we collected 1,162 samples featuring natural pointing interactions in diverse real-world environments. Furthermore, the benchmark covers five core dimensions and includes three question types—multiple-choice, true/false, and open-ended questions—with established standard splits for training, validation, and testing.

3.2 Image Collection

3.2.1 Point-Sim Simulation Framework

To synthesize diverse and high-fidelity scene-object pairs, we utilized the Habitat-Sim 3.0 simulator (Puig et al., 2023) and integrated static environments sourced from the AI2-THOR, HSSD, ReplicaCAD, and HM3D datasets. Specifically, we acquired high-quality 3D arm-hand models from ArtStation (ArtStation, 2025) and leveraged the Blender package (Blender Online Community, 2018) to manipulate parameters—such as joint articulation and scaling—thereby introducing structural diversity into the generated pointing gestures. Furthermore, we applied textures representing 3 distinct skin tones and 7 clothing styles across both

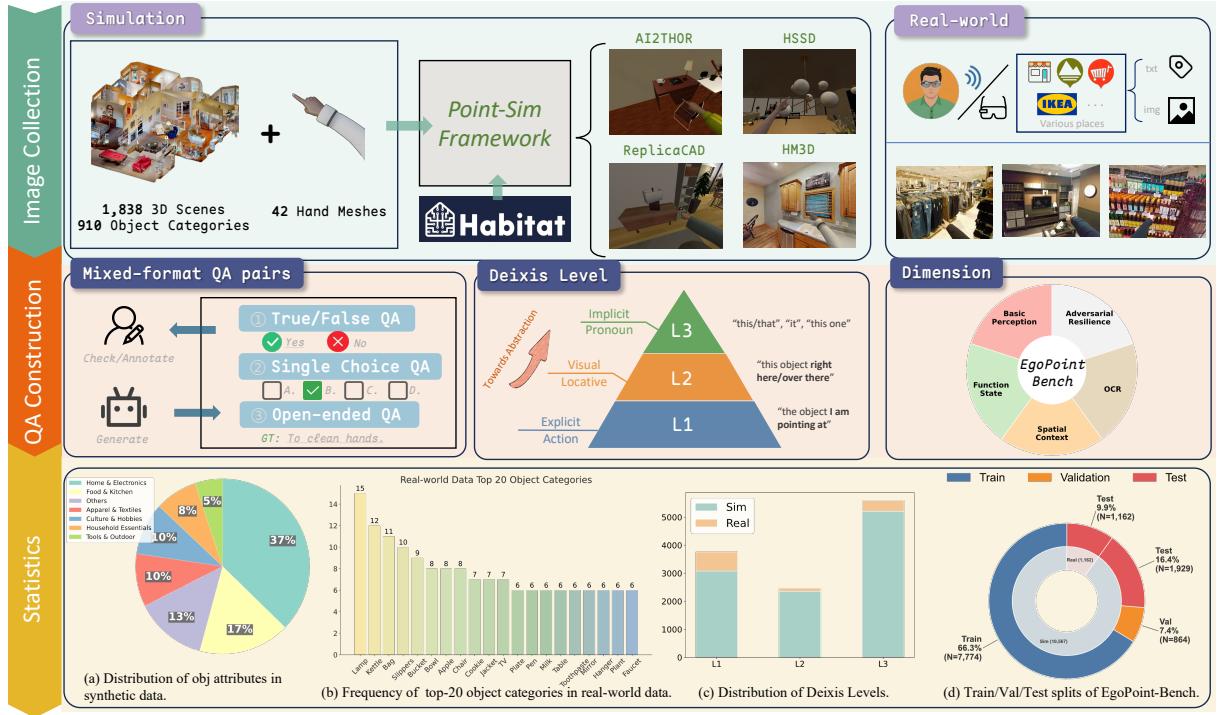


Figure 2: Overview of EgoPoint-Bench. Top: We construct the dataset using a scalable simulation pipeline (*Point-Sim*) alongside real-world collection to ensure visual diversity. Middle: The QA generation process spans five capability dimensions (Basic Perception, Function State, Spatial Context, OCR, and Adversarial Resilience) and incorporates a hierarchical deixis level taxonomy (L1: Explicit Action, L2: Visual Locative, L3: Implicit Pronoun), challenging models to resolve referential ambiguity based on finger-pointing gestures. Bottom: Detailed statistics showing object attributes, category frequency, and data distribution.

left and right hands, resulting in a total of 42 unique pointing models.

Simulation Initialization. To ensure domain robustness, we initialize the simulation with a diverse set of intrinsic and extrinsic parameters. To replicate the wide-angle optical characteristics of modern smart glasses, the camera’s vertical field of view (FOV) is uniformly sampled from $[100^\circ, 115^\circ]$. The agent is modeled with an ocular height $h_{eye} \sim \mathcal{U}(1.45, 1.70)$ meters, equipped with a multi-modal sensor suite capturing aligned RGB, Depth, and Semantic observations. Hand dominance (left/right) is randomized to balance the dataset distribution.

Target-Oriented Spatial Arrangement. For a selected target object O centered at $P_{obj} \in \mathbb{R}^3$, we compute the navigable manifold of the scene, represented as a Navigation Mesh (NavMesh) (Mononen, 2009). We sample a candidate agent position P_{agent} on this manifold within a constrained radius r_{search} (default $\leq 3.0\text{m}$), conditioned on a minimum collision clearance of 0.4m . To mitigate scale ambiguity, the sampling distance

is dynamically scaled based on the object’s volumetric size; this prevents scenarios where the object is either imperceptible or encompasses the entire field of view.

Once P_{agent} is fixed, we orient the agent’s camera to face the target. We construct the camera rotation matrix $R_{cam} \in SO(3)$ by aligning the optical axis with the forward vector $\mathbf{f} = (P_{obj} - P_{agent})/\|P_{obj} - P_{agent}\|$. The rotation is defined compactly as:

$$R_{cam} = \left[\frac{\mathbf{f} \times \mathbf{u}_w}{\|\mathbf{f} \times \mathbf{u}_w\|}, \frac{(\mathbf{f} \times \mathbf{u}_w) \times \mathbf{f}}{\|\mathbf{f} \times \mathbf{u}_w\|}, -\mathbf{f} \right]^\top \quad (1)$$

where \mathbf{u}_w is the global up vector.

Kinematic Hand Alignment. We instantiate the hand model within the lower visual field of the camera. The core objective is to align the index finger’s direction vector with the line of sight to the object. Let \mathbf{u}_{rest} denote the normalized initial directional vector of the index finger and \mathbf{u}_{target} be the normalized vector pointing from the hand to the object. We compute the minimal rotation R_{hand} via *Rodrigues’ rotation formula*. The rotation is param-

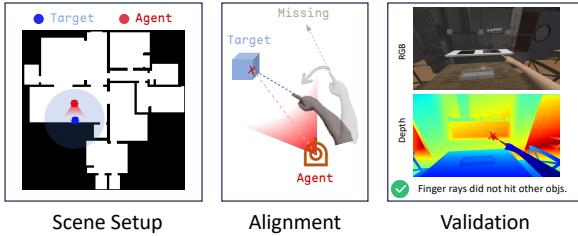


Figure 3: Point-sim Simulation Framework.

279 terized by the unit rotation axis $\mathbf{k} = \frac{\mathbf{u}_{rest} \times \mathbf{u}_{target}}{\|\mathbf{u}_{rest} \times \mathbf{u}_{target}\|}$
 280 and angle $\theta = \arccos(\mathbf{u}_{rest} \cdot \mathbf{u}_{target})$:

$$281 R_{hand} = I + [\mathbf{k}] \times \sin \theta + [\mathbf{k}]^2 (1 - \cos \theta) \quad (2)$$

282 where $[\mathbf{k}] \times$ denotes the skew-symmetric matrix of
 283 \mathbf{k} . Subsequently, to simulate realistic human pointing
 284 behavior, we apply small stochastic perturbations
 285 to the pitch and yaw of the computed camera
 286 orientation.

287 **Validation and Data Format.** We enforce a
 288 validity check by casting a ray from the
 289 index finger tip toward P_{obj} . An instance is dis-
 290 carded if the ray intersects with any obstacle
 291 before reaching the target. The pipeline explic-
 292 itly exports a comprehensive data tuple $\mathcal{D} =$
 293 $\{I_{rgb}, I_{depth}, I_{sem}, \mathbf{b}_{obj}, P_{2D}, y_{id}\}$, containing the
 294 images, 2D bounding boxes, projected coordinates,
 295 and semantic identifiers. This pipeline is general-
 296 ized to support any scene compatible with Habitat-
 297 Sim.

3.2.2 Real-world Data Collection

298 We recruited eight volunteers equipped with MLVi-
 299 sion smart glasses (MLVision, 2025) to collect data
 300 on objects of interest in diverse real-world envi-
 301 ronments. The data collection scenarios spanned
 302 a broad spectrum of settings, including but not
 303 limited to indoor places like furniture stores, con-
 304 venience stores, and apartments, as well as outdoor
 305 locations such as shopping malls, zoos, and streets.
 306 Participants were instructed to record a video when-
 307 ever they encountered an object of interest, explic-
 308 itly pointing at the target while verbally stating
 309 its name to serve as the ground truth and posing
 310 a relevant description or question. In total, 1,162
 311 valid image frames were curated from the collected
 312 footage (see Appendix C.1 for details).

3.3 Capability Taxonomy

313 Inspired by canonical multimodal benchmarks like
 314 MMBench (Liu et al., 2024b) and MME (Fu et al.,

315 2025a), we design a five-dimensional taxonomy
 316 to comprehensively evaluate MLLMs within first-
 317 person pointing interactions. This framework is
 318 structured to bridge the gap between low-level per-
 319 ception and high-level robust reasoning:

- 320 • **Basic Perception (BP):** Identifies fundamental
 321 attributes (category, color, texture) and visual
 322 distinctiveness for gesture alignment.
- 323 • **Function & State (FS):** Infers semantic prop-
 324 erties (e.g., edibility, operability) and dynamic
 325 functional states.
- 326 • **Spatial Context (SC):** Perceives egocentric spa-
 327 tial relationships, including localization, scene
 328 compatibility, and reachability.
- 329 • **OCR:** Extracts textual info from targets, such as
 330 brand names, slogans, and instructions.
- 331 • **Adversarial Resilience (AR):** Maintains reliabil-
 332 ity against adversarial inputs like counterfactuals,
 333 fallacies, and void references.

3.4 QA Pair Construction

334 For comprehensive deictic evaluation, our dataset
 335 employs a hierarchical taxonomy and hybrid ques-
 336 tion format.

337 **Hierarchical Deixis Taxonomy.** We design three
 338 levels of deixis to cover the broadest possible se-
 339 mantic range of referential inquiries: L1 (Explicit
 340 Action) describes the gesture directly (e.g., “the
 341 object I am pointing at”); L2 (Visual Locative)
 342 implies spatial proximity (e.g., “that thing over
 343 there”); and L3 (Implicit Pronoun) relies purely on
 344 visual context (e.g., “this”).

345 **Task Formulation.** To balance ecological validity
 346 with objective evaluation, we adopt diverse ques-
 347 tion formats. We incorporate Open-ended ques-
 348 tions to reflect the natural, unrestricted nature of
 349 human inquiry. However, to ensure a fair, consis-
 350 tent, and automated testing benchmark, we also
 351 construct True/False and Single-Choice Questions.
 352 This hybrid composition retains the semantic com-
 353 plexity of realistic user intent while facilitating rig-
 354 orous quantitative comparison.

355 **Human-Machine Collaborative Data Curation.**
 356 To ensure both diversity and scalability, we es-
 357 tablished a collaborative data generation pipeline.
 358 For the simulation subset, we leveraged a gen-
 359 erative model to synthesize QA pairs, thereby
 360 mitigating the rigidity of fixed templates and
 361 expanding the dimensionality of potential ques-
 362 tions (Liu et al., 2023b). To prevent model
 363 hallucinations—specifically the misidentification
 364 of pointed-at objects—we implemented a visual

Table 2: Main results on real-world and simulation testsets. We highlight the best Direct results in blue and the best LoRA results in orange. The Gain column shows the improvement of LoRA over Direct.

Model	Method	Simulation testset					Real-world testset					Overall			
		BP	FS	SC	OCR	AR	Mean	BP	FS	SC	OCR	AR	Mean	Avg.	Gain
Random	-	27.95	26.83	38.89	43.24	52.17	31.14	25.19	22.74	37.30	26.32	45.76	28.94	30.24	-
Human	-	91.86	97.14	100	93.33	100	95.80	96.24	98.04	96.39	95.65	89.09	96.00	95.90	-
<i>Closed-source Models</i>															
Gemini-3.0-pro	Direct	52.47	51.39	70.47	74.85	57.16	56.44	66.63	75.44	79.06	83.28	60.16	72.00	62.29	-
Gemini-3.0-flash	Direct	54.39	53.33	66.58	73.64	58.39	57.21	67.04	73.98	78.89	80.90	63.02	71.84	62.71	-
GPT-5-2-Instant	Direct	54.14	49.81	66.14	75.45	50.88	54.80	55.31	67.49	81.62	69.55	71.27	66.76	59.29	-
GPT-5-mini	Direct	59.96	58.22	67.65	68.79	36.09	57.66	52.81	66.73	67.32	66.27	52.38	60.57	58.75	-
<i>Open-source Models (Direct vs. LoRA)</i>															
Llava-1.5-7B	Direct	50.83	46.89	54.86	50.91	41.92	48.82	36.48	45.85	62.13	22.69	69.37	47.19	48.21	-
	LoRA	76.41	72.06	60.63	66.06	86.44	73.18	37.50	56.55	64.17	33.43	95.40	54.54	66.17	+17.96
Llava-Next-7B	Direct	47.42	45.42	55.92	53.33	46.59	48.17	31.68	51.75	60.09	39.40	56.19	46.44	47.52	-
	LoRA	80.39	80.86	79.56	72.42	86.13	80.93	40.10	66.32	71.23	40.90	90.63	59.64	72.93	+25.41
GLM-4.6V-Flash	Direct	56.16	50.81	66.14	61.52	36.17	53.29	48.32	59.77	67.32	72.84	43.49	56.42	54.47	-
	LoRA	77.16	73.28	82.01	80.00	64.21	74.86	53.88	60.70	66.55	67.16	72.70	61.26	69.74	+15.27
InternVL-3.5-2B	Direct	51.97	55.14	61.50	66.97	26.05	51.74	44.85	60.47	62.55	59.40	43.65	53.73	52.49	-
	LoRA	71.40	75.36	76.61	78.79	81.99	75.43	46.33	64.04	71.83	57.31	89.68	62.03	70.39	+17.90
InternVL-3.5-8B	Direct	52.86	52.50	63.51	66.36	35.63	52.62	50.05	60.88	63.32	68.96	50.79	57.09	54.30	-
	LoRA	74.60	77.81	82.76	78.79	86.21	78.86	50.56	69.88	74.47	63.88	90.00	66.13	74.07	+19.77
InternVL-3.5-14B	Direct	46.79	51.14	62.07	71.52	33.56	49.99	47.76	65.09	72.51	65.07	45.24	58.59	53.23	-
	LoRA	75.99	76.00	83.01	76.36	86.51	78.59	54.03	73.10	80.26	68.66	82.86	68.92	74.95	+21.72
Qwen3-VL-8B	Direct	57.55	54.00	70.34	77.58	52.11	58.29	47.81	58.42	74.55	68.96	53.17	58.14	58.23	-
	LoRA	81.31	80.92	80.56	84.24	82.91	81.36	60.36	72.28	81.96	71.94	88.57	71.96	77.83	+19.60
Qwen3-VL-32B	Direct	56.52	53.75	65.64	79.39	60.23	58.28	56.38	65.03	76.09	79.70	56.83	64.30	60.54	-
	LoRA	80.75	82.50	83.39	83.03	82.84	82.20	62.09	71.35	81.96	73.43	83.81	71.84	78.30	+17.76

prompting strategy (Yang et al., 2023): ground-truth bounding boxes were rendered directly onto the input images to explicitly guide the model’s focus. Furthermore, ground-truth category labels and attributes were injected into text prompts to ensure context-aware responses. We validated the fidelity of this automated pipeline through a manual inspection of the test set, identifying and correcting a minimal 3% error rate. The real-world dataset followed a rigorous human-in-the-loop workflow. Annotators labeled the bounding boxes of target objects based on raw open-ended descriptions or questions. Additionally, they provided factual answers and underwent strict cross-verification.

3.5 Dataset Statistics

EgoPoint-Bench comprises 10,567 simulation and 1,162 real-world QA pairs, with an average question length of 9.81 words. The simulation subset is partitioned into 8,638 samples for training/validation (9:1 split) and 1,929 for testing, while the real-world data serves exclusively as a test set. To ensure rigorous evaluation, each (scene, object) tuple in the simulation data appears exactly once. The dataset covers 1,838 unique scenes and 910 object categories. Fig. 2 presents detailed statistics regarding (a) synthetic object attributes, (b) top-20 real-world object categories, (c) deixis levels, and (d) dataset splits.

4 Experiments

4.1 Experimental Setup

We conduct a comprehensive evaluation across a wide spectrum of MLLMs, spanning both proprietary and open-source architectures. For proprietary models, we test the latest iterations including Gemini-3.0 (Pro/Flash) (Team et al., 2025a) and the GPT-5 series (5.2-Instant/5-Mini) (OpenAI). For open-source models, we select representative baselines with varying scales: InternVL-3.5 (2/8/14B) (Wang et al., 2025), Qwen3-VL (8/32B) (Bai et al., 2025), LLaVA v1.5 (Liu et al., 2023a), LLaVA-NeXT (Liu et al., 2024a), and GLM-4.6v-Flash (Team et al., 2025b). To establish performance bounds, we incorporate a random baseline for choice-based tasks and report human performance evaluated on 1,000 samples (balanced between simulation and real-world data) by three volunteers. The evaluation operates under two settings: (1) **Zero-shot Inference**, where models directly predict answers from visual-textual inputs; and (2) **Instruction Tuning**, where we apply LoRA-based (Hu et al., 2022) parameter-efficient fine-tuning. Crucially, our training set consists exclusively of simulation data to assess sim-to-real generalization. Implementation details are provided in Appendix A.

Table 3: Detailed Breakdown by Question Type. Types: Single-Choice (SCQ), True/False(TF), Open-Ended questions (OQ). Dimensions: Basic Perception (BP), Function & Affordance (FS), Spatial Context (SC), OCR & Text (OCR), Adversarial Relation (AR). **Blue** indicates best Direct performance; **Orange** indicates best LoRA performance.

Model	Method	BP			FS			SC			OCR			AR		
		SCQ	TF	OQ												
Random	-	26.25	40.62	-	23.28	49.37	-	29.44	48.06	-	26.67	46.67	-	26.67	50.26	-
<i>Closed-source Models</i>																
Gemini-3.0-pro	Direct	60.39	50.00	33.23	61.70	64.56	35.14	80.95	74.27	60.34	95.56	76.67	67.59	53.33	67.69	48.02
Gemini-3.0-flash	Direct	61.44	59.38	33.87	61.81	70.89	37.84	79.22	69.90	60.51	91.11	70.00	70.34	60.00	69.74	49.04
GPT-5.2-Instant	Direct	55.87	56.25	36.45	57.80	62.03	32.79	76.19	69.90	70.77	73.33	80.00	67.93	66.67	73.85	38.76
GPT-5-mini	Direct	57.72	62.50	44.52	62.61	78.48	35.50	67.10	74.76	55.56	71.11	70.00	63.45	33.33	55.90	26.10
<i>Open-source Models (Direct vs. LoRA)</i>																
Llava-1.5-7B	Direct	44.83	56.25	40.65	48.74	45.57	30.09	60.61	62.14	45.30	26.67	80.00	22.07	13.33	75.38	27.01
	LoRA	60.16	53.12	68.06	71.79	40.51	48.83	67.53	63.11	49.74	44.44	90.00	32.76	73.33	98.97	80.11
Llava-Next-7B	Direct	40.77	56.25	35.81	49.20	54.43	28.83	58.87	61.65	48.38	44.44	83.33	28.62	46.67	64.10	34.12
	LoRA	63.41	78.12	62.58	79.01	77.22	53.15	79.65	83.50	55.73	51.11	93.33	41.72	86.67	95.38	79.10
GLM-4.6V-Flash	Direct	53.08	71.88	41.29	54.70	70.89	33.51	67.10	68.93	61.71	75.56	60.00	64.48	46.67	46.67	28.93
	LoRA	67.71	81.25	59.03	70.87	81.01	47.93	77.92	77.18	67.52	73.33	83.33	68.62	80.00	76.41	55.48
InternVL-3.5-2B	Direct	49.83	62.50	31.29	60.89	67.09	17.84	66.23	68.45	42.05	64.44	76.67	55.17	26.67	43.08	19.77
	LoRA	60.98	81.25	52.58	74.89	79.75	41.08	78.79	82.04	53.16	62.22	90.00	61.03	80.00	92.82	75.71
InternVL-3.5-8B	Direct	52.85	56.25	33.55	58.72	64.56	20.90	71.43	65.05	44.79	71.11	73.33	62.07	46.67	54.36	24.86
	LoRA	64.69	78.12	58.39	78.56	79.75	46.13	83.55	84.47	61.54	66.67	96.67	61.72	80.00	94.36	80.45
InternVL-3.5-14B	Direct	47.62	65.62	31.61	58.83	64.56	24.14	71.00	69.90	51.62	71.11	83.33	58.28	46.67	49.74	22.94
	LoRA	67.71	78.12	50.97	78.33	78.48	47.03	84.42	86.41	68.72	77.78	86.67	61.03	86.67	89.23	80.90
Qwen3-VL-8B	Direct	54.36	62.50	37.74	57.68	62.03	32.97	73.16	76.70	62.05	73.33	76.67	71.38	53.33	58.97	45.20
	LoRA	73.17	78.12	63.55	81.31	81.01	51.17	80.52	89.32	68.03	77.78	93.33	70.34	73.33	91.79	77.97
Qwen3-VL-32B	Direct	57.61	65.62	35.81	59.98	67.09	30.09	74.89	68.93	62.56	80.00	80.00	78.97	60.00	65.13	52.43
	LoRA	73.64	75.00	64.52	81.65	88.61	50.45	82.68	88.83	72.31	77.78	86.67	74.14	80.00	85.13	81.24

4.2 Evaluation Metrics

EgoPoint-Bench comprises three task types: True/False (TF), Single Choice Questions (SCQ), and Open-ended Questions (OQ). Following established protocols (Fu et al., 2025b; Li et al., 2024), we adopt exact matches for the TF and SCQ tasks. For the OQ task, evaluating open-ended responses remains challenging; therefore, we employ an LLM-as-a-Judge approach (Zheng et al., 2023). Specifically, GPT-4o (OpenAI, 2024) scores the model predictions against ground-truth answers on a scale of 0 to 1 (with an increment of 0.2). Further details can be found in Appendix A.4.

4.3 Main Results

Table 2 presents the performance of proprietary and open-source models across simulation and real-world test sets. We reported 3 key observations: **Off-the-shelf VLMs struggle with fine-grained egocentric deictic understanding.** In the Direct inference setting, even the most advanced proprietary models (e.g., Gemini-3.0-pro, GPT-5-mini) and open-source models fail to achieve satisfactory performance, hovering around 60% accuracy overall. A significant gap remains compared to human performance (95.90%), particularly in tasks requiring precise spatial geometric reasoning (AR and BP metrics). This underscores that general-purpose pre-training is insufficient for comprehend-

ing complex “finger-pointing” semantics in egocentric views.

Simulation-based tuning yields significant gains. Fine-tuning with our generated simulation data via LoRA brings substantial improvements across all open-source models. As shown in the “Gain” column, we observe a consistent performance boost ranging from +15.27% to +25.41%. Notably, LLaVA-Next-7B achieves a remarkable 25.41% improvement, demonstrating that the visual-semantic alignment provided by our synthetic data effectively unlocks the models’ potential for pointing-oriented VQA tasks.

Strong Sim-to-Real generalization. Crucially, the models trained on simulation data generalize exceptionally well to the Real-world testset. For instance, Qwen3-VL-8B improves its real-world mean accuracy from 58.14% to 71.96% after tuning on simulation data. This suggests that the geometric and semantic features of finger-pointing learned from our high-fidelity simulation environment are robust and transferrable, validating the efficacy of our data generation pipeline for real-world applications.

4.4 Detailed Analysis

Analysis Across Different Question Types. Table 3 dissects model performance across three answer formats (SCQ , TF , OQ), revealing three critical insights: (1) **Generative bottleneck.** Direct

Table 4: Performance evaluation of representative MLLMs on Sim and Real test sets across three deixis levels (L1-L3). The best results are highlighted in **bold**.

Model	Method	Sim			Real		
		L1	L2	L3	L1	L2	L3
Gemini-3.0-pro	Direct	51.03	59.00	59.53	72.57	65.20	72.76
GPT-5-mini	Direct	58.22	59.82	56.02	59.32	54.40	64.38
InternVL-3.5-2B	Direct	52.51	53.83	49.96	56.25	48.20	50.73
	LoRA	74.71	74.60	76.47	59.03	61.40	67.50
Llava-1.5-7B	Direct	48.11	51.47	47.98	42.27	52.60	54.48
	LoRA	72.01	75.60	72.83	51.21	60.80	58.80
Qwen3-VL-32B	Direct	50.52	62.72	62.28	64.31	62.40	64.79
	LoRA	83.77	81.63	81.20	69.59	71.80	75.83

models exhibit a sharp performance drop in Open-Ended questions (\mathcal{OQ}) compared to discriminative formats ($\mathcal{SCQ}, \mathcal{TF}$), indicating that while pre-trained models can distinctively *recognize* correct references, they struggle to actively *formulate* precise spatial descriptions without specific tuning. (2) **Geometric alignment in Adversarial Relations.** The AR dimension, which requires distinguishing targets from spatial distractors, sees the most dramatic gains from LoRA (e.g., Llava-1.5-7B AR- \mathcal{OQ} jumps from 27.01% to 80.11%). This proves that our dataset effectively teaches the specific “logic of pointing” absent in general pre-training. (3) **Spatial-semantic saturation.** While text-heavy tasks (OCR) show robust baseline performance, spatial tasks (BP, SC, AR) benefit disproportionately from fine-tuning, confirming that our method primarily enhances fine-grained spatial capabilities rather than basic visual recognition.

Impact of different deixis levels. Contrary to the intuition that explicit instructions should mitigate ambiguity, our results reveal that L1 (Explicit Action) does not consistently outperform L2 (Visual Locative) or L3 (Implicit Pronoun). For instance, in the Sim dataset, the Direct Qwen3-VL-32B model shows a significant drop in L1 (50.52%) compared to L2 (62.72%) and L3 (62.28%). This counter-intuitive finding underscores a critical deficiency in current MLLMs: even when explicitly prompted to attend to a pointing gesture, models struggle to grounded the spatial action, indicating a lack of genuine understanding of fine-grained geometric cues. Furthermore, L3 often achieves the highest accuracy in the Real dataset (e.g., 75.83% for Qwen3-VL-32B LoRA). This suggests that instead of resolving the specific deictic gesture, models may over-rely on object saliency or scene priors to infer the target.

Figure 4: Distribution of error types and rescue scores.

4.5 Error Types

To probe the limitations of current VLMs in finger-pointing VQA, we conducted a manual analysis on 400 error cases generated by Qwen3-VL-8B and Gemini-3-Pro (balanced between simulated and real-world data). We classified errors into three primary categories: (1) **Proximal Distraction (PD)**, where the model fails to follow the pointing ray and instead grounds the answer to a distractor immediately adjacent to the finger; (2) **Gesture Neglect (GN)**, where the model ignores the gesture entirely, attending to visually salient or distant objects; and (3) **Reasoning Failure (RF)**, where the target is correctly localized, but the model fails in downstream reasoning. Fig. 4 (Left) illustrates the error distribution, revealing that PD and GN are the most prevalent failure modes. Fig. 4 (Right) demonstrates the efficacy of our approach by reporting the “Rescue Score”—defined as the percentage of these specific failure cases successfully corrected by our LoRA-finetuned Qwen3-8B. Our method achieves Rescue Scores ranging from 57.0% to 72.4% across datasets, confirming its capability to effectively recover from the spatial ambiguity and gesture perception issues inherent in the baselines. More examples are provided in Appendix B.2.

5 Conclusion

We introduced EgoPoint-Bench to evaluate and enhance MLLMs’ understanding of egocentric finger-pointing gestures. Our evaluation reveals that while existing MLLMs struggle with this task, fine-tuning on high-quality synthetic data mitigates referential hallucinations, enabling robust real-world generalization. This work paves a scalable path toward precise egocentric AI assistants.

552 Limitations

553 While EgoPoint-Bench provides a benchmark for
554 evaluating current egocentric multimodal finger-
555 pointing understanding, it possesses two primary
556 limitations: 1) Although fine-tuning with automati-
557 cally synthesized simulation data has proven ef-
558 fective on real-world datasets, we observed that
559 the performance gain on real-world data is smaller
560 than that on simulated data. This suggests that real-
561 world user pointing behaviors, along with environ-
562 mental complexities such as arm backgrounds, are
563 significantly more intricate and challenging than
564 those in simulation. Simulated data struggles to
565 sufficiently cover the behavioral characteristics of
566 the real world. 2) To facilitate easier evaluation,
567 current dataset questions and answers are relatively
568 brief, which diverges from the complex, multi-turn
569 dialogue patterns found in real-world interactions.
570 We focus first on whether MLLMs can explicitly
571 understand the fundamental meaning of “pointing,”
572 as our experimental results indicate that even this
573 poses a significant challenge for current models.
574 Mastering these basic comprehension skills is a
575 vital prerequisite before addressing more difficult
576 and complex multi-turn interaction tasks.

577 Ethical Statement

578 University ethics review board approves human-
579 subjects research and they approved this project.
580 In our real-world data collection environment, we
581 have anonymized all human faces and any identi-
582 fying information within the images by applying
583 a blurring treatment. This ensures that no privacy
584 leaks occur and that the dataset contains no harmful
585 content. All datasets used in this work, including
586 HM3D, AI2-THOR, ReplicaCAD, and HSSD, are
587 properly cited and used strictly for non-commercial
588 academic research purposes.

589 References

590 Panos Achlioptas and 1 others. 2020. Referit3d: Neural
591 listeners for fine-grained 3d object identification in
592 real-world scenes. In *ECCV*.

593 ArtStation. 2025. ArtStation. <https://www.artstation.com>. Accessed: 2025-12-05.

595 Shuai Bai, Yuxuan Cai, Ruizhe Chen, Keqin Chen,
596 Xionghui Chen, Zesen Cheng, Lianghao Deng, Wei
597 Ding, Chang Gao, Chunjiang Ge, Wenbin Ge, Zhi-
598 fang Guo, Qidong Huang, Jie Huang, Fei Huang,
599 Binyuan Hui, Shutong Jiang, Zhaohai Li, Mingsheng

Li, and 45 others. 2025. Qwen3-vl technical report.
Preprint, arXiv:2511.21631.

600 Blender Online Community. 2018. *Blender - a 3D mod-
601 elling and rendering package*. Blender Foundation,
602 Stichting Blender Foundation, Amsterdam.

603 Dave Zhenyu Chen, Angel X Chang, and Matthias
604 Nießner. 2020. Scanrefer: 3d object localization
605 in rgb-d scans using natural language. In *ECCV*.

606 Yixin Chen, Qing Li, Deqian Kong, Yik Lun Kei, Song-
607 Chun Zhu, Tao Gao, Yixin Zhu, and Siyuan Huang.
608 2021. Yourefit: Embodied reference understanding
609 with language and gesture. In *Proceedings of the
610 IEEE/CVF International Conference on Computer
611 Vision*, pages 1385–1395.

612 Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
613 Antonino Furnari, Jian Ma, Evangelos Kazakos, Da-
614 vide Moltisanti, Jonathan Munro, Toby Perrett, Will
615 Price, and 1 others. 2022. Rescaling egocentric vi-
616 sion: Collection, pipeline and challenges for epic-
617 kitchens-100. *International Journal of Computer
618 Vision (IJCV)*, 130(1):33–55.

619 Dima Damen and 1 others. 2018. Scaling egocentric
620 vision: The epic-kitchens dataset. In *ECCV*.

621 Ronghao Dang and 1 others. 2025. Ecbench: Can multi-
622 modal foundation models understand the egocentric
623 world? *arXiv preprint arXiv:2501.05031*.

624 Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca
625 Weihs, Jordi Salvador, Kiana Ehsani, Winson Han,
626 Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, and
627 Roozbeh Mottaghi. 2022. ProcTHOR: Large-Scale
628 Embodied AI Using Procedural Generation. In
629 *NeurIPS*. Outstanding Paper Award.

630 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei
631 Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
632 Zheng, Ke Li, Xing Sun, Yunsheng Wu, Rongrong Ji,
633 Caifeng Shan, and Ran He. 2025a. Mme: A com-
634 prehensive evaluation benchmark for multimodal large
635 language models. *Preprint*, arXiv:2306.13394.

636 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li,
637 Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
638 Zhou, Yunhang Shen, Mengdan Zhang, and 1 others.
639 2025b. Video-mme: The first-ever comprehensive
640 evaluation benchmark of multi-modal llms in video
641 analysis. In *Proceedings of the Computer Vision
642 and Pattern Recognition Conference*, pages 24108–
643 24118.

644 Kristen Grauman and 1 others. 2022. Ego4d: Around
645 the world in 3,000 hours of egocentric video. In
646 *CVPR*.

647 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
648 Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
649 Weizhu Chen, and 1 others. 2022. Lora: Low-rank
650 adaptation of large language models. *ICLR*, 1(2):3.

653	Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. 2014. Referitgame: Referring to objects in photographs of natural scenes. In <i>Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)</i> , pages 787–798.	709
654		710
655		711
656		712
657		713
658		714
659	Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett, Dhruv Batra, Alexander Clegg, Eric Undersander, Angel X. Chang, and Manolis Savva. 2023. Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of 3D Scene Scale and Realism Tradeoffs for ObjectGoal Navigation. <i>arXiv preprint</i> .	715
660		716
661		717
662		718
663		719
664		720
665		721
666	Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. 2017. AI2-THOR: An Interactive 3D Environment for Visual AI. <i>arXiv</i> .	722
667		723
668		724
669		725
670		726
671	Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, and 1 others. 2017. Visual genome: Connecting language and vision using crowdsourced dense image annotations. <i>International Journal of Computer Vision (IJCV)</i> , 123(1):32–73.	727
672		728
673		729
674		730
675		731
676		732
677		733
678	Shuhei Kurita and 1 others. 2023. Refego: Referring expression comprehension dataset from first-person perception of ego4d. In <i>ICCV</i> .	734
679		735
680		736
681	Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, and 1 others. 2024. Mvbench: A comprehensive multi-modal video understanding benchmark. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pages 22195–22206.	737
682		738
683		739
684		740
685		741
686		742
687		743
688	Xiang Li, Heqian Qiu, Lanxiao Wang, Hanwen Zhang, Chenghao Qi, Linfeng Han, Huiyu Xiong, and Hongliang Li. 2025. Challenges and trends in egocentric vision: A survey. <i>arXiv preprint arXiv:2503.15275</i> .	744
689		745
690		746
691		747
692		748
693	Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2023a. Improved baselines with visual instruction tuning.	749
694		750
695		751
696	Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. 2024a. Llava-next: Improved reasoning, ocr, and world knowledge.	752
697		753
698		754
699	Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023b. Visual instruction tuning. In <i>37th Conference on Neural Information Processing Systems (NeurIPS)</i> .	755
700		756
701		757
702		758
703	Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, and 1 others. 2024b. Mmbench: Is your multi-modal model an all-around player? In <i>European conference on computer vision</i> , pages 216–233. Springer.	759
704		760
705		761
706		762
707		763
708		764
709	Yunze Liu, Yun Liu, Che Jiang, K Alvarez, Su Yang, Yanwei Fu, and 1 others. 2022. Hoi4d: A 4d egocentric dataset for category-level human-object interaction. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> , pages 21013–21022.	709
710		711
711		712
712		713
713		714
714	Atharv Mahesh Mane and 1 others. 2024. Ges3vig: Incorporating pointing gestures into language-based 3d visual grounding. In <i>CVPR</i> .	715
715		716
716		717
717	Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy. 2016. Generation and comprehension of unambiguous object descriptions. In <i>CVPR</i> .	718
718		719
719		720
720		721
721	MLVision. 2025. Mlvision official website. https://mlvision.com/ . Accessed: 2026-01-05.	722
722		723
723	Mikko Mononen. 2009. Recast: Navigation-mesh construction toolkit for games. Https://github.com/recastnavigation/recastnavigation .	724
724		725
725		726
726	Tuan Nguyen and 1 others. 2024. Look & point: Egocentric-exocentric pointing-based reference resolution. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> .	727
727		728
728		729
729		730
730		731
731	OpenAI. Gpt-5 system card.	732
732		733
733	OpenAI. 2024. Gpt-4o system card. Accessed: 2026-01-05.	734
734		735
735	Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dalilaire Cote, Ruslan Partsey, Jimmy Yang, Ruta Desai, Alexander William Clegg, Michal Hlavac, Tiffany Min, Theo Gervet, Vladimir Vondrus, Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal Kalakrishnan, Jitendra Malik, Devendra Singh Chaplot, and 4 others. 2023. Habitat 3.0: A co-habitat for humans, avatars and robots.	736
736		737
737		738
738		739
739		740
740		741
741		742
742	Yuankai Qi and 1 others. 2020. Reverie: Remote embodied visual referring expression in real indoor environments. In <i>CVPR</i> .	743
743		744
744		745
745		746
746	Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexander Clegg, John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, Manolis Savva, Yili Zhao, and Dhruv Batra. 2021. Habitat-matterport 3d dataset (HM3d): 1000 large-scale 3d environments for embodied AI. In <i>Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track</i> .	747
747		748
748		749
749		750
750		751
751		752
752		753
753		754
754	Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan, Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra Malik, and 2 others. 2021. Habitat 2.0: Training home assistants to rearrange their habitat. In <i>Advances in Neural Information Processing Systems (NeurIPS)</i> .	755
755		756
756		757
757		758
758		759
759		760
760		761
761		762
762		763
763		764

765 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
 766 Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
 767 Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
 768 Millican, David Silver, Melvin Johnson, Ioannis
 769 Antonoglou, Julian Schrittwieser, Amelia Glaese,
 770 Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki
 771 Lazaridou, and 1332 others. 2025a. *Gemini: A fam-
 772 ily of highly capable multimodal models*. *Preprint*,
 773 arXiv:2312.11805.

774 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo
 775 Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 776 Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Wei-
 777 han Wang, Yan Wang, Yean Cheng, Zehai He, Zhe
 778 Su, Zhen Yang, Ziyang Pan, and 69 others. 2025b.
 779 *Glm-4.5v and glm-4.1v-thinking: Towards versatile
 780 multimodal reasoning with scalable reinforcement
 781 learning*. *Preprint*, arXiv:2507.01006.

782 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu,
 783 Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin
 784 Jing, Shenglong Ye, Jie Shao, and 1 others. 2025. Inter-
 785 nternvl3.5: Advancing open-source multimodal mod-
 786 els in versatility, reasoning, and efficiency. *arXiv
 787 preprint arXiv:2508.18265*.

788 Dulanga Weerakoon, Vigneshwaran Subbaraju, Tuan
 789 Tran, and Archan Misra. 2022. Cosm2ic: optimiz-
 790 ing real-time multi-modal instruction comprehension.
 791 *IEEE Robotics and Automation Letters*, 7(4):10697-
 792 10704.

793 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
 794 yuan Li, and Jianfeng Gao. 2023. Set-of-mark
 795 prompting unleashes extraordinary visual grounding
 796 in gpt-4v. *arXiv preprint arXiv:2310.11441*.

797 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
 798 Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
 799 Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
 800 2023. Judging llm-as-a-judge with mt-bench and
 801 chatbot arena. *Advances in neural information pro-
 802 cessing systems*, 36:46595–46623.

803 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
 804 Ye, Zheyuan Luo, Zhangchi Feng, and Yongqiang Ma.
 805 2024. *Llamafactory: Unified efficient fine-tuning
 806 of 100+ language models*. In *Proceedings of the
 807 62nd Annual Meeting of the Association for Compu-
 808 tational Linguistics (Volume 3: System Demo-
 809 strations)*, Bangkok, Thailand. Association for Compu-
 810 tational Linguistics.

A Experimental Setup

A.1 Model Configurations

Regarding the configurations of the mainstream MLLMs we evaluated: specifically, for the Qwen3-VL and InternVL-3.5 series, we utilized their Instruct variants. Furthermore, for all open-source models, we set Do Sample=False during inference; and for all closed-source models, we set Temperature=0.0 and Top-P=1. This implies that we employed deterministic decoding strategies (i.e., greedy search) to eliminate randomness during generation, thereby ensuring the reproducibility of the evaluation results and fairness in comparisons across different models.

A.2 Additional Implementation Details

To systematically evaluate the performance of Multi-modal Large Language Models (MLLMs) on EgoPoint-Bench, we utilized the official open-source implementations of each model. All evaluation experiments and instruction tuning processes were conducted on NVIDIA A100 GPUs. Our evaluation framework is built upon the Hugging Face Transformers library¹ and leverages the LLaMA-Factory framework (Zheng et al., 2024) for efficient fine-tuning.

To ensure fair comparison and reproducibility, we standardized training configurations across all models using LoRA ($r = 8$) applied to all linear layers. We utilized a global batch size of 64 (per-device batch size 8 with 8 accumulation steps), enabled bfloat16 precision, and trained for 3 epochs with a learning rate of 1×10^{-4} using a Cosine learning rate scheduler.

A.3 Curated Prompt Templates

Single Choice

USER: {Question} \n {Options} \n Answer directly using the letters of the options given.

True/False

USER: {Question} \n Answer directly with ‘True’ or ‘False’

¹<https://huggingface.co/docs/transformers>

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

Open Ended
USER: {Question} \n Please output the answer directly.

A.4 Scoring Open-ended Question

We use the following carefully crafted prompts and to score each open-ended question:

Evaluation Prompt Template						
Role: You are a helpful assistant evaluation judge. Please evaluate the candidate answer against the reference answer based on the question. Assign a score from 0 to 5.						
Scoring Criteria:						
0: Completely incorrect or irrelevant. 1: Contains some keywords but fails to answer the question logic. 2: Partially correct but misses key constraints. 3: Mostly correct, but contains minor hallucinations or ambiguity. 4: Correct meaning, but phrased awkwardly or includes unnecessary fluff. 5: Perfect match in meaning and accuracy.						
Input: Question: {question} Reference Answer: {answer} Candidate Answer: {model_output}						
Output Format: You MUST return a valid JSON object strictly adhering to the following structure: { "score": <integer_0_to_5>, "reason": "<short_explanation_string>" }						

B Additional Analysis

B.1 Detailed Dataset Statistics

Fig. 5 illustrates the top 50 most frequent object categories in the simulation dataset. These categories primarily encompass complex indoor scenes, where high spatial coupling and environmental complexity pose significant challenges for model understanding. Consequently, the dataset demonstrates high sample diversity and task difficulty.

Fig. 6 illustrates the word cloud of all questions within EgoPoint-Bench. The results reveal a prevalence of deictic expressions (e.g., this, pointing at, here, that), indicating a strong emphasis

on both explicit pointing and ambiguous reference. This distribution aligns perfectly with the core design philosophy of EgoPoint-Bench: to evaluate the model’s capability in referential understanding during egocentric multimodal interactions.

Table 5 provides a detailed breakdown of the data sources across the training, validation, and testing sets. Extensive samples were drawn from HM3D due to its high-fidelity rendering of real-world environments. Conversely, ReplicaCAD was sampled sparingly and utilized only for training and validation, given its limited variety of scenes and objects. Notably, real-world data was reserved exclusively for testing to evaluate zero-shot generalization. Furthermore, the average question length of 9.81 underscores the distinctive nature of deictic language in egocentric VQA tasks.

Table 5: Dataset Statistics and Split Details

Source	Subset	Train	Val	Test	Total	Avg. QA Len.
Sim	HM3D	3227	365	718	4310	10.12
	HSSD	1964	214	605	2783	8.68
	AI2-THOR	1982	220	606	2808	10.22
	ReplicaCAD	601	65	-	666	8.67
Real	-	-	-	1162	1162	11.02

Figs. 7 and 8 illustrate the distribution of question dimensions and types in the test set, respectively. The dataset primarily evaluates Basic Perception and Affordance, mirroring common queries in daily life regarding object attributes and functional utilities. To ensure objective benchmarking, the questions are predominantly binary and multiple-choice, while open-ended questions are included to better simulate real-world QA scenarios.

Furthermore, Fig. 9 shows a balanced distribution of question types in the training set, preventing the model from developing a preference bias toward specific answer labels.

B.2 Error Analysis

Figs. 10 and 11 illustrate three representative error types made by Gemini-3-Pro and Qwen3-VL-8B on real-world and simulation datasets, respectively (where Q denotes the question, A the model’s response, and GT the ground-truth intent). The results indicate that these models are highly susceptible to interference from objects in close proximity to the hand or prominent objects in the background.

Fig. 12 presents two examples of random inquiries conducted in real-world environments. In

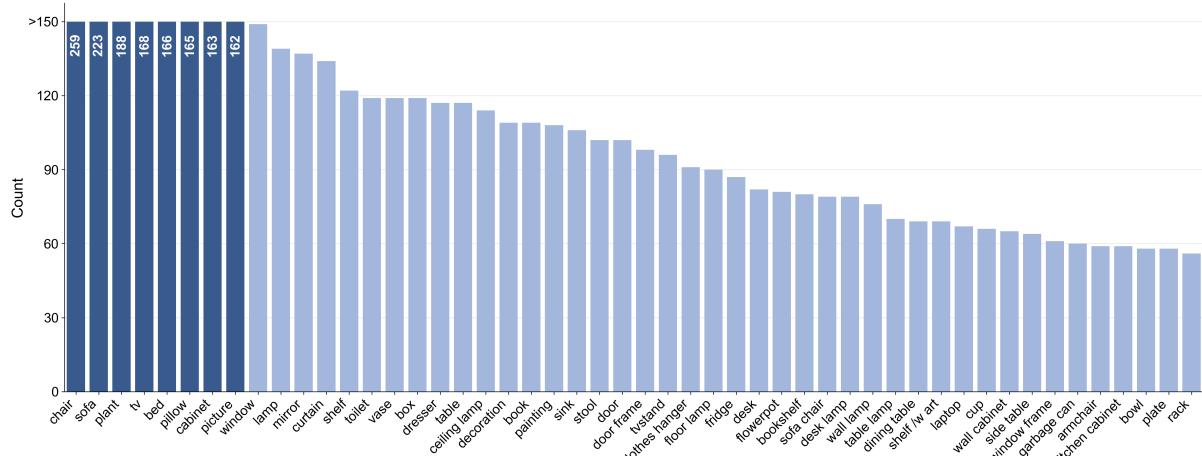


Figure 5: Frequency of top-50 object categories in simulation data.

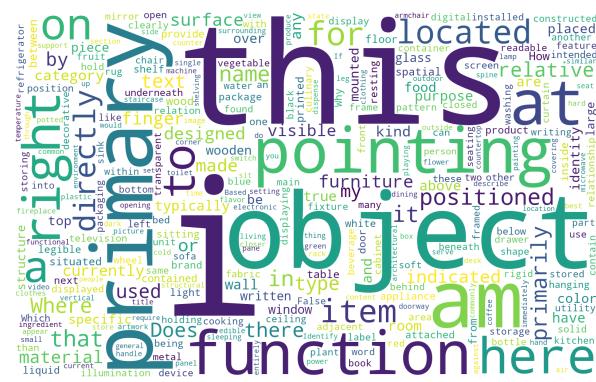


Figure 6: Wordcloud of questions in EgoPoint-Bench.

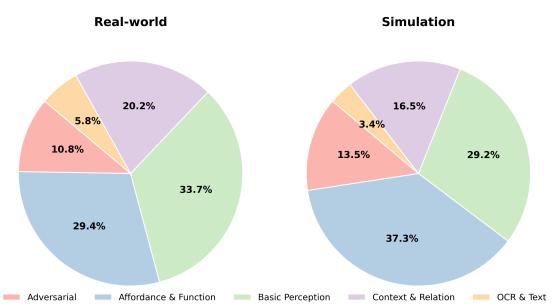


Figure 7: Distribution of 5 dimensions in EgoPoint-Bench testset.

the first example, both Gemini-3-Pro and Qwen3-VL-8B provide incorrect and inconsistent answers, highlighting their tendency to make arbitrary guesses in the background when the reference is unclear. In the second example, featuring a white and a brown jacket, the user points toward the white one; however, due to perspective effects, the finger region appears closer to the brown jacket in the image. Consequently, both base models consistently fail this task. In contrast, our Qwen3-VL-8B model, fine-tuned with LoRA on simulation data, is able to answer both questions with complete accuracy.

C Additional Information

C.1 Real-World Data Construction

To bridge the domain gap between simulation and reality, we constructed a high-quality real-world dataset focusing on egocentric pointing interactions.

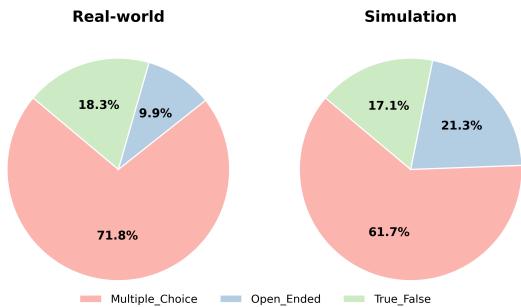


Figure 8: Distribution of 3 question types in EgoPoint-Bench testset.

C.1.1 Data Acquisition and Automated Pre-processing

Automated Alignment Pipeline. We designed a precision pipeline combining automated extraction with manual verification to achieve alignment across “Pointing Action – Target Object – Speech Description – Semantic QA.”

- **Voice-Driven Keyframe Localization:** The process begins with speech recognition. We

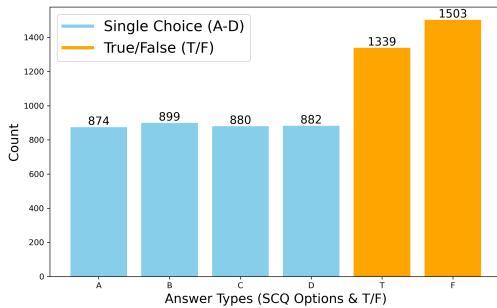


Figure 9: Option distribution of training set.

employed the industrial-grade open-source model **FunASR**² (paraformer-zh) to generate timestamped transcriptions.

- We defined a specific trigger word (e.g., “Start”) to mark the onset of a pointing action.
- The system automatically detects the timestamp of this trigger and extracts the immediately following object noun as the candidate target.
- This process defines a temporal window of interest for visual extraction.

• **Clarity-Aware Frame Selection:** To mitigate motion blur caused by head movements and device jitter, we implemented a **Multi-Metric Clarity Assessment** algorithm rather than random frame sampling. This algorithm fuses three complementary metrics:

1. **Laplacian Variance:** Captures high-frequency components to detect general focus blur.
2. **Frequency Domain Analysis:** Analyzes the spectral energy distribution to identify motion blur patterns.
3. **Edge Density:** Evaluates the sharpness of structural edges within the frame.

By normalizing and computing a weighted fusion of these metrics (with all weighting coefficients set to 1.0), we assign a comprehensive clarity score to every frame within the identified time window. The top-performing frames with the highest scores are selected as candidate representative images.

²<https://github.com/modelscope/FunASR>

C.1.2 Human-in-the-Loop Annotation

To ensure high quality, we employed a rigorous *Human-in-the-Loop* (HITL) pipeline. The process involves close collaboration between annotators and data collectors to guarantee that annotations faithfully reflect the original pointing intent.

Manual Annotation Workflow. Based on the candidate clear frames selected by the automated algorithm, human annotators perform the following steps:

1. **Frame Selection & Privacy Protection:** Manually select the frames that clearly contain the hand gesture from the top candidates. Any visible faces in the background are blurred to protect privacy.
2. **Transcription Verification:** Verify the correctness of the object name and description automatically transcribed by the ASR system.
3. **BBox Annotation:** Manually draw Bounding Boxes (BBox) around the pointed-at object. This step requires deep cooperation and communication with the original data collectors to ensure the annotated object and BBox strictly align with the user’s original pointing intention, especially in cluttered scenes. Each collector and annotator was paid \$15 per hour.

C.2 QA Generation

To synthesize QA pairs, Gemini-3-Pro is employed across our simulated and real-world datasets. We ensure the generation of high-fidelity labels by leveraging simulator-derived ground truth, specifically by superimposing red bounding boxes on the target objects. To further guide the model’s reasoning, visual inputs are supplemented with exact object nomenclature and exhaustive descriptions. Regarding real-world samples, the original open-ended user queries are utilized as description for prompting. After manual validation, the refined prompt templates are formulated as follows:

Data Generation Specialist Prompt

SYSTEM_PROMPT

```
# Role
You are an expert Data Generation
Specialist for Vision-Language Models.
Your goal is to create ONE single,
high-quality Question-Answer pair for
an egocentric image based strictly on
the specific constraints provided by the
user.
```

970
971
972
973
974
975
976
977
978
979

980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1009

Gemini-3-Pro

Q: Is this a brown cabinet?

A: True

GT: False (TV)

Q: Is this object a bicycle?

A: True

GT: False (Traffic Cone)

Q: Does the packaging of the object right here feature an image of a broom?

A: True

GT: False (Garbage bag)

3

Qwen3-VL-8B

Q: What kind of flowers are these?...

A: Yellow Sunflowers

GT: White Carnations

1

Q: What is the primary function of the item I am pointing at?

A: To hang clothes

GT: To hold trash or store items

2

Q: What type of produce is being pointed at here?

A: Oranges

GT: Apples

3

Figure 10: Error examples of three types in two methods from real-world data.

Context

You will be provided with:

1. The **Target Object** name (Ground Truth).
2. The **Target Object** description or question.
3. The specific **Dimension** (e.g., Affordance, Basic Perception).
4. The specific **Deixis Level** (how the object is referenced).
5. The specific **Question Type** (e.g., Multiple Choice).

Critical Constraint: The “Red Box” Rule

- The target object is highlighted with a red bounding box in your internal vision.
- **NEVER** mention “red box”, “rectangle”, “highlight”, or “outline” in the text.
- Pretend the user is pointing at the object with their finger.

Guidelines for Quality

- ## 1. Anti-Cheating Option Generation (Crucial for Multiple Choice)

You must avoid “lazy” distractors. Follow this logic to generate options:

- **Correct Answer:** The ground truth label or attribute.
- **Distractor 1 (Scene Hard Negative):** An object that is **present elsewhere in the image** but NOT being pointed at.
- **Distractor 2 (Visual Hard Negative):** An object sharing similar **color, shape, or texture** with the target.
- **Distractor 3 (Contextual Hard Negative):** An object plausibly found in this specific environment, but definitely NOT the target.
- **Verification:** Ensure the correct answer is unique and unambiguous among options.

2. Zero-Leakage Question Formulation

- **The “Blindfold” Test:** If a human can guess the answer just by reading the question (without the image), the question is **BAD**.
- **Bad:** “What is this red round fruit?” (Reveals color, shape, category).
- **Good:** “What is the name of this object?” (Reveals nothing).

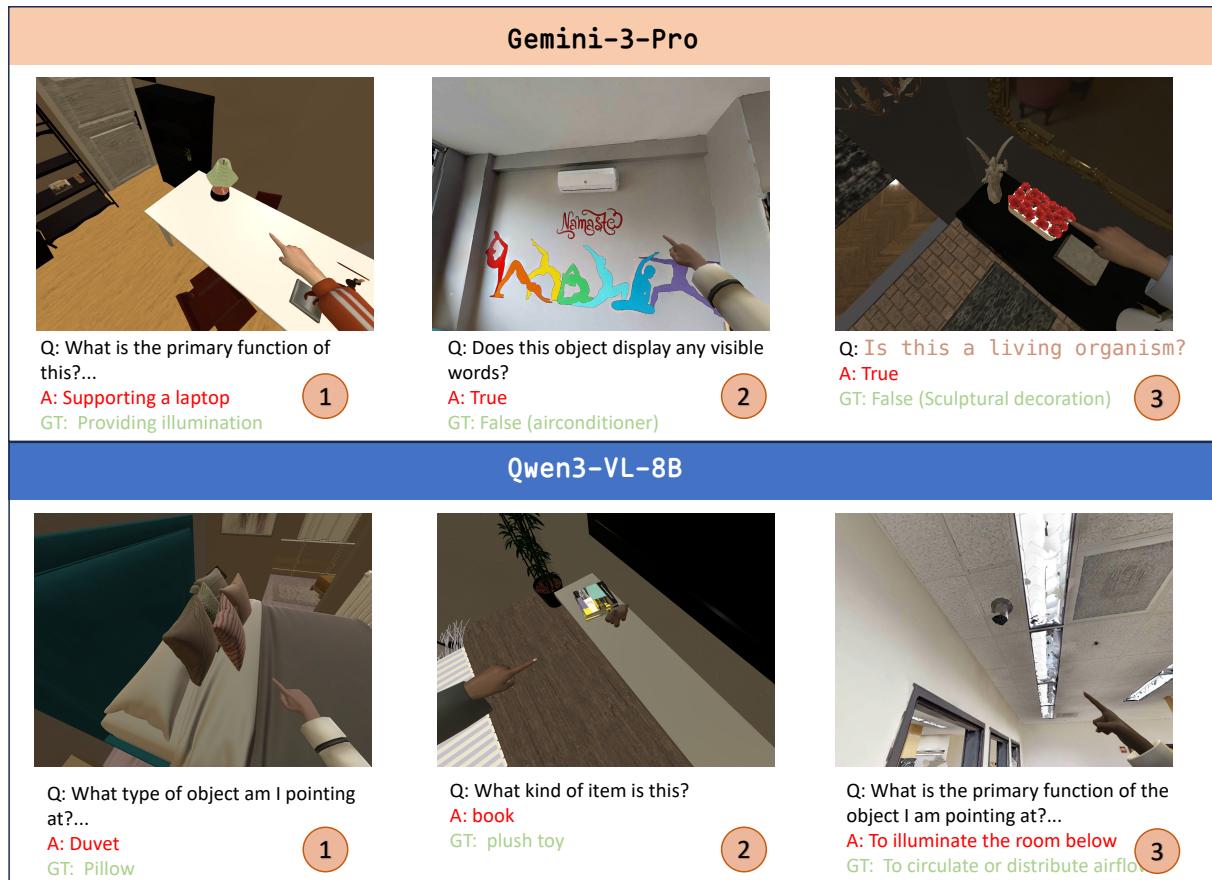


Figure 11: Error examples of three types in two methods from simulation data.

```

# Definitions of Constraints
## Deixis Levels (Reference Style)
- L1 (Explicit Action): "the object I am pointing at", "what is indicated by my finger".
- L2 (Visual Locative): "this object right here", "that thing over there".
- L3 (Implicit Pronoun): "this", "it", "this one".

## Dimensions (Question Topic)
- Basic Perception: category, color, shape, material, counting.
- Affordance & Function: Edibility, operation method, state, safety, utility.
- Context & Relation: Spatial position, scene compatibility.
- OCR & Text: Reading text on the object.
- Adversarial: Asking about non-existent parts or false premises.

## Question Types
- True_False: Answer is "True" or "False".
- Multiple_Choice: Provide 4 options

```

(A/B/C/D).

- **Open_Ended**: Answer is a concise phrase.

Output Format
Output **ONLY** a pure JSON object containing the single generated pair.

JSON Structure:

```

{
  "qa_pairs": [
    {
      "question": "string",
      "options": ["A. string", "B. string", "C. string", "D. string"] OR null,
      "answer": "string",
      "dimension": "string",
      "deixis_level": "string",
      "type": "string",
      "rationale": "string"
    }
  ]
}

```

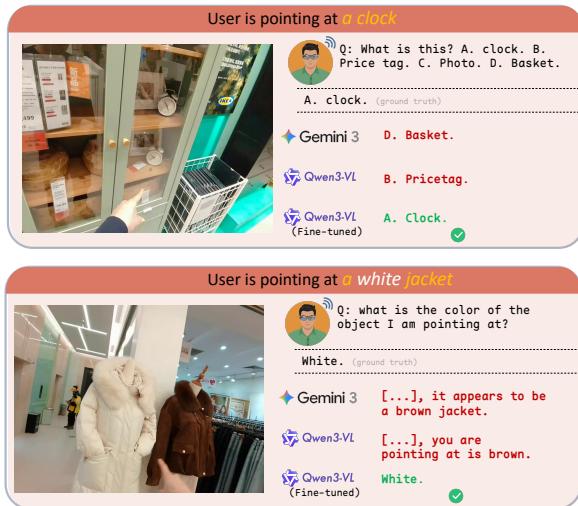


Figure 12: Comparison of model performance on real-world pointing tasks.

