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Abstract

Egocentric Al agents, such as smart glasses,
rely on pointing gestures to resolve referen-
tial ambiguities in natural language commands.
However, despite advancements in Multimodal
Large Language Models (MLLMs), current sys-
tems often fail to precisely ground the spatial
semantics of pointing. Instead, they rely on
spurious correlations with visual proximity or
object saliency—a phenomenon we term “Ref-
erential Hallucination.” To address this gap,
we introduce EgoPoint-Bench, a comprehen-
sive question-answering benchmark designed
to evaluate and enhance multimodal pointing
reasoning in egocentric views. Comprising
over 11k high-fidelity simulated and real-world
samples, the benchmark spans five evaluation
dimensions and three levels of referential com-
plexity. Extensive experiments demonstrate
that while state-of-the-art proprietary and open-
source models struggle with egocentric point-
ing, models fine-tuned on our synthetic data
achieve significant performance gains and ro-
bust Sim-to-Real generalization. This work
highlights the importance of spatially-aware
supervision and offers a scalable path toward
precise egocentric Al assistants. The code and
samples are available at https://anonymous.
4open.science/r/EgoPoint-BFBD/.

1 Introduction

Egocentric Vision Al agents, particularly intelli-
gent assistants integrated into wearable devices
such as smart glasses, are fundamentally reshaping
the paradigms of Augmented Reality and Human-
Computer Interaction (Li et al., 2025). By perceiv-
ing the physical world through the user’s perspec-
tive, these systems aim to provide precise, context-
aware Question Answering (QA) services. In such
naturalistic interaction scenarios, users exhibit a
strong preference for minimalistic spoken com-
mands. These utterances often blend explicit ob-
ject descriptions with highly ambiguous deictic
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Figure 1: Spatial ambiguity in egocentric pointing. Two
examples where current VLMs (e.g., Gemini 3, Qwen3-
VL) fail to recognize the target spatially aligned with
the pointing gesture. This highlights a critical gap in
fine-grained 3D spatial reasoning. Note that neither
bboxes nor rays were in the model inputs.

expressions (e.g., “How do I use this?” or “How is
the stuff over there?”’). When retrieving informa-
tion from complex visual scenes, relying solely on
unimodal language is often insufficient to resolve
such referential ambiguity. Conversely, pointing
gestures—instinctual and high-frequency actions
in human communication—have been empirically
proven to significantly enhance referential clarity
and reduce the requisite length of natural language
instructions (Mane et al., 2024; Chen et al., 2021).
Consequently, endowing multimodal models with
the capability to precisely comprehend “egocentric
pointing” is critical for egocentric Al agents.
Despite the remarkable semantic understanding
demonstrated by Multimodal Large Language Mod-
els (MLLMs) in general image captioning and QA
tasks (OpenAl, 2024; Liu et al., 2023b), our in-
vestigation reveals a critical deficiency in spatial
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reasoning when adapting current state-of-the-art
models to egocentric pointing QA. Specifically, as
depicted in Fig. 1, instead of tracing the precise
geometric projection of the pointing finger, models
frequently fixate on objects proximal to the hand or
visually salient entities, leading to referential hal-
lucination. This indicates that these models fail to
grasp the intrinsic spatial mechanism of “pointing”,
relying instead on spurious correlations based on
visual proximity.

A critical bottleneck is the scarcity of
high-quality, unambiguous data aligned within
the ‘““Vision-Language-Space”.  While visual
grounding is well-studied, benchmarks like Re-
fCOCO (Kazemzadeh et al., 2014) and Visual
Genome (Krishna et al., 2017) rely on third-person
internet imagery, lacking the wide-angle nature
of egocentric vision. Conversely, large egocentric
datasets like Ego4D (Grauman et al., 2022) and
EPIC-KITCHENS (Damen et al., 2022) prioritize
action recognition or hand-object interactions (Liu
et al., 2022), missing dense QA annotations that
capture “pointing-object” geometry. Without this
spatially-aware supervision, MLLMs fail to sepa-
rate hand appearance from spatial pointing intent,
hindering deictic referencing performance.

To address this challenge, we propose
EgoPoint-Bench, a benchmark designed to
systematically evaluate and enhance multi-modal
spatial reasoning in egocentric views. To balance
data scale with realism, our construction process
involves two complementary phases: In the
simulation phase, we introduce a physics-based
synthesis pipeline leveraging ray-casting to
generate noise-free pointing labels in 3D envi-
ronments; in the real-world phase, we collect
real-scenario data to validate practical applicability.
For QA construction, we implemented a hybrid
“machine-generation, human-verification” pipeline
to ensure rigorous standards. Crucially, to capture
interaction diversity and enable fine-grained as-
sessment, we incorporated three referring language
patterns ranging from explicit descriptions to
implicit instructions, and structured the benchmark
across five core capability dimensions. In total, the
dataset comprises 10,567 high-fidelity simulation
QA pairs and 1,162 real-world samples.

To evaluate generalization, we employed a hy-
brid test set combining held-out simulation data
(in-domain) and real-world data (zero-shot cross-
domain). We benchmarked open-source (e.g.,
Qwen3-VL) and proprietary models (e.g., GPT-5),

followed by LoRA fine-tuning on simulation data.
The fine-tuned models significantly outperformed
baselines, including top proprietary ones. These
results validate the efficacy of high-quality syn-
thetic data and highlight the scarcity of egocentric
pointing examples in current foundation models.

The main contributions of this paper are summa-
rized as follows:

* We propose EgoPoint-Bench, a novel bench-
mark designed to evaluate multi-modal spatial
reasoning in egocentric views. Our extensive
benchmarking reveals that current state-of-the-
art MLLMs significantly lack the capability to
understand fine-grained pointing gestures in first-
person scenarios.

* We develop a physics-driven data generation
pipeline that ensures both geometric precision
and linguistic diversity. By leveraging ray-
casting in simulation and incorporating hierar-
chical referring patterns (from explicit descrip-
tions to implicit instructions), we construct a
high-quality dataset containing over 11k pairs
across simulation and real-world domains.

* We demonstrate the efficacy of sim-to-real gen-
eralization. Models fine-tuned on our high-
fidelity synthetic data significantly outperform
strong proprietary models on real-world test sets,
validating the potential of synthetic data in ad-
dressing data scarcity for egocentric interaction.

2 Related Work

To contextualize our contributions, we compare
EgoPoint-Bench with representative benchmarks
in visual grounding, embodied perception, and
pointing-based interaction (see Table 1).

2.1 Third-Person Grounding

Foundational visual grounding benchmarks, rang-
ing from 2D (Mao et al., 2016; Krishna et al., 2017)
to 3D (Chen et al., 2020; Achlioptas et al., 2020)
and robotic settings (Qi et al., 2020), rely predomi-
nantly on third-person views and explicit linguistic
descriptions. Critically, they lack the egocentric
pointing signal essential for intuitive HCI, often
causing models to rely on semantic priors rather
than geometric cues.

2.2 Egocentric Vision Perception

Large-scale datasets like Ego4D (Grauman et al.,
2022) and EPIC-KITCHENS (Damen et al., 2018)



Table 1: Comparison with existing datasets. Unlike benchmarks that rely on third-person views or pure text,
EgoPoint-Bench uniquely combines egocentric vision with natural 3D hand pointing. It supports diverse question
types and multi-level linguistic granularity. R: Real-world data, S: Synthetic data.

Dataset ‘ Egocentric ‘ Scenes ‘ Natural Pointing ‘ Task ‘ Annotation Granularity ‘ Size
RefCOCOg (Mao et al., 2016) X R X Grounding | Image + BBox + Text 26k imgs
ScanRefer (Chen et al., 2020) X R X Grounding | 3D BBox + Text 11k scenes
YouReflt (Chen et al., 2021) X R v Grounding | BBox + Gesture + Text 3k clips
Ego4D (Grauman et al., 2022) v R X Forecasting | Activity Labels 3.6k hrs
Look & Point (Nguyen et al., 2024) v R v Grounding | Gaze/Point Vector 1.3k hrs
Ges3ViG (Mane et al., 2024) X S X Grounding | 3D Grounding + Gesture 35k samples
EOC-Bench (Dang et al., 2025) v R X QA Temporal/Cognitive QA 3.2k QAs
EgoPoint-Bench (Ours) | v | R+S | v | QA | Image+Name+BBox+QA | 117k QAs

capture rich first-person activities. However, they
focus primarily on passive observation, such as ac-
tion recognition. They lack active interaction sce-
narios. Attempts to add language, like RefEgo (Ku-
rita et al., 2023), still rely on pure text without ges-
ture signals. Recent works like EOC-Bench (Dang
et al., 2025) introduce open-ended QA to ego-
centric videos. Yet, they rely on artificial visual
prompts, such as red boxes drawn on images. This
reliance creates a domain gap for Augmented Re-
ality (AR). In real AR scenarios, systems should
interpret natural, unaugmented user gestures.

2.3 Pointing-based Interaction

To enable pointing-driven interaction,
Ges3ViG (Mane et al., 2024) introduces 3D
directional gestures through synthesized avatars;
however, it focuses on object localization within
3D scenes rather than question-answering (QA)
interaction and lacks validation on real-world
datasets. While COSM2IC (Weerakoon et al.,
2022) achieves deictic interaction using virtual
environments, it is limited by a lack of diver-
sity in both object categories and scene types.
Furthermore, most existing datasets rely on
exhaustive descriptive language to resolve target
ambiguity, creating a significant gap between these
benchmarks and real-life interaction scenarios. In
contrast, EgoPoint-Bench integrates high-fidelity
synthetic and real-world data. We shift linguistic
inputs from explicit descriptions (e.g., “the object
I point at”) to implicit deictics (e.g., “this”),
evaluating MLLMs’ pointing comprehension
across diverse semantic dimensions.

3 EgoPoint-Bench

3.1 Overview

As shown in Fig. 2, we propose EgoPoint-Bench,
a multimodal question-answering benchmark fo-

cused on first-person pointing gestures. It is de-
signed to quantitatively evaluate the understanding
and reasoning capabilities of MLLMs regarding
pointing gestures and referring language in ego-
centric visual perception. Given the scarcity of la-
beled data in this domain, we employ a dual-source
data construction strategy combining simulation
and real-world data. On one hand, we introduce
the Point-sim fully automated simulation frame-
work, which utilizes 42 hand models to generate
10,567 synthetic samples across 1,838 high-fidelity
3D scenes (sourced from Ai2-THOR (Kolve et al.,
2017; Deitke et al., 2022), HSSD (Khanna et al.,
2023), ReplicaCAD (Szot et al., 2021), and HM3D
(Ramakrishnan et al., 2021)). On the other hand, to
enhance the realistic diversity of the dataset, we col-
lected 1,162 samples featuring natural pointing in-
teractions in diverse real-world environments. Fur-
thermore, the benchmark covers five core dimen-
sions and includes three question types—multiple-
choice, true/false, and open-ended questions—with
established standard splits for training, validation,
and testing.

3.2 Image Collection

3.2.1 Point-Sim Simulation Framework

To synthesize diverse and high-fidelity scene-object
pairs, we utilized the Habitat-Sim 3.0 simula-
tor (Puig et al., 2023) and integrated static envi-
ronments sourced from the AI2-THOR, HSSD,
ReplicaCAD, and HM3D datasets. Specifically,
we acquired high-quality 3D arm-hand models
from ArtStation (ArtStation, 2025) and leveraged
the Blender package (Blender Online Community,
2018) to manipulate parameters—such as joint ar-
ticulation and scaling—thereby introducing struc-
tural diversity into the generated pointing gestures.
Furthermore, we applied textures representing 3
distinct skin tones and 7 clothing styles across both
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Figure 2: Overview of EgoPoint-Bench. Top: We construct the dataset using a scalable simulation pipeline
(Point-Sim) alongside real-world collection to ensure visual diversity. Middle: The QA generation process spans five
capability dimensions (Basic Perception, Function State, Spatial Context, OCR, and Adversarial Resilience) and
incorporates a hierarchical deixis level taxonomy (L1: Explicit Action, L2: Visual Locative, L3: Implicit Pronoun),
challenging models to resolve referential ambiguity based on finger-pointing gestures. Bottom: Detailed statistics
showing object attributes, category frequency, and data distribution.

left and right hands, resulting in a total of 42 unique
pointing models.

Simulation Initialization. To ensure domain ro-
bustness, we initialize the simulation with a di-
verse set of intrinsic and extrinsic parameters.
To replicate the wide-angle optical characteristics
of modern smart glasses, the camera’s vertical
field of view (FOV) is uniformly sampled from
[100°,115°]. The agent is modeled with an ocu-
lar height heye ~ U(1.45,1.70) meters, equipped
with a multi-modal sensor suite capturing aligned
RGB, Depth, and Semantic observations. Hand
dominance (left/right) is randomized to balance the
dataset distribution.

Target-Oriented Spatial Arrangement. For a
selected target object O centered at P,; €
R3, we compute the navigable manifold of
the scene, represented as a Navigation Mesh
(NavMesh) (Mononen, 2009). We sample a candi-
date agent position Fygey,¢ on this manifold within
a constrained radius 7geqrch, (default < 3.0m), con-
ditioned on a minimum collision clearance of 0.4m.
To mitigate scale ambiguity, the sampling distance

is dynamically scaled based on the object’s volu-
metric size; this prevents scenarios where the object
is either imperceptible or encompasses the entire
field of view.

Once P,gent 1s fixed, we orient the agent’s cam-
era to face the target. We construct the camera
rotation matrix Req, € SO(3) by aligning the
optical axis with the forward vector f = (Pp; —
Pagent)/ || Pobj — Pagent||- The rotation is defined
compactly as:

f x uy
1 x uy’

(f xuy) x f T
, —f
[ |
6]

Rcam =

where u,, is the global up vector.

Kinematic Hand Alignment. We instantiate the
hand model within the lower visual field of the cam-
era. The core objective is to align the index finger’s
direction vector with the line of sight to the object.
Let u,.s; denote the normalized initial directional
vector of the index finger and uyqrg4e¢ be the nor-
malized vector pointing from the hand to the object.
We compute the minimal rotation Rjq,gq via Ro-
drigues’ rotation formula. The rotation is parame-
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where [k|, denotes the skew-symmetric matrix of
k. Subsequently, to simulate realistic human point-
ing behavior, we apply small stochastic perturba-
tions to the pitch and yaw of the computed camera
orientation.

Validation and Data Format. We enforce a
validity check by casting a ray from the in-
dex finger tip toward F;. An instance is dis-
carded if the ray intersects with any obstacle be-
fore reaching the target. The pipeline explic-
itly exports a comprehensive data tuple D =
{Irgba Ideptha Isem, bobj, Pp, yid}’ Containing the
images, 2D bounding boxes, projected coordinates,
and semantic identifiers. This pipeline is general-
ized to support any scene compatible with Habitat-
Sim.

3.2.2 Real-world Data Collection

We recruited eight volunteers equipped with MLVi-
sion smart glasses (MLVision, 2025) to collect data
on objects of interest in diverse real-world envi-
ronments. The data collection scenarios spanned
a broad spectrum of settings, including but not
limited to indoor places like furniture stores, con-
venience stores, and apartments, as well as outdoor
locations such as shopping malls, zoos, and streets.
Participants were instructed to record a video when-
ever they encountered an object of interest, explic-
itly pointing at the target while verbally stating
its name to serve as the ground truth and posing
a relevant description or question. In total, 1,162
valid image frames were curated from the collected
footage (see Appendix C.1 for details).

3.3 Capability Taxonomy

Inspired by canonical multimodal benchmarks like
MMBench (Liu et al., 2024b) and MME (Fu et al.,

2025a), we design a five-dimensional taxonomy

to comprehensively evaluate MLLLMs within first-

person pointing interactions. This framework is
structured to bridge the gap between low-level per-
ception and high-level robust reasoning:

* Basic Perception (BP): Identifies fundamental
attributes (category, color, texture) and visual
distinctiveness for gesture alignment.

* Function & State (FS): Infers semantic prop-
erties (e.g., edibility, operability) and dynamic
functional states.

 Spatial Context (SC): Perceives egocentric spa-
tial relationships, including localization, scene
compatibility, and reachability.

* OCR: Extracts textual info from targets, such as
brand names, slogans, and instructions.

¢ Adversarial Resilience (AR): Maintains reliabil-
ity against adversarial inputs like counterfactuals,
fallacies, and void references.

3.4 QA Pair Construction

For comprehensive deictic evaluation, our dataset
employs a hierarchical taxonomy and hybrid ques-
tion format.

Hierarchical Deixis Taxonomy. We design three
levels of deixis to cover the broadest possible se-
mantic range of referential inquiries: L1 (Explicit
Action) describes the gesture directly (e.g., “the
object I am pointing at”); L2 (Visual Locative)
implies spatial proximity (e.g., “that thing over
there”); and L3 (Implicit Pronoun) relies purely on
visual context (e.g., “this”).

Task Formulation. To balance ecological validity
with objective evaluation, we adopt diverse ques-
tion formats. We incorporate Open-ended ques-
tions to reflect the natural, unrestricted nature of
human inquiry. However, to ensure a fair, consis-
tent, and automated testing benchmark, we also
construct True/False and Single-Choice Questions.
This hybrid composition retains the semantic com-
plexity of realistic user intent while facilitating rig-
orous quantitative comparison.

Human-Machine Collaborative Data Curation.
To ensure both diversity and scalability, we es-
tablished a collaborative data generation pipeline.
For the simulation subset, we leveraged a gen-
erative model to synthesize QA pairs, thereby
mitigating the rigidity of fixed templates and
expanding the dimensionality of potential ques-
tions (Liu et al., 2023b). To prevent model
hallucinations—specifically the misidentification
of pointed-at objects—we implemented a visual



Table 2: Main results on real-world and simulation testsets. We highlight the best Direct results in blue and the

best LoRA results in orange. The Gain column shows the improvement of LoRA over Direct.

Model Method Simulation testset Real-world testset Overall
BP FS SC OCR AR | Mean | BP FS SC OCR AR | Mean | Avg. Gain
Random - 2795 26.83 38.89 4324 52.17 | 31.14 | 25.19 2274 37.30 26.32 45.76 | 28.94 | 30.24 -
Human - 91.86 97.14 100 93.33 100 9580 9624 98.04 96.39 95.65 89.09 | 96.00 | 95.90 -
Closed-source Models
Gemini-3.0-pro Direct | 52.47 51.39 7047 74.85 57.16 | 56.44 ‘ 66.63 7544 79.06 83.28 60.16 | 72.00 | 62.29 -
Gemini-3.0-flash Direct | 54.39 5333 66.58 73.64 5839 | 5721 67.04 7398 78.89 8090 63.02 | 71.84 | 62.71 -
GPT-5-2-Instant Direct | 54.14 49.81 66.14 7545 50.88 | 54.80 | 55.31 6749 81.62 69.55 71.27 | 66.76 | 59.29 -
GPT-5-mini Direct | 59.96 5822 67.65 68.79 36.09 | 57.66 | 52.81 66.73 67.32 6627 52.38 | 60.57 | 58.75 -
Open-source Models (Direct vs. LoRA)
Llava-1.5-7B Direct | 50.83 46.89 54.86 5091 4192 | 48.82 | 36.48 45.85 62.13 22.69 69.37 | 47.19 | 48.21 -
LoRA | 7641 72.06 60.63 66.06 86.44 | 73.18 | 37.50 56.55 64.17 33.43 9540 | 54.54 | 66.17 +17.96
Llava-Next-7B Direct | 47.42 4542 5592 53.33 46.59 | 48.17 | 31.68 51.75 60.09 39.40 56.19 | 46.44 | 47.52 -
LoRA | 80.39 80.86 79.56 7242 86.13 | 80.93 | 40.10 66.32 71.23 4090 90.63 | 59.64 | 72.93 +25.41
GLM-4.6V-Flash Direct | 56.16 50.81 66.14 61.52 36.17 | 53.29 | 48.32 59.77 6732 72.84 4349 | 5642 | 5447 -
LoRA | 77.16 7328 82.01 80.00 64.21 | 74.86 | 53.88 60.70 66.55 67.16 72.70 | 61.26 | 69.74 +15.27
InternVIL-3.5-28 Direct | 51.97 55.14 61.50 66.97 26.05 | 51.74 | 4485 60.47 62.55 59.40 43.65 | 53.73 | 52.49 -
LoRA | 7140 7536 76.61 78.79 81.99 | 7543 | 4633 64.04 71.83 5731 89.68 | 62.03 | 70.39 +17.90
InternVL-3.5-SB Direct | 52.86 52.50 63.51 6636 35.63 | 52.62 | 50.05 60.88 6332 68.96 50.79 | 57.09 | 54.30 -
LoRA | 74.60 77.81 8276 78.79 86.21 | 78.86 | 50.56 69.88 7447 63.88 90.00 | 66.13 | 74.07 +19.77
InternVL-3.5-14B Direct | 46.79 51.14 62.07 71.52 3356 | 49.99 | 47.76 65.09 72.51 65.07 45.24 | 58.59 | 53.23 -
LoRA | 7599 76.00 83.01 76.36 86.51 | 78.59 | 54.03 73.10 80.26 68.66 82.86 | 68.92 | 7495 +21.72
Qwen3-VL-8B Direct | 57.55 54.00 70.34 77.58 52.11 5829 | 47.81 5842 7455 6896 53.17 | 58.14 | 58.23 -
LoRA | 81.31 8092 80.56 84.24 8291 | 81.36 | 60.36 72.28 8196 71.94 88.57 | 71.96 | 77.83 +19.60
Qwen3-VL-32B Direct | 56.52 5375 65.64 79.39 60.23 | 58.28 | 56.38 65.03 76.09 79.70 56.83 | 64.30 | 60.54 -
LoRA | 80.75 82.50 83.39 83.03 82.84 8220 62.09 71.35 8196 7343 83.81 | 71.84 | 7830 +17.76

prompting strategy (Yang et al., 2023): ground-
truth bounding boxes were rendered directly onto
the input images to explicitly guide the model’s
focus. Furthermore, ground-truth category labels
and attributes were injected into text prompts to
ensure context-aware responses. We validated the
fidelity of this automated pipeline through a manual
inspection of the test set, identifying and correcting
a minimal 3% error rate. The real-world dataset
followed a rigorous human-in-the-loop workflow.
Annotators labeled the bounding boxes of target
objects based on raw open-ended descriptions or
questions. Additionally, they provided factual an-
swers and underwent strict cross-verification.

3.5 Dataset Statistics

EgoPoint-Bench comprises 10,567 simulation and
1,162 real-world QA pairs, with an average ques-
tion length of 9.81 words. The simulation sub-
set is partitioned into 8,638 samples for train-
ing/validation (9:1 split) and 1,929 for testing,
while the real-world data serves exclusively as
a test set. To ensure rigorous evaluation, each
(scene, object) tuple in the simulation data
appears exactly once. The dataset covers 1,838
unique scenes and 910 object categories. Fig. 2
presents detailed statistics regarding (a) synthetic
object attributes, (b) top-20 real-world object cate-
gories, (c) deixis levels, and (d) dataset splits.

4 Experiments

4.1 Experimental Setup

We conduct a comprehensive evaluation across a
wide spectrum of MLLMs, spanning both propri-
etary and open-source architectures. For propri-
etary models, we test the latest iterations includ-
ing Gemini-3.0 (Pro/Flash) (Team et al., 2025a)
and the GPT-5 series (5.2-Instant/5-Mini) (Ope-
nAl). For open-source models, we select represen-
tative baselines with varying scales: InternVL-3.5
(2/8/14B) (Wang et al., 2025), Qwen3-VL (8/32B)
(Bai et al., 2025), LLaVA v1.5 (Liu et al., 2023a),
LLaVA-NeXT (Liu et al., 2024a), and GLM-4.6v-
Flash (Team et al., 2025b). To establish perfor-
mance bounds, we incorporate a random baseline
for choice-based tasks and report human perfor-
mance evaluated on 1,000 samples (balanced be-
tween simulation and real-world data) by three vol-
unteers. The evaluation operates under two settings:
(1) Zero-shot Inference, where models directly
predict answers from visual-textual inputs; and (2)
Instruction Tuning, where we apply LoRA-based
(Hu et al., 2022) parameter-efficient fine-tuning.
Crucially, our training set consists exclusively of
simulation data to assess sim-to-real generaliza-
tion. Implementation details are provided in Ap-
pendix A.



Table 3: Detailed Breakdown by Question Type. Types: Single-Choice (SCQ), True/False(7 F), Open-Ended questions
(OQ). Dimensions: Basic Perception (BP), Function & Affordance (FS), Spatial Context (SC), OCR & Text (OCR), Adversarial

Relation (AR). Blue indicates best Direct performance; Orange indicates best LoORA performance.

Model Method BP FS s¢ OCR AR
SCQ TF 0Q S8CQ TF 0Q SCQ TF 0Q SCQ TF 0Q S8CQ TF 0Q
Random - 26.25 40.62 - 23.28 4937 - 29.44  48.06 - 26.67 46.67 - 26.67 50.26 -
Closed-source Models
Gemini-3.0-pro Direct | 60.39 50.00 3323 | 61.70 64.56 35.14 | 80.95 74.27 60.34 | 9556 76.67 67.59 | 53.33 67.69 48.02
Gemini-3.0-flash Direct | 61.44 5938 33.87 | 61.81 70.89 37.84 | 79.22 69.90 60.51 | 91.11 70.00 70.34 | 60.00 69.74 49.04
GPT-5-2-Instant Direct | 55.87 56.25 36.45 | 57.80 62.03 3279 | 76.19 69.90 70.77 | 73.33 80.00 67.93 | 66.67 73.85 38.76
GPT-5-mini Direct | 57.72 6250 4452 62.61 7848 3550 | 67.10 7476 55.56 | 71.11 70.00 63.45 | 33.33 5590 26.10
Open-source Models (Direct vs. LoRA)
Llava-1.5-7B Direct | 44.83 56.25 40.65 | 48.74 45.57 30.09 | 60.61 62.14 4530 | 26.67 80.00 22.07 | 13.33 7538 27.01
LoRA | 60.16 53.12 68.06 | 71.79 40.51 4883 | 67.53 63.11 49.74 | 4444 90.00 32.76 | 73.33 98.97 80.11
Liava-Next-7B Direct | 40.77 56.25 35.81 | 4920 5443 2883 | 58.87 61.65 4838 | 4444 8333 28.62 | 46.67 64.10 34.12
LoRA | 6341 7812 6258 | 79.01 77.22 53.15 | 79.65 83.50 55.73 | 51.11 9333 41.72 | 86.67 9538 79.10
GLM-4.6V-Flash Direct | 53.08 71.88 41.29 | 5470 70.89 33.51 | 67.10 68.93 61.71 | 75.56 60.00 64.48 | 46.67 46.67 28.93
LoRA | 67.71 8125 59.03 | 70.87 81.01 4793 | 77.92 77.18 67.52 | 73.33 83.33 68.62 | 80.00 76.41 55.48
InternVL-3.5-2B Direct | 49.83 62.50 31.29 | 60.89 67.09 17.84 | 66.23 68.45 42.05 | 6444 76.67 55.17 | 26.67 43.08 19.77
LoRA | 60.98 81.25 5258 | 74.89 79.75 41.08 | 78.79 82.04 53.16 | 62.22 90.00 61.03 | 80.00 92.82 75.71
InternVL-3.5-8B Direct | 52.85 56.25 33.55 | 58.72 64.56 2090 | 71.43 65.05 44.79 | 71.11 7333 62.07 | 46.67 5436 24.86
LoRA | 64.69 78.12 5839 | 78.56 79.75 46.13 | 83.55 84.47 61.54 | 66.67 96.67 61.72 | 80.00 9436 80.45
InternVL-3.5-14B Direct | 47.62 65.62 31.61 | 58.83 64.56 24.14 | 71.00 69.90 51.62 | 71.11 83.33 58.28 | 46.67 49.74 2294
LoRA | 67.71 78.12 5097 | 78.33 7848 47.03 | 8442 86.41 68.72 | 77.78 86.67 61.03 | 86.67 89.23 80.90
Qwen3-VL-8B Direct | 54.36 62.50 37.74 | 57.68 62.03 3297 | 73.16 76.70 62.05 | 73.33 76.67 71.38 | 53.33 5897 45.20
LoRA | 73.17 78.12 63.55 | 81.31 81.01 51.17 | 80.52 89.32 68.03 | 77.78 93.33 70.34 | 73.33 91.79 77.97
Qwen3-VL-32B Direct | 57.61 65.62 3581 | 59.98 67.09 30.09 | 74.89 68.93 62.56 | 80.00 80.00 78.97 | 60.00 65.13 52.43
LoRA | 73.64 75.00 6452 81.65 88.61 5045 | 82.68 88.83 7231 | 77.78 86.67 74.14 | 80.00 85.13 81.24

4.2 Evaluation Metrics

EgoPoint-Bench comprises three task types:
True/False (TF), Single Choice Questions (SCQ),
and Open-ended Questions (0OQ). Following es-
tablished protocols (Fu et al., 2025b; Li et al.,
2024), we adopt exact matches for the TF and SCQ
tasks. For the OQ task, evaluating open-ended re-
sponses remains challenging; therefore, we employ
an LL.M-as-a-Judge approach (Zheng et al., 2023).
Specifically, GPT-40 (OpenAl, 2024) scores the
model predictions against ground-truth answers on
a scale of 0 to 1 (with an increment of 0.2). Further
details can be found in Appendix A.4.

4.3 Main Results

Table 2 presents the performance of proprietary
and open-source models across simulation and real-
world test sets. We reported 3 key observations:

Off-the-shelf VLMs struggle with fine-grained
egocentric deictic understanding. In the Direct
inference setting, even the most advanced propri-
etary models (e.g., Gemini-3.0-pro, GPT-5-mini)
and open-source models fail to achieve satisfac-
tory performance, hovering around 60% accuracy
overall. A significant gap remains compared to
human performance (95.90%), particularly in tasks
requiring precise spatial geometric reasoning (AR
and BP metrics). This underscores that general-
purpose pre-training is insufficient for comprehend-

ing complex “finger-pointing” semantics in egocen-
tric views.

Simulation-based tuning yields significant gains.
Fine-tuning with our generated simulation data via
LoRA brings substantial improvements across all
open-source models. As shown in the “Gain” col-
umn, we observe a consistent performance boost
ranging from +15.27% to +25.41%. Notably,
LLaVA-Next-7B achieves a remarkable 25.41% im-
provement, demonstrating that the visual-semantic
alignment provided by our synthetic data effec-
tively unlocks the models’ potential for pointing-
oriented VQA tasks.

Strong Sim-to-Real generalization. Crucially, the
models trained on simulation data generalize excep-
tionally well to the Real-world testset. For instance,
Qwen3-VL-8B improves its real-world mean accu-
racy from 58.14% to 71.96% after tuning on sim-
ulation data. This suggests that the geometric and
semantic features of finger-pointing learned from
our high-fidelity simulation environment are robust
and transferrable, validating the efficacy of our data
generation pipeline for real-world applications.

4.4 Detailed Analysis

Analysis Across Different Question Types. Ta-
ble 3 dissects model performance across three an-
swer formats (SCQ, T F, OQ), revealing three crit-
ical insights: (1) Generative bottleneck. Direct



Table 4: Performance evaluation of representative
MLLMs on Sim and Real test sets across three deixis
levels (L1-L3). The best results are highlighted in bold.

Sim Real
Model Method
L1 L2 L3 L1 L2 L3
Gemini-3.0-pro Direct | 51.03 59.00 59.53 | 72.57 65.20 72.76
GPT-5-mini Direct | 58.22 59.82 56.02 | 59.32 5440 64.38

Direct | 52.51 53.83 49.96 | 56.25 4820 50.73
LoRA | 7471 74.60 76.47 | 59.03 6140 67.50
Direct | 48.11 51.47 4798 | 42.27 52.60 54.48
LoRA | 72.01 75.60 72.83 | 51.21 60.80 58.80
50.52 62.72 6228 | 64.31 62.40 64.79
83.77 81.63 81.20 | 69.59 71.80 75.83

InternVL-3.5-2B

Llava-1.5-7B

Direct

Qwen3-VL-32B
LoRA

models exhibit a sharp performance drop in Open-
Ended questions (OQ) compared to discrimina-
tive formats (SCQ, 7 F), indicating that while pre-
trained models can distinctively recognize correct
references, they struggle to actively formulate pre-
cise spatial descriptions without specific tuning.
(2) Geometric alignment in Adversarial Rela-
tions. The AR dimension, which requires dis-
tinguishing targets from spatial distractors, sees
the most dramatic gains from LoRA (e.g., Llava-
1.5-7B AR-OQ jumps from 27.01% to 80.11%).
This proves that our dataset effectively teaches the
specific “logic of pointing” absent in general pre-
training. (3) Spatial-semantic saturation. While
text-heavy tasks (OCR) show robust baseline per-
formance, spatial tasks (BP, SC, AR) benefit dis-
proportionately from fine-tuning, confirming that
our method primarily enhances fine-grained spatial
capabilities rather than basic visual recognition.

Impact of different deixis levels. Contrary to the
intuition that explicit instructions should mitigate
ambiguity, our results reveal that L1 (Explicit Ac-
tion) does not consistently outperform L2 (Visual
Locative) or L3 (Implicit Pronoun). For instance, in
the Sim dataset, the Direct Qwen3-VL-32B model
shows a significant drop in L1 (50.52%) compared
to L2 (62.72%) and L3 (62.28%). This counter-
intuitive finding underscores a critical deficiency
in current MLLMs: even when explicitly prompted
to attend to a pointing gesture, models struggle to
grounded the spatial action, indicating a lack of
genuine understanding of fine-grained geometric
cues. Furthermore, L3 often achieves the high-
est accuracy in the Real dataset (e.g., 75.83% for
Qwen3-VL-32B LoRA). This suggests that instead
of resolving the specific deictic gesture, models
may over-rely on object saliency or scene priors to
infer the target.
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Figure 4: Distribution of error types and rescue scores.

4.5 Error Types

To probe the limitations of current VLMs in finger-
pointing VQA, we conducted a manual analysis on
400 error cases generated by Qwen3-VL-8B and
Gemini-3-Pro (balanced between simulated and
real-world data). We classified errors into three pri-
mary categories: (1) Proximal Distraction (PD),
where the model fails to follow the pointing ray and
instead grounds the answer to a distractor immedi-
ately adjacent to the finger; (2) Gesture Neglect
(GN), where the model ignores the gesture entirely,
attending to visually salient or distant objects; and
(3) Reasoning Failure (RF), where the target is
correctly localized, but the model fails in down-
stream reasoning. Fig. 4 (Left) illustrates the error
distribution, revealing that PD and GN are the most
prevalent failure modes. Fig. 4 (Right) demon-
strates the efficacy of our approach by reporting
the “Rescue Score”—defined as the percentage of
these specific failure cases successfully corrected
by our LoRA-finetuned Qwen3-8B. Our method
achieves Rescue Scores ranging from 57.0% to
72.4% across datasets, confirming its capability to
effectively recover from the spatial ambiguity and
gesture perception issues inherent in the baselines.
More examples are provided in Appendix B.2.

5 Conclusion

We introduced EgoPoint-Bench to evaluate and
enhance MLLMs’ understanding of egocentric
finger-pointing gestures. Our evaluation reveals
that while existing MLLMs struggle with this task,
fine-tuning on high-quality synthetic data miti-
gates referential hallucinations, enabling robust
real-world generalization. This work paves a scal-
able path toward precise egocentric Al assistants.



Limitations

While EgoPoint-Bench provides a benchmark for
evaluating current egocentric multimodal finger-
pointing understanding, it possesses two primary
limitations: 1) Although fine-tuning with automat-
ically synthesized simulation data has proven ef-
fective on real-world datasets, we observed that
the performance gain on real-world data is smaller
than that on simulated data. This suggests that real-
world user pointing behaviors, along with environ-
mental complexities such as arm backgrounds, are
significantly more intricate and challenging than
those in simulation. Simulated data struggles to
sufficiently cover the behavioral characteristics of
the real world. 2) To facilitate easier evaluation,
current dataset questions and answers are relatively
brief, which diverges from the complex, multi-turn
dialogue patterns found in real-world interactions.
We focus first on whether MLLMs can explicitly
understand the fundamental meaning of “pointing,”
as our experimental results indicate that even this
poses a significant challenge for current models.
Mastering these basic comprehension skills is a
vital prerequisite before addressing more difficult
and complex multi-turn interaction tasks.

Ethical Statement

University ethics review board approves human-
subjects research and they approved this project.
In our real-world data collection environment, we
have anonymized all human faces and any identi-
fying information within the images by applying
a blurring treatment. This ensures that no privacy
leaks occur and that the dataset contains no harmful
content. All datasets used in this work, including
HM3D, AI2-THOR, ReplicaCAD, and HSSD, are
properly cited and used strictly for non-commercial
academic research purposes.
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A Experimental Setup

A.1 Model Configurations

Regarding the configurations of the mainstream
MLLMs we evaluated: specifically, for the
Qwen3-VL and InternVL-3.5 series, we utilized
their Instruct variants. Furthermore, for all open-
source models, we set Do Sample=False during
inference; and for all closed-source models, we
set Temperature=0.0 and Top-P=1. This implies
that we employed deterministic decoding strategies
(i.e., greedy search) to eliminate randomness dur-
ing generation, thereby ensuring the reproducibility
of the evaluation results and fairness in compar-
isons across different models.

A.2 Additional Implementation Details

To systematically evaluate the performance of
Multi-modal Large Language Models (MLLMs)
on EgoPoint-Bench, we utilized the official open-
source implementations of each model. All evalua-
tion experiments and instruction tuning processes
were conducted on NVIDIA A100 GPUs. Our eval-
uation framework is built upon the Hugging Face
Transformers library! and leverages the LLaMA-
Factory framework (Zheng et al., 2024) for efficient
fine-tuning.

To ensure fair comparison and reproducibility,
we standardized training configurations across all
models using LoRA (r = 8) applied to all linear
layers. We utilized a global batch size of 64 (per-
device batch size 8 with 8 accumulation steps),
enabled bfloat16 precision, and trained for 3 epochs
with a learning rate of 1 x 10~ using a Cosine
learning rate scheduler.

A.3 Curated Prompt Templates

The text data utilized for both zero-shot inference
and LoRA fine-tuning remains consistent across all
models, formatted as follows:

Prompt Templates

Single Choice

USER: {Question} \n {Options} \n Answer
directly using the letters of the options
given.

True/False

USER: {Question} \n Answer directly with
‘True’ or ‘False’

"https://huggingface.co/docs/transformers
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Open Ended
USER: {Question} \n Please output the
answer directly.

A.4 Scoring Open-ended Question

We use the following carefully crafted prompts and
to score each open-ended question:

Evaluation Prompt Template

Role: You are assistant
evaluation judge.

Please evaluate the candidate answer
against the reference answer based on
the question.

Assign a score from @ to 5.

a helpful

Scoring Criteria:

0: Completely incorrect or irrelevant.
1: Contains some keywords but fails to
answer the question logic.

2: Partially correct but misses key
constraints.

3: Mostly correct, but contains minor
hallucinations or ambiguity.

4: Correct meaning, but phrased
awkwardly or includes unnecessary fluff.
5: Perfect match in meaning and accuracy.

Input:

Question: {question}

Reference Answer: {answer}
Candidate Answer: {model_output}

Output Format:

You MUST return a valid JSON object
strictly adhering to the following
structure:
{
"score"”: <integer_0_to_5>,
"reason”:

"<short_explanation_string>"

}

B Additional Analysis

B.1 Detailed Dataset Statistics

Fig. 5 illustrates the top 50 most frequent ob-
ject categories in the simulation dataset. These
categories primarily encompass complex indoor
scenes, where high spatial coupling and environ-
mental complexity pose significant challenges for
model understanding. Consequently, the dataset
demonstrates high sample diversity and task diffi-
culty.

Fig. 6 illustrates the word cloud of all ques-
tions within EgoPoint-Bench. The results reveal a
prevalence of deictic expressions (e.g., this, point-
ing at, here, that), indicating a strong emphasis
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on both explicit pointing and ambiguous reference.
This distribution aligns perfectly with the core de-
sign philosophy of EgoPoint-Bench: to evaluate
the model’s capability in referential understanding
during egocentric multimodal interactions.

Table 5 provides a detailed breakdown of the
data sources across the training, validation, and
testing sets. Extensive samples were drawn from
HM3D due to its high-fidelity rendering of real-
world environments. Conversely, ReplicaCAD was
sampled sparingly and utilized only for training
and validation, given its limited variety of scenes
and objects. Notably, real-world data was reserved
exclusively for testing to evaluate zero-shot gener-
alization. Furthermore, the average question length
of 9.81 underscores the distinctive nature of deictic
language in egocentric VQA tasks.

Table 5: Dataset Statistics and Split Details

Source Subset Train Val Test Total Avg. QA Len.
HM3D 3227 365 718 4310 10.12
Si HSSD 1964 214 605 2783 8.68
im
AI2-THOR 1982 220 606 2808 10.22
ReplicaCAD 601 65 666 8.67
Real - - - 1162 1162 11.02

Figs. 7 and 8 illustrate the distribution of ques-
tion dimensions and types in the test set, respec-
tively. The dataset primarily evaluates Basic Per-
ception and Affordance, mirroring common queries
in daily life regarding object attributes and func-
tional utilities. To ensure objective benchmark-
ing, the questions are predominantly binary and
multiple-choice, while open-ended questions are
included to better simulate real-world QA scenar-
ios.

Furthermore, Fig. 9 shows a balanced distribu-
tion of question types in the training set, preventing
the model from developing a preference bias to-
ward specific answer labels.

B.2 Error Analysis

Figs. 10 and 11 illustrate three representative error
types made by Gemini-3-Pro and Qwen3-VL-8B
on real-world and simulation datasets, respectively
(where Q denotes the question, A the model’s re-
sponse, and GT the ground-truth intent). The re-
sults indicate that these models are highly suscepti-
ble to interference from objects in close proximity
to the hand or prominent objects in the background.

Fig. 12 presents two examples of random in-
quiries conducted in real-world environments. In
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Figure 6: Worldcloud of questions in EgoPoint-Bench.

the first example, both Gemini-3-Pro and Qwen3-
VL-8B provide incorrect and inconsistent an-
swers, highlighting their tendency to make arbi-
trary guesses in the background when the reference
is unclear. In the second example, featuring a white
and a brown jacket, the user points toward the white
one; however, due to perspective effects, the finger
region appears closer to the brown jacket in the im-
age. Consequently, both base models consistently
fail this task. In contrast, our Qwen3-VL-8B model,
fine-tuned with LoRA on simulation data, is able
to answer both questions with complete accuracy.

C Additional Information

C.1 Real-World Data Construction

To bridge the domain gap between simulation and
reality, we constructed a high-quality real-world
dataset focusing on egocentric pointing interac-
tions.

EgoPoint-Bench testset.

Real-world Simulation

18.3% 17.1%

9.9%
21.3%

71.8% 61.7%

Multiple_Choice Open_Ended True_False

Figure 8: Distribution of 3 question types in

EgoPoint-Bench testset.

C.1.1 Data Acquisition and Automated
Pre-processing

Automated Alignment Pipeline. We designed
a precision pipeline combining automated extrac-
tion with manual verification to achieve alignment
across “Pointing Action — Target Object — Speech
Description — Semantic QA.”

* Voice-Driven Keyframe Localization: The
process begins with speech recognition. We
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employed the industrial-grade open-source
model FunASR? (paraformer-zh) to gener-
ate timestamped transcriptions.

— We defined a specific trigger word (e.g.,
“Start”) to mark the onset of a pointing
action.

— The system automatically detects the
timestamp of this trigger and extracts the
immediately following object noun as
the candidate target.

— This process defines a temporal window
of interest for visual extraction.

¢ Clarity-Aware Frame Selection: To miti-

gate motion blur caused by head movements
and device jitter, we implemented a Multi-
Metric Clarity Assessment algorithm rather
than random frame sampling. This algorithm
fuses three complementary metrics:

1. Laplacian Variance: Captures high-
frequency components to detect general
focus blur.

Frequency Domain Analysis: Analyzes
the spectral energy distribution to iden-
tify motion blur patterns.

. Edge Density: Evaluates the sharpness
of structural edges within the frame.

By normalizing and computing a weighted
fusion of these metrics (with all weighting
coefficients set to 1.0), we assign a compre-
hensive clarity score to every frame within the
identified time window. The top-performing
frames with the highest scores are selected as
candidate representative images.

2https://github.com/modelscope/FunASR
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C.1.2 Human-in-the-Loop Annotation

To ensure high quality, we employed a rigorous
Human-in-the-Loop (HITL) pipeline. The process
involves close collaboration between annotators
and data collectors to guarantee that annotations
faithfully reflect the original pointing intent.

Manual Annotation Workflow. Based on the
candidate clear frames selected by the automated
algorithm, human annotators perform the following
steps:

1. Frame Selection & Privacy Protection:
Manually select the frames that clearly con-
tain the hand gesture from the top candi-
dates. Any visible faces in the background
are blurred to protect privacy.

. Transcription Verification: Verify the cor-
rectness of the object name and description
automatically transcribed by the ASR system.

. BBox Annotation: Manually draw Bound-
ing Boxes (BBox) around the pointed-at ob-
ject. This step requires deep cooperation and
communication with the original data collec-
tors to ensure the annotated object and BBox
strictly align with the user’s original pointing
intention, especially in cluttered scenes. Each
collector and annotator was paid $15 per hour.

C.2 QA Generation

To synthesize QA pairs, Gemini-3-Pro is employed
across our simulated and real-world datasets. We
ensure the generation of high-fidelity labels by
leveraging simulator-derived ground truth, specifi-
cally by superimposing red bounding boxes on the
target objects. To further guide the model’s rea-
soning, visual inputs are supplemented with exact
object nomenclature and exhaustive descriptions.
Regarding real-world samples, the original open-
ended user queries are utilized as description for
prompting. After manual validation, the refined
prompt templates are formulated as follows:

Data Generation Specialist Prompt

SYSTEM_PROMPT

# Role

You are an expert Data Generation
Specialist for Vision-Language Models.
Your goal 1is to create ONE single,
high-quality Question-Answer pair for

an egocentric image based strictly on
the specific constraints provided by the
user.


https://github.com/modelscope/FunASR

Gemini-3-Pro

Q: Is this a brown cabinet?

A: True @ A: True

- =

UNIQLO FLowe

- gk

R

What kind of flowers are these?...

Q:
A: Yellow Sunflowers

>t &

Q: Is this object a bicycle?

Q: What is the primary
item | am pointing at?

@ A: To hang clothes

function of the

Q: Does the packaging of the object right here
feature an image of a broom?

<:> A: True <:>

Q: What type of produce is being
pointed at here?

@ A: Oranges @

Figure 10: Error examples of three types in two methods from real-world data.

# Context

You will be provided with:

1. The Target Object name (Ground
Truth).

2. The Target Object description or
question.

3. The specific Dimension
Affordance, Basic Perception).
4. The specific Deixis Level (how the
object is referenced).

5. The specific Question Type (e.g.,
Multiple Choice).

(e.g.,

# Critical Constraint: The “Red Box”
Rule

- The target object is highlighted with
a red bounding box in your internal
vision.

- NEVER mention “red box”, “rectangle”,
“highlight”, or “outline” in the text.

- Pretend the user is pointing at the
object with their finger.

# Guidelines for Quality
## 1. Anti-Cheating Option Generation
(Crucial for Multiple Choice)
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You must avoid “lazy” distractors.
Follow this logic to generate options:

- Correct Answer: The ground truth label
or attribute.

- Distractor 1 (Scene Hard Negative): An
object that is present elsewhere in the
image but NOT being pointed at.

- Distractor 2 (Visual Hard Negative):
An object sharing similar color, shape,
or texture with the target.

- Distractor 3 (Contextual Hard
Negative): An object plausibly found
in this specific environment, but
definitely NOT the target.

- Verification: Ensure the correct
answer is unique and unambiguous among
options.

## 2. Zero-Leakage Question Formulation
- The “Blindfold” Test: If a human
can guess the answer just by reading
the question (without the image), the
question is BAD.

- Bad: “What is this red round fruit?”
(Reveals color, shape, category).

- Good: “What is the name of this
object?” (Reveals nothing).




Gemini-3-Pro

Q: What is the primary function of
this?...
A: Supporting a laptop

words?
@ A: True

Q: Does this object display any visible

Q:Is this a living organism?

® ®

Qwen3-VL-8B

Q: What type of object am | pointing
at?... A: book

A: Duvet @

Q: What kind of item is this?

— I

Q: What is the primary function of the
object | am pointing at?...

@ A: To illuminate the room below @

Figure 11: Error examples of three types in two methods from simulation data.

# Definitions of Constraints

## Deixis Levels (Reference Style)

- L1 (Explicit Action): “the object I am
pointing at”, “what is indicated by my
finger”.

- L2 (Visual Locative): “this object
right here”, “that thing over there”.

- L3 (Implicit Pronoun): “this”, “it”,
“this one”.

## Dimensions (Question Topic)
- Basic Perception: category, color,
shape, material, counting.

- Affordance & Function: Edibility,
operation method, state, safety,
utility.

- Context & Relation: Spatial position,
scene compatibility.

- OCR & Text: Reading text on the object.
- Adversarial: Asking about non-existent
parts or false premises.

## Question Types
- True_False:
“False”.

- Multiple_Choice:

Answer is “True” or

Provide 4 options
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(A/B/C/D).
- Open_Ended: Answer is a concise phrase.

# Output Format

Output ONLY a pure JSON object containing
the single generated pair.

JSON Structure:

{
“qa_pairs”: [
{
“question”: “string”,
“options”: [“A. string”, “B.

string”, “C. string”, “D. string”] OR
null,
“answer”: “string”,
“dimension”: “string”,
“deixis_level”: “string”,
“type”: “string”,
“rationale”: “string”
3
]
}




a clock
ﬂq: What is this? A. clock. B.
Price tag. C. Photo. D. Basket.

A. clock.

4 Gemini3  D. Basket.

\y Qwen3VL B, Pricetag.

§% Qwen3VL  A. Clock.

] (Fine-tuned) () /
a white jacket
‘Q: what is the color of the

object I am pointing at?
White.

4 Gemini3 [...], it appears to be
a brown jacket.

% Qwen3VL  [...], you are
pointing at is brown.

% Qwen3VL  hite.

(Fine-tuned) () /

Figure 12: Comparison of model performance on real-
world pointing tasks.

USER
I need you to generate a QA pair for the
following object based on these strict

requirements:

1. Target Object (Ground Truth):
{{obj_name}}

2. Desription or Question:
{{description}}

3. Required Dimension: {{dimension}}

4 Required Deixis Level:

{{deixis_level}}
5. Required Question Type: {{q_type}}

Instruction: Generate a question that
strictly fits the dimension above.

Use the specified deixis phrasing style.
Format the answer according to the
question type.

Ensure no leakage of the object’s name
in the question.

17



	Introduction
	Related Work
	Third-Person Grounding
	Egocentric Vision Perception
	Pointing-based Interaction

	EgoPoint-Bench
	Overview
	Image Collection
	Point-Sim Simulation Framework
	Real-world Data Collection

	Capability Taxonomy
	QA Pair Construction
	Dataset Statistics

	Experiments
	Experimental Setup
	Evaluation Metrics
	Main Results
	Detailed Analysis
	Error Types

	Conclusion
	Experimental Setup
	Model Configurations
	Additional Implementation Details
	Curated Prompt Templates
	Scoring Open-ended Question

	Additional Analysis
	Detailed Dataset Statistics
	Error Analysis

	Additional Information
	Real-World Data Construction
	Data Acquisition and Automated Pre-processing
	Human-in-the-Loop Annotation

	QA Generation


