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Dose response analysis of tumor killing and T cell activation & exhaustion by 3D in vitro efficacy evaluation of Nivolumab-Ipilimumab combination in LXFA 1647 correlates
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solitomab using the Cypre 42 PDX Panel of 3D tumor models with in vivo outcome; flow cytometry and cytokine analysis reveal mechanism of action.
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CD4+ and CD8+ T cells by solitomab in a dose-dependent manner. upregulated in the combination therapy.
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