
The‌

BIG‌
Book‌

of‌
Atlassian‌

By Alex Ortiz and Bernandina Ortiz
Published by APETECH LLC

UNOFFICIALUNOFFICIAL

Disclaimer
Please note that this book, "The Unofficial Big Book of Atlassian", is an independent
publication authored by APETECH LLC. It is not created by, affiliated with, endorsed by, or in
any way associated with Atlassian Corporation Plc or any of its subsidiaries or products. All
trademarks and registered trademarks mentioned within this book are the property of their
respective owners.

The information, insights, and guidance provided in this book are intended for general
reference and informational purposes only. While every effort has been made to ensure the
accuracy and utility of the content, the dynamic nature of business, technology, and
individual circumstances means that applying the concepts and suggestions herein may not
guarantee specific outcomes or solutions for all your company, team, or personal challenges.
This book is designed to serve as a guide and a source of potential strategies, but it should
not be considered a definitive or comprehensive solution for every unique situation. Readers
are encouraged to exercise their own judgment and discretion when implementing any advice
or methodologies discussed.

Please also be aware: Atlassian Corporation Plc and its associated entities continuously
update and enhance their applications. As such, some guides or instructions within this book
might not immediately or appropriately reflect those changes following an Atlassian
application update. We recommend consulting official Atlassian documentation for the most
current information.

All content within this book, unless otherwise noted, is the property of APETECH LLC.
However, it is specifically stated that the coloring pages featured in this book are the sole
ownership of Kythera Contreras. Furthermore, any advertisements included within this book
are the property of the respective companies that submitted them.

Finally, please forgive any typographical errors you may encounter within these pages. They
serve as a gentle reminder that this work was thoughtfully crafted by human hands, not by
artificial intelligence.

i

About the Authors

Alex Ortiz
APETECH LLC CEO

Bernandina (Lina) Ortiz
APETECH LLC CTO

Alex started making YouTube videos back in
2021 to document his journey of mastering
Jira. Little did he know the videos would
help hundreds of thousands of people. In
2024, Alex had the opportunity to partner
with Atlassian and create a series of training
videos for all types of Atlassian customers.
Two years later, the idea of creating a
conference where you could attend the
trainings in person was born. Alex Co-
created the Atlassian Builders’ Summit as a
conference for the community by the
community. Whenever Alex isn’t busy
creating videos and tutorials, he’s helping
people all over the world with their Jira
problems.

Lina is an embedded software engineer,
editor, and creative problem solver with a
passion for programming, AI, and simplifying
complex ideas. Lina plays a key role behind
the scenes, organizing, designing, and
refining the details that bring big ideas to life.
Her thoughtful approach and “get it done”
mindset have shaped everything from video
productions to large scale events, including
the coordination and preparation that made
this book possible. Driven by curiosity and a
love of learning, Lina continues to explore
the intersection of technology, creativity, and
education, always finding new ways to make
knowledge accessible and inspiring.

ii

About APETECH

APETECH LLC is a family-owned business with a simple mission: to help people all over the
world get the most out of their tools and processes. We believe that when people are
empowered with the right knowledge, they can do their best work with confidence.

This book was created as a friendly, go-to guide for anyone using Atlassian tools. Inside, you
will find practical tips, step-by-step tactics, and big-picture strategies to help you become
more effective, whether you are an Admin, Project Manager, or Forge developer. Think of it
as a resource you can always come back to whenever you need clarity, new ideas, or just a
little extra help.

APETECH LLC is also the parent company of the YouTube channel Apetech Tech Tutorials,
where Alex Ortiz shares free resources, tutorials, and insights to support the global Atlassian
community. Beyond tutorials, we collaborate with Atlassian Marketplace partners to provide
honest and thoughtful showcases of apps designed to solve real-world problems.

At its core, APETECH LLC is run by husband-and-wife team Alex and Lina, with the joyful
help of their children. Together, we bring not only expertise but also heart into everything we
do, because for us, it is about more than tools, it is about helping people succeed.

iii

Special Thanks
I’d like to personally thank Shawn Doyle for being a great mentor, partner, and friend during
this entire journey. His years of experience have helped shaped this event and this book.
We’ve had countless conversations on how to make the event better, how to make this book
better, how to provide a crazy amount of value in just a couple hundred pages. Shawn’s
company ReleaseTEAM, Inc. was the first team to jump on and support the development of
this event and this book and were the first to offer speakers for the sessions.

Thanks Shawn and the rest of the folks over at ReleaseTeam!!

Creating something this big is not easy, especially when it’s your first time. I want to thank my
boys, Alex, Jeremy, and Isaac, for always being there for me. Nothing is possible without a
great support system behind you. Jeremy, thank you for your amazing hugs and for helping
me around the house when I felt overwhelmed with all the to-dos. Isaac, thank you for
always making me laugh with your silly videos that helped me through the tough days. And
Alex, thank you for your support and for bringing me along on this journey. Most of all, I
thank God for His great love and grace over my family, for the blessings He continues to
bring us, and for giving me the strength to balance all the roles I play as a wife, mother,
human, and engineer.

--Bernandina Ortiz

-- Alex Ortiz

We are beyond grateful to all of our amazing sponsors and attendees who made the Atlassian
Builders' Summit possible. Your support, energy, and participation turned this vision into a
reality. To our sponsors, thank you for believing in the mission and helping us create a space
where builders can connect, learn, and grow. To our attendees, thank you for showing up
with open minds and open hearts, ready to share your knowledge and experiences. This
event wouldn’t have been the same without your enthusiasm and contributions. Together,
we’ve built something truly special, and we can’t wait to continue this journey with you.

--Alex and Lina

Message to our Sponsors and Attendees

 Thanks to My Boys

iv

Atlassian Builder’s Summit
is teaming up with

Nurturing Purpose and Labdoo to
build new futures by

upcycling unused working devices.

At Labdoo, uses the word dootronics (as in labdoo electronics) to refer to any
computer device that can be used for education purposes. Contact Nurturing
Purpose to coordinate the donation of your unused electronic devices. Let’s build
futures together.
About Labdoo
Labdoo is a global collaborative social network of grassroots volunteers using CO2-neutral
means to provide schools in need with unused computers loaded with powerful educational
software

Edoovillages
With this effort we are supporting these schools supported by Labdoo that receive
refurbished laptops with educational software, helping bridge the digital divide in
underserved communities

Doortrips
Travel with purpose—make your trip a Dootrip! Carry a laptop, deliver education, and help
bridge the digital divide. Contact us if you’re traveling soon.

About Nurturing Purpose
Nurturing Purpose empowers communities to grow by supporting local leaders, raising
awareness, and mobilizing resources. Our focus is on building strong foundations so
communities can thrive independently and become tomorrow’s changemakers.

Give a New Life to Your "Dootronic"

Nepal
Familia de Hetauda

Argentina
FUNASER

Atitlan,Guatemala
David LaMotte community
school EDEE - Special
Education school

Moshi, Tanzania
DelightNiche bootcamps
MOSKISA Kids of Street
soccer academy
Mikono Salama school

India
Pune FamilyResource

Center

 nurturingpurpose.org

Kythera Contreras

Creative Partner

Thank You to Our Sponsors
Presenting Partner

Summit Sponsor

Technical Tracks Sponsors

Gallerie Sponsor

Innovation Sponsor

Supporting Sponsors

v

Table of contents
Atlassian Administration...1

Getting Started with Jira Administration...2
Determining a Jira Space Template Guide...4
How to determine what questions to ask stakeholders before creating a Jira space..5
Team-Managed VS Company-Managed Guide..6
Setting Up A Team-Managed Space Guide..7
Team-Managed Space Checklist..8
Setting Up a Company-Managed Space Guide..9
Company-Managed Space Checklist..10
Setting Up Jira for SAFe Teams..11
Top Jira Space Glossary...13
Setting Up a Jira Space for Software Teams Runbook..15
Setting Up a Jira Space for Marketing Team Runbook...16
Setting Up a Jira Space for Finance Teams Runbook..17
Setting Up a Jira Space for Sales Teams Runbook...18
Jira Spaces Creating Mistakes To Avoid...19
Common Jira Work Types Guide...20
Jira Workflows Best Practices Guide...22
Jira Workflows Mistakes to Avoid...23
Jira Advanced Workflows Guide...24
Jira Status Tips...25
Jira Fields Tips...26
Story Pints Guide..27
Jira Custom Fields Mistakes to Avoid..28
How to Pick the Right Custom Fields Type?...29
Screen & Schemes Cheat Sheet..30
How to Make Fields Required Guide...31
Permission Scheme Breakdown..32
Permission Schemes Best Practices...33
Adding Vendors to Your Jira Runbook..34
Making Jira Spaces Read-Only Run Book..35
Top 5 Automation Rules for Everyone...37
JQL Cook Book...38
How to Create and Share Filters with Your Team..39
Global Jira Permission Settings Tips...40
Jira Product Settings..41
Adding a New Screen for a Specific Work Type..42
Adding a New Status to an Existing Workflow..43
Adding New Work Type to a Jira Space...44
Creating and Adding a Custom Field to a Screen..45
Adding an Existing Field to an Existing Screen..46
Deleting a Status, Transition, or Adding Transitions..47
How to add and organize your users?..48
Project Settings Guide...49
Kanban Board Guide..50
Board Settings Guide...51
Scrum Board Guide..52
The Sprint Cadence Guide..53

Getting Started with Plans Administration...54
Jira Plan Settings...56
Jira Advanced Plan Settings...58

Getting Started with Plans for Project Managers...59
Creating Your First Plan Tips and Tricks...60
PI Planning with Jira Plans Guide..61
Cross-Team Dependency Management With Jira Plans Tips...62

Getting Started with JSM Administration...63
Determining JSM Project Template Guide..64
How to determine what questions to ask stakeholders before creating a JSM Space?...65
Setting Up a Team-Managed JSM Space...66
Setting Up a JSM Space for ITSM Run Book..67
JSM Space Setup Glossary...70
JSM Spaces Creating Mistakes To Avoid...71

JSM Request Types Guide..72
JSM Workflows With Approvals Guide...73
JSM SLAs Guides..74
How to Configure SLA’s..75
JSM Licensing Guides..76
JSM Customers and Organizations Guide..77
JSM Assets Guide...78
Getting Started with Assets..79
JSM Forms Conditional Fields and Sections...80
JSM Product Administrative Setting..81
Knowledge Base Setup Guide...82

Getting Started with Jira Product Discovery Administration...84
Setting Up a JPD Space Check List...85
JPD Space Setup Glossary..86
Setting Up a JPD Space for Product Management Run Book..87
JPD Spaces Creating Mistakes To Avoid..88
JPD Product Administrative Setting...89

Getting Started with Confluence Administration...90
Determining Confluence Template Guide...91
What to ask stakeholders before building a Confluence space?...92
Setting Up a Confluence Space Check List...93
Confluence Space Creation Glossary...94
Setting Up a Confluence Space for Software Teams Run Book...96
Software Teams Templates...97
Setting Up a Confluence Space for HR Teams Run Book..98
HR Teams Templates..99
Confluence Spaces Creating Mistakes To Avoid..100
Confluence Blueprint Creation Guide...101
Confluence Space Permissions Guide...102
Confluence Page Permissions Guide...103

Atlassian Cloud Administration..104
User Management Billing Guide...105
Understanding Atlassian’s Administrator Guide..107
Atlassian Guard Shadow IT Guide..108
Advanced Administration Guide...109
Marketplace App Evaluation Framework..110

Agile Project Management..111
Scrum vs. Kanban Comparison Table...113
Scrum Glossary...114
Kanban Glossary...115
Agile Roles & Responsibility Guide...116
Scrum Master Playbook..118
Work Type Hierarchy Breakdown...120
Backlog Grooming Guide..121
Sprint Planning Playbook..122
Sprint Planning Checklist..123
Sprint Execution Playbook...124
Daily Scrum Checklist..126
Sprint Review Checklist..127
Sprint Retrospective Guide..128
Retrospective Formats Library..129
Sprint Retrospective Checklist..130
Triaging Bugs Guide...131
How To Deal With Scope Creep Guide...132
Product Owner Playbook...133
Project Manager Playbook...134
Product Manager Playbook..136
Technical Lead Playbook...139
QA Playbook..140
Developer Playbook..141
Story Points vs. Time Estimates Cheat Sheet...142
Definition of Ready & Definition of Done Examples...143
PI Planning Runbook...145

Capacity Planning Worksheet...147
Release Planning Guide...148
Agile Reporting in Jira...149
Scaling Agile Frameworks Overview..151
Agile Anti-Patterns List...152
Daily Standup Best Practices...153
Kanban WIP Limits Playbook..154
Team Working Agreement Template..155
Stakeholder Communication Guide...157
Risk Management in Agile..158
Agile Mindset & Culture Guide...159

Forge Development...160
Setup Your Forge Developemnt Enviroment..161
Forge Command Cheat Sheet...164
Atlassian Forge YAML Study Guide..166
Understanding Forge Environments..168
UI Kit vs Custom UI Comparison..169
UI Kit...170
Marketplace App Submission Checklist..171

Coloring Pages ..172-174
Pages for Notes...175-179

Atlassian
Administration

1

GETTING STARTED WITH
JIRA ADMINISTRATION

2

Jira
Assignee
Work Item
In Progress
To Do

Done
Permission Scheme
Administrators
Scrum Board
Kanban Board

Sprint
Velocity
WIP Limit
JQL
Screen Scheme

Field Configuration
Epic
Story
Task
Subtask

Bug
Feature
Initiative
Due Date
Priority

DevOps Tool Specialists

https://www.releaseteam.com/

Made for you Atlassian makes recommendations based on templates that you have recently used in the past.

Bundles
Atlassian allows you to quickly set up multiple spaces at the same time to save you time. There
are a couple of out of the box options or you have the ability to make your bundle if you find
yourself making spaces frequently.

Custom templates
ENTERPRISE

If you are an enterprise customer, you can create repeatable templates that share Boards, Work
Types, Fields, Workflows, etc. Very similar to setting up the “perfect” space and then using that
space as the basis for future spaces. This is just more formal and only for Enterprise subscribers.

Software development When you need a Scrum board, this is the only space type you should select. This is typically for
“agile” or “scrum” teams

Service management
For teams wanting to use JSM. You need to have purchased JSM. There are many different types
of templates here that allow you to create JSM spaces. I would recommend you use the General
Service Management template for a basic JSM space, or if your on the Premium version of Jira
and need to have a full ITSM solution, then pick the IT Service Management Template

Work management
For teams wanting wanting to use Jira, but don’t want to worry about “Agile or Scrum”. Atlassian
offers many different templates based on specific use cases, but I prefer starting with a blank
space as your company’s process will be custom enough that you’ll end up modifying any of the
out of the box solutions.

Product management For teams wanting to use JPD. You need to have JPD Purchased. There are a few different
templates here, but you just need a simple Product Discovery template to get started.

Marketing

The rest of the options available (Marketing, Human Resources, Finance, Design, Personal,
Operations, Legal, Sales, Analytics, IT, Facilities, Nonprofit are extensions of the aforementioned
templates. They just offer more specific use cases and preconfigured templates. I would
recommend you check them all out and I would also recommend you personally create one of
each space template in a SANDBOX environment so that you can get a feel for what they
provide.

I find that most teams end up modifying these templates because their processes don’t
necessarily match with what Atlassian offers. Because of this, for any of these options, I
recommend you just go with the Basic Work Management template and customize from there. I
find that it’s easier to add configurations such as work item types, fields, workflows, as opposed
to removing or renaming what Atlassian gives you when you pick these templates.

Human resources

Finance

Design

Personal

Operations

Legal

Determining a Jira Space Template Guide
Jira ships with many different space templates to choose from. You want to pick the space template type that
best fits your specific needs. The first thing you need to evaluate is which “Jira” space are you intending to use.
Atlassian presents you with all of the different “Jira” products available which makes choosing a template a little
harder. These are the different “Jira” products you can choose from:

Jira (Formerly known as Jira Software) - Project Management
Jira Service Management (Assuming you have JSM) - Intake / Helpdesk
Jira Product Discovery (Assuming you have JPD) - Ideation / Roadmap

For each of these 3 products, you then have a plethora of different templates to choose from.
Make sure you first determine which product you intend to use, before picking a template.

4

Now that you know the different space types and templates available, the most important question is how do
you determine which template you need.

The first step is making sure you select the appropriate product. Jira, Jira Service Management, and Jira Product
Discovery are very different products, so that step should be easy. Since this section of the book is all about
Jira, let’s take a look at determine which Jira template is right for you and your team.

Next, determine if the team you are creating the template will be doing agile based software development or
just space management.

If the team is doing agile based software development / agile project management, then using a Jira
Software template is the only option for you as that will be the only space type that enables things like
Sprints, Story Points, etc.
If the team is not doing any agile based software development or agile project management, then you can
use any of the Work Management space template types. Please note that the Software space types will still
work and the Kanban style space template is a great option for teams that still want the full power of Jira,
but don’t want to do Scrum.

Because the Software space template types is the only template type that is going to give you the full power of
Jira, let’s assume that your team wants a Software template. Now you have to pick between Kanban or Scrum.

Scrum: This is the only template you can select if your team requires a proper Backlog, a Sprint, the ability to
estimate work with Story Points. This is also the only template that will give you Scrum reports such as a
Burndown Chart, Burnup Chart, and a Sprint Report. This template requires teams to follow the Scrum
methodology which requires the team to follow the rules that Scrum defines. Atlassian also predefines the
workflow for a Scrum based space template to be:

To Do
In Progress
Done

Kanban: This template is very similar to the Scrum template, but doesn’t provide the ability to run Sprints or
visualize your Story Point estimates. The Kanban space template is a little more flexible and allows you to
define a throughput method where your team plans their work and then works on items that are selected to be
worked on. The Kanban template also has the option to enable a dedicated backlog, but this is not configured
by default. The Kanban template is also closer to the Work Management templates but there is one key benefit.

Kanban space templates can have multiple Kanban boards (or any combination of Kanban or Scrum), while
Work Management templates can only have a single board.

The Kanban space template also contains a different set of reports that favor throughput such as Cycle Time
and a Cumulative Flow Diagram.
Atlassian predefines the workflow for a Kanban based space template to be:

Backlog
Selected for Development
In Progress
Done

How to determine what questions to ask
stakeholders before creating a Jira space

5

Team-Managed VS Company-Managed Guide
Life’s biggest decision you’ll make in Jira. Do you pick Team-Managed or do you pick
Company-Managed? Selecting the wrong template can handicap your team and the impact
to your team can be severe. Use this guide to help you pick the appropriate type.

Team-Managed spaces

Company-Managed spaces

Team-managed spaces are great for teams that do not have a lot of Jira Administration experience. This
space type allows users to get started with Jira in minutes and space configurations are contained to the
space that is being configured. This is great for folks that don’t have a lot of Jira Administration training
as their actions will not impact the other Jira spaces. This sounds great right? Except, that all good
things come at a cost. Because of the isolation, these spaces don’t scale well for large teams. The
concept of “sharing” configurations doesn’t exist for team-managed spaces. Additionally, while work
items can be linked together, the parent of any given work item must be within the same space as the
child. This just doesn’t scale well for larger teams where work is happening in multiple Jira spaces.

Company-managed spaces give you all the features of Jira. You can share configurations, fields, work. But there
is a pretty big drawback. Because of the complexity of how company-managed spaces work, you really do need to
know how to be a good Jira Administrator. Not understanding the impact you can have on surrounding spaces is
an easy way to really break things in Jira. Luckily, there are many certifications available to help you be a great Jira
Administrator. Additionally, company-managed spaces can take days, weeks, or months to fully configure because
there are many different options out there that can be tweaked. The good thing is that company-managed spaces
can be tailored to match your work process more accurately. The bad news is that you need to know Jira more
intimately. The biggest takeaway, if you want your teams to fully collaborate together, using all the power and
features of Jira, then company-managed spaces is the only type you should be using.

6

Step 1 – Create the space
On left hand side vertical menu go to spaces and click + (Create space). As long as your
Jira administrator hasn’t disabled this feature, any logged in user should be able to create
a team-managed space.
Select the space template you need (Software Development for Agile project
management / Software development).
Select Kanban or Scrum (Scrum if you need to have a Sprint)
Click on Use Template (This just shows you the features of a Scrum space template).
Click on Select a team-managed space (The PURPLE button)
Enter space name and key
Select the space permissions:

Open (Anyone can see and edit the work in the space)
Limited (Anyone can see the space, but only specified user can edit the work)
Private (Only specified users can access and edit the work)

Click on Next
Skip the step where you invite users because this will add licenses ($$) to your Jira.
For now, skip the Code and Space Pages section. Just click Continue at the bottom.

Step 2 – Configure Space Settings
Click on the three dots (...) next to space name → Space Settings.
Under Work types, Add/Edit/Remove work Types.
For each Work type, Add/Edit/Remove any custom fields.
For each Work Type, Add/Edit/Customize Workflows
Optionally, add any work type level security (Who can create/edit specific work items)

Step 3 – Board Setup
Configure board columns and statuses (Column name doesn’t have to match Status name)
Add any custom filters if needed
Configure the card cover images if needed
Configure the timeline view (schedule work by sprint or independently).

Step 4 – Automation & Apps
Create any space specific automation rules such as copying data from parent to child.
Connect relevant integrations such as Confluence, Figma, or Git.
Configure applicable 3 party marketplace apps such as Xray.rd

Step 5 – Access
Add users to your space as space administrators (can make space settings changes)
Add users to your space as users (if you selected limited or private).

Setting Up A Team-Managed Space Guide

7

Team-Managed Space Checklist
1: Space Basics
 Define the space name and key (can be changed later, but breaks filters).
 Select the space template (Scrum, Kanban, Bug Tracking, or Business/Work Management Type).
 Decide if this space should be team-managed because you don’t need to scale or share configs

2. Roles & Permissions
 Assign a space lead (responsible for ownership).
 Set up space roles (Administrators, Members, Viewers).
 Determine Access Level (Open, Limited, Private)

3. Work Item Types & Workflows
 Decide which work item types to use (Epic, Story, Task, Bug, Sub-task, custom).
 Customize workflows (statuses + transitions) to reflect how your team works.
 Keep it simple — avoid too many statuses that confuse reporting.
 Add custom fields (if needed) but don’t overload.

4. Boards & Backlog
 Add additional columns (statuses are automatically created)
 Define sprints (for Scrum teams).
 Define columns on the board (map statuses logically).
 Add swimlanes or quick filters if helpful.

5. Automation & Rules
 Add basic automations (e.g., auto-assign work items, transition on resolution).
 Decide on notifications (who gets email updates, when).
 Consider rules for sub-tasks, linked work items, or dependencies.

6. Reports & Metrics
 Enable reports (burndown, velocity, cumulative flow, cycle time).
 Decide what metrics matter most and build filters and dashboards
 Set expectations on how reporting will be used (e.g., retrospectives, management updates).

7. Integrations & Apps
 Connect with Confluence (for documentation).
 Integrate with Bitbucket/GitHub if it’s a dev team.
 Enable Slack/Teams/Jira mobile app for quick updates.

8. Space Settings & Governance
 Decide on naming conventions (for work items, versions, components).
 Clarify who can create new work types/fields (avoid chaos).
 Confirm data retention & archiving practices (how long will work items live).
 Align on team agreements (when to move work items, when to close).

8

Step 1 – Create the space
On left hand side vertical menu go to spaces and click + (Create space). ONLY Jira Administrators
and above will be able to create company-managed spaces.
Select the space template you need (Software Development for Agile project management or
Software development).
Select Kanban or Scrum (Scrum if you need to have a Sprint).
Click on Use Template (This just shows you the features of a Scrum space template).
Click on Select a company-managed space (The BLUE button).
Enter space name and key.
Determine if you want to share settings with an existing space.

This allows you to use a “custom template” if you don’t have Enterprise.
You need to have permissions to access the space you’ll use to share the settings.
This new space and the space you select to share the settings will now share settings which
means any changes to the configurations now change for both spaces.

Click on Next.
Skip the step where you invite users because this may add licenses ($$) to your Jira.
For now, skip the Code and space Pages section. Just click Continue at the bottom.

Step 2 – Configure Space Settings (You need be a Jira Admin to make any of these changes)
Click on the three dots (...) next to space name → space Settings.
Under Work Items → Types, Add/Edit/Remove Work Types.
Under Work Items → Screens, Add/Edit/Remove any custom fields.
Under Workflows, Add/Edit/Customize Workflows.
Optionally, add any work type level security (Who can create/edit specific work items).
Optionally, add any versions or components that will be used by your teams.

Step 3 – Automation & Apps
Create any space specific automation rules such as copying data from parent to child.
Connect relevant integrations such as Confluence, Figma, or Git.
Configure applicable 3 party marketplace apps such as Xray.rd

Step 4 – Permissions
Add users to your space as space administrators (can make space settings changes).
Add users to your space as users (based on your Browse space permissions).

Step 5 – Board Setup
Click on the three dots (...) next to your board name → Board Settings.
Configure board columns and statuses (Column name doesn’t have to match Status name).
Add any custom filters if needed.
Configure a default swimlane for the board.

Users can select a group by at the board level that allows them to dynamically pick the
swimlane view but it’s more limited.

Configure the timeline view (schedule work by sprint or independently).
Configure estimation details (pick between using Story Points or Original Estimate (hours)).

Setting Up a Company-Managed Space Guide

9

Company-Managed Space Checklist
1: Space Basics
 Define the space name and key (can be changed later, but breaks filters).
 Select the space template (Scrum, Kanban, Bug Tracking, or Business/Work Management Type).
 Decide if space should be company-managed because you do need to scale or share configs.

2. Roles & Permissions
 Assign a space lead (responsible for ownership).
 Set up global space roles (Administrators, Developers, Users, Customers/Vendors).
 Customize Permission Scheme to control who can view the space, edit/create work items, etc).

3. Work Item Types & Workflows
 Decide which work types to use (Epic, Story, Task, Bug, Sub-task, custom).
 Customize workflows (statuses + transitions) to reflect how your team works.
 Keep it simple — avoid too many statuses that confuse reporting.
 Add custom fields (if needed) but don’t overload.

4. Boards & Backlog
 Enable backlog view (for Kanban if the team needs to prioritize work).
 Define sprints (for Scrum teams).
 Define columns on the board (map statuses logically).
 Add swimlanes or quick filters if helpful.

5. Automation & Rules
 Add basic automations (e.g., auto-assign work items, transition on resolution).
 Decide on notifications (who gets email updates, when).
 Consider rules for sub-tasks, linked work items, or dependencies.

6. Work Item Types & Schemes
 Select or create an Work Type Scheme (Epic, Story, Bug, Task, Sub-task, Feature, etc.).
 Decide if you need custom work types (e.g., Risk, Change Request).
 Apply an Work Type Field Configuration Scheme (which fields are required, hidden, or optional).

7. Integrations
 Connect with Confluence (for documentation).
 Integrate with Bitbucket/GitHub if it’s a dev team.
 Enable Slack/Teams/Jira mobile app for quick updates.

8. Space Settings & Governance
 Decide on naming conventions (for work items, versions, components).
 Clarify who can create new work types/fields (avoid chaos).
 Confirm data retention & archiving practices (how long will work items live).
 Align on team agreements (when to move work items, when to close).

10

Setting Up Jira for SAFe Teams
1. Define the Hierarchy (Work Item Types)
In SAFe, work flows from strategy to execution. Jira’s work types should reflect this:

Portfolio / Strategy Level
Theme / Initiative (Often tracked in Jira Align or Advanced Roadmaps/Plans)
Epic → Large cross-cutting work, broken into Features. (A new work type named Epic)

Program (ART) Level
Feature → Value delivery that fits within a PI (Program Increment). (You need to rename
your epic to Feature)
Enabler → Technical work needed to support features.

Team Level
Story → End-user or technical story.
Task / Subtask → Execution-level work items.
Bug → Defect handling.

In Jira, you can configure this hierarchy and leverage in Advanced Roadmaps:
Initiative → Epic (New Custom Work Type) → Feature (Renamed Epic) → Story →
Subtask.

2. Workflows & Statuses
You’ll want different workflows per level (Portfolio, Program, Team), but they should stay
consistent enough to enable reporting.

Epic Workflow (Portfolio level)
Statuses:

Funnel → Reviewing → Implementing → Done

Feature Workflow (Program level)
Statuses:

To Do → Ready for PI Planning → In PI → In Progress → Done

Story / Task Workflow (Team level)
Statuses:

To Do → In Progress → In Review → Done

Bug Workflow (Team level)
Statuses:

To Do → In Progress → In Testing → Done

11

Best practice: Keep workflows simple. Avoid too many statuses, but make sure there’s a clear
handoff between PI planning, execution, and completion.

3. Fields & Configurations
Fix Version → Used to represent Program Increments (PIs).
Components → Can represent ARTs, value streams, or subsystems.
Labels → Quick tagging for cross-cutting concerns.
Custom Fields (recommended):

WSJF (Weighted Shortest Job First) → for prioritizing Features/Epics.
PI Objective → summary of planned value delivery.
Commitment Flag → to record whether a Feature/Story was committed vs.
uncommitted in PI planning.

4. Boards & Backlogs
Team Boards → Scrum/Kanban boards for execution at story/task level.
Program Board (Jira Plans) → Shows Features across teams, dependencies, and PI
commitments.
Portfolio View → Epics and Initiatives in Plans

5. Program Increment (PI) Configuration
Create Fix Versions named like PI-2025.1, PI-2025.2.
During PI planning, assign Features and Stories to those versions.
Use Plans to plan capacity across multiple teams.

6. Reporting & Metrics
Portfolio Level → Progress of Epics across PIs.
Program Level → Feature burndown, Program Board, dependency tracking.
Team Level → Velocity, Sprint burndown, cumulative flow.
Custom Dashboards → Business value delivered, predictability (commitment vs. done).

7. Governance / Best Practices
Use Company-Managed spaces (not Team-Managed) for SAFe — you need consistent
workflows.
Standardize work type hierarchy across all teams.
Train teams on linking Epics → Features → Stories correctly.
Decide whether to use Jira Align (if your org is fully SAFe) or Plans (for mid-scale SAFe).
Limit customization per team — consistency is critical for roll-up reporting.

Pro Tip: If you don’t have Jira Align, you can still approximate SAFe in Jira Software + Plans
with:

Epics (Portfolio) → Features (Program) → Stories (Team) → Sub-tasks.
Use Versions = PIs, Boards = Teams, Roadmaps = ART planning.

12

Jira Space Glossary
Core Jira Concepts

Jira – Atlassian’s space and work tracking platform.
Space – A collection of work in Jira, usually representing a product, service, or team.
Work Item – The fundamental piece of work in Jira (task, bug, story, etc.).
Epic – A large body of work broken down into stories or tasks.
Story – A user-focused requirement or feature request.
Task – Some piece of work someone on the team needs to complete.
Bug – A work type representing a defect.
Sub-task – Smaller work item under a story/task/Bug.
Feature – A higher-level work item (often custom work type in SAFe setups).
Initiative – Strategic high-level objective, above epics.

Fields & Properties
Summary – Short title/description of a work item.
Description – Detailed explanation of a work item.
Assignee – The person responsible for completing the work item.
Reporter – The person who created the work item.
Priority – Importance of a work item (Highest → Lowest).
Resolution – Final outcome of a work item (Done, Won’t Fix, Duplicate, etc.).
Status – Current state of a work item (To Do, In Progress, Done).
Labels – Free-text tags to categorize work items.
Components – Subsections of a space or system (modules, teams, services).
Fix Version – The release/version a work item is planned for.
Affects Version – Version where a bug/issue was found.
Due Date – Deadline for completing the work item.
Environment – Technical context (OS, browser, system).
Parent – Connects a child to higher-level work item. (Subtask → Story, Story → Epic, Epic → Initiative)

Workflows & Transitions
Workflow – Set of statuses and transitions a work item goes through.
Transition – Movement of a work item between statuses.
To Do – Default starting status.
In Progress – Active work status.
Done – Completed work status.
Workflow Scheme – Mapping of work types to workflows.
Resolution Screen – Screen displayed when resolving a work item.
Condition – Restriction on a workflow transition.
Validator – Rules that must be met before a transition.
Post Function – Automation triggered by a workflow transition.

Roles & Permissions
Space Lead – Default owner of a space.
Space Role – Group of users (Admins, Developers, Viewers).
Permission Scheme – Defines what actions users can take.
Notification Scheme – Defines who gets emails and when.
Security Scheme – Controls visibility of work items.
Browse space – Permission to view a space’s work items.
Assign work – Permission to assign work.
Transition work – Permission to change a work item’s status.
Administrators – Users who manage configurations.
Developers – Users who work on work items.
Viewers – Read-only access role.

13

Boards & Agile
Board – Visual representation of work items.
Scrum Board – Used for sprint-based work.
Kanban Board – Used for continuous flow of work.
Backlog – List of work not yet in progress.
Sprint – Time-boxed period for delivering work.
Velocity – Measure of completed story points per sprint.
Burndown Chart – Graph showing remaining work in a sprint.
Cumulative Flow Diagram – Visualization of work across statuses.
Epic Burndown – Progress of an epic over time.
Swimlane – Horizontal grouping of work items on a board.
Quick Filter – Custom filter on boards.
WIP Limit – Maximum allowed work in progress.
Estimation – Method of sizing work (Story Points, Time).
Capacity – Planned workload for a sprint/team.

Searching & Filters
Filter – Saved search query.
JQL (Jira Query Language) – Advanced query language for search work items based on field data.
Search – Finding work items in Jira (basic or advanced).
Saved Filter – Reusable search criteria.
Filter Subscription – Automatic email report of filter results.

Reports & Dashboards
Dashboard – Customizable page with gadgets.
Gadget – Widget showing reports, charts, or filters.
Pie Chart – Work Items grouped by a field (status, assignee).
Two-Dimensional Gadget – Matrix of work items by two fields.
Heatmap – Visualization of workload distribution.
Created vs. Resolved Chart – Trend of new vs. completed work items.
Control Chart – Cycle time visualization.
Velocity Chart – Team’s delivery rate across sprints.

Configurations
Work Type Scheme – Defines which work types are available in a space.
Field Configuration – Controls which fields are visible/required.
Screen Scheme – Defines which screens are used for work item operations.
Screen – Collection of fields shown to users (Create/Edit/View).
Custom Field – User-defined data field.
Field Context – Scope of a custom field.
Resolution Scheme – Set of possible resolutions.
Notification Event – Trigger for sending notifications.

Miscellaneous
Space Category – Grouping of spaces.
Archived space – space no longer active.
Cross-space Board – Board spanning multiple spaces.
Epic Panel – Backlog view of epics.
Dependency – Relationship between work items.
Link – Connection between work items (blocks, relates to).
Watcher – User subscribed to updates on a work item.
Time Tracking – Estimated vs. logged work.
Work Log – Record of time spent on a work item.
Reindexing – Jira admin task to refresh the search index.

14

Setting Up a Jira Space
for Software Teams Runbook

1. Work Item Types (Formerly work Types)
Keep it lean but aligned with Scrum:

Epic → Large body of work, spans multiple sprints.
Story → A user story (end-user functionality).
Bug → A defect that needs fixing.
Task → Technical or non-functional work.
Sub-task → Small pieces of a story/task.

2. Workflows & Statuses
Epic/Subtask Workflow
To Do → In Progress → Done
Story/Task Workflow
To Do → In Progress → Code Review → Internal Testing → Done
Bug Workflow
New → To Do → In Progress → Code Review → Internal Testing → Done

3. Key Fields
Story Points → Estimation field for Scrum teams.
Assignee → Who’s working on it.
Sprint → To tie work to a timebox.
Fix Version → For release planning.
Components (optional) → Use if you want to tag by module or subsystem.
Priority → Helps teams order work (but usually backlog order is the main driver).
Pro Tip: You may want to consider having different fields per work item type, just like with your workflows

4. Boards & Backlog
Scrum Board for each team.
Add swimlanes by Epic or Story if useful.
Enable Quick Filters (e.g., “My work,” “Bugs Only,” “Unestimated”).

5. Sprints & Cadence
Create sprints directly in the backlog.
Define sprint length (common = 2 weeks).
Use fix versions for releases that may span multiple sprints.
Add Definition of Ready (DoR) and Definition of Done (DoD) as team agreements (document in Confluence
or space sidebar).
Add Acceptance Criteria so developers know how to test their code and QA knows what to test against

6. Automation Ideas
Auto-assign Bugs to component lead.
Send Slack/Teams notification when a sprint starts/ends.

7. Reports & Metrics
For Scrum teams, enable:

Burndown Chart (per sprint).
Velocity Chart (for forecasting).
Sprint Report (for completed vs. carried-over work).
Epic Burndown (progress on larger initiatives).
Cumulative Flow Diagram (to check WIP health).

15

Setting Up a Jira Space
for Marketing Teams Runbook

1. Work Item Types (Formerly Issue Types)
Marketing teams need work types that reflect their workflow:
Epic → Large campaign (e.g., “Holiday 2025 Campaign”).
Story → Marketing deliverable (e.g., “Launch email sequence,” “Landing page design”).
Task → Supporting work (e.g., “Write blog post copy,” “Design banner”).
Bug/Defect → QA works (typos, broken links, formatting errors).
Sub-task → Tiny to-dos within a task (e.g., “Add CTA link,” “Proofread copy”).

2. Workflows & Statuses
Marketing workflows often need review and approval steps:
Epic Workflow (Campaigns) / Sub-task
To Do→ In Progress → Done
Story/Task Workflow (Deliverables)
To Do → In Progress → In Review → Approved → Done
Bug Workflow (QA) / Defect
New → To Do → In Progress → Ready for Review → In Review → Done
Pro Tip: Include In Review / Approved steps since marketing involves stakeholders (legal, brand, management).

3. Key Fields
Due Date → Critical for campaign deadlines.
Assignee → Who’s responsible.
Priority → High/Medium/Low urgency.
Labels → Campaign tags (e.g., “SEO,” “Paid Ads,” “Social”).
Components → Channel or team (Email, Social Media, Events, Content, Design).
Fix Version → Optional; can represent campaign launch dates.
Custom Fields (recommended):

Campaign Objective (short description of goal).
Content Type (blog, email, ad, video, etc.).
Approval Owner (who signs off).

4. Boards & Backlog
Kanban Board works best for continuous campaign work.
Columns should match workflow (To Do → In Progress → In Review → Approved → Done).
Swimlanes by Campaign (Epic) or by Channel (Component).
Quick filters: “Needs Review,” “Overdue,” “My Work.”

5. Automation Ideas
Auto-notify approver when task moves to “In Review.”
Send Slack/Teams alert for tasks due in 3 days.
Auto-label new work items based on Component (e.g., Social = auto “Social Media” label).

6. Reports & Metrics
Marketing teams care about throughput and deadlines more than velocity:
Cumulative Flow Diagram → Tracks work in each stage.
Control Chart → Cycle time for content creation.
Created vs. Resolved Chart → Workload trend.
Calendar View → Visual of campaign deadlines.
Epic Report → Campaign-level progress.

16

Setting Up a Jira Space
for Finance Teams Runbook

1: Work Item Types (Formerly Issue Types)
Initiative / Project → Major finance efforts (budgeting cycle, annual audit, system implementation).
Task → General finance activities (month-end close, reconciliation, vendor payment).
Approval → Used for expense approvals, purchase requests, or investment decisions.
Bug/Defect (optional) → For finance system errors or compliance gaps.
Request → When other departments submit finance-related requests (new vendor setup, invoice processing,
etc.)
Sub-task → Smaller steps within a task (upload report, verify entry, review approval).

2: Workflows
Finance work usually has a mix of process-heavy tasks and request-driven work. A solid workflow might look
like:
General Finance Task Workflow:
To Do → In Progress → In Review → Approved → Done
Request/Approval Workflow:
To Do → In Review → Pending Approval → Approved → Rejected
Initiative / Bug Workflow:
To Do → Investigating → In Review → Resolved → Done
Sub-task Workflow:
To Do → In Progress → Done

3: Custom Fields
Cost Center / Department → who owns the expense/project
Budget Code → align with finance reporting codes
Amount / Value → financial impact of the item
Due Date → especially critical for financial close
Approval Required? (checkbox or dropdown)
Vendor Name → when dealing with procurement

4: Permissions
Strong restrictions (e.g., only finance managers can move work items to Approved).
Limited edit access once items are approved (audit trail).

5: Automation
Auto-assign requests based on cost center or type.
Send Slack/Email reminders for Pending Approval.
Transition to Approved when a manager approves via Jira comment/button.

6: Boards & Views
Kanban Board → for ongoing finance work.
Calendar View → for due dates (month-end, quarterly reporting).
List View → for quick task management.

7: Reports & Dashboards
Tasks by Cost Center / Department
Pending Approvals
Budget Requests vs. Approved
Monthly Close Progress

17

Setting Up a Jira Space
for Sales Teams Runbook

1: Work Item Types (Formerly Issue Types)
Opportunity / Deal → Core sales object, representing a potential sale.
Lead → New inbound/outbound prospect to qualify.
Task → General activities (send contract, schedule demo, update CRM).
Sub-task → Specific steps under a deal/task (draft proposal, collect signatures).
Renewal → For customer contract renewals.
Request → Internal requests to Sales Ops (pricing exception, discount approval, legal review).

2: Workflows
Sales workflows mimic a CRM pipeline but can be extended for approvals & handoffs.
Opportunity/Deal Workflow:
Lead Identified → Qualified → Proposal Sent → Negotiation → Pending Approval → Closed Won / Closed Lost
Internal Sales Request Workflow (pricing/discount/legal):
Submitted → In Review → Approved → Rejected
Renewal Workflow:
Upcoming Renewal → Customer Contacted → Negotiation → Closed Won / Closed Lost

3: Custom Fields
Account / Company → link to customer
Deal Value → $ amount
Close Date → expected close
Stage → mirrors pipeline (Lead, Qualified, etc.)
Sales Rep → owner of the deal
Probability % → confidence of winning
Competitor → (optional) track competition
Approval Required? → for discounts or special terms

4: Permissions
Only Sales Managers can move deals to Closed Won.
Reps can edit deals but not delete them (audit trail).

5: Automation
Auto-assign leads based on territory.
Trigger Slack/Email reminders if a deal sits in a stage too long.
Notify Finance when a deal is Closed Won.
Auto-create Renewal Tasks 90 days before contract expiration.

6: Boards & Views
Kanban Board → visualize deals across stages.
Calendar View → track close dates & renewal dates.
List View → manage high-volume leads.
Dashboard View → show sales pipeline metrics.

7: Reports & Dashboards
Pipeline by Stage (deal count + value).
Deals Closing This Month/Quarter.
Win Rate by Rep.
Average Sales Cycle Length.
Renewals Due Soon.

18

Jira Spaces Creating Mistakes To Avoid
Setting up your Jira spaces incorrectly can cost you greatly in both time and efficiency. Avoid the
following mistakes and learn from all the mistakes that myself and many other Jira admins have
already done.

1. Choosing the Wrong Space Template
Mistake: Picking "Team-managed" when the team really needs "Company-managed" (or vice
versa). It’s easy to fall into the Team-managed trap because Atlassian wants you use this
space type. In fact, when you are launching Jira for the very first time, you don’t really have
an option. Remember, if you want the full Jira experience and scalability, you want to select a
company-managed space.
Pro-tip: Decide based on governance needs. Team-managed = lightweight, decentralized.
Company-managed = standardization, reporting across teams.

2. Overcomplicating Workflows
Mistake: Adding 15+ statuses (e.g., “In Progress,” “Working On It,” “Ongoing,” “Doing Work”).
Too many teams get caught up with “Ready for X” statuses. You have to find the right
balance. Not every step in your process needs a dedicated status in your Jira workflow.
Pro-tip: Keep it simple. Start with To Do → In Progress → Done and only add stages when
there's a real business rule tied to it.

3. Too Many Custom Fields
Mistake: Creating a new field for every idea (“Customer Industry,” “Customer Vertical,”
“Customer Segment”). Suddenly, you’ve got 200 fields nobody uses. You especially want to
be careful with duplicate fields and when in doubt, use a field context to avoid having to
create an unnecessary duplicate field.
Pro-tip: Use only the fields that actually drive reporting, automation, or approvals. Less is
more.

4. No Clear Work Type Hierarchy
Mistake: Everything is a “Task.” Teams don’t distinguish between Epics, Stories, Bugs, or Sub-
tasks. Reporting becomes chaos. Jira is three-dimensional. It has a 3 tier hierarchy out of the
box and for premium/enterprise subscribers, you can add more levels to help organize your
work.
Pro-tip: Not all work is created equal. Leverage your hierarchies to bucketize your work and
help break down requirements. Often times stories or tasks are too big in scope and lead to
teams rolling work over because they tried to define too many requirements at the story/task
level.

5. Forgetting About Permissions
Mistake: Giving everyone full admin rights. Users can accidentally delete workflows, boards,
or fields.
Pro-tip: Use global space roles to define a single space scheme but can be tailored by space

19

Common Jira Work Types Guide
These are available in nearly every Jira space. Think of them as the building blocks.

Epic
Big body of work (weeks/months).
Example: “Launch new website”

Story
User-focused requirement.
Example: “As a user, I want a search bar so I can find products quickly.”

Task
General unit of work not tied to a user story.
Example: “Set up new dev environment.”

Sub-task
Breaks down a Story/Task into smaller chunks.
Example: “Write test cases for login API.”

Bug
Defect or error in the system.
Example: “Checkout button not responding on mobile.”

These are custom work item types that you should consider adding to your Jira

Spike
Research or investigation task.
Example: “Research GraphQL API performance limitations.”

Improvement
Enhancement to an existing feature.
Example: “Optimize query response time on product search.”

Change Request
Request to modify scope, functionality, or process.
Example: “Switch hosting provider for staging environment.”

Initiative
A large body of work that spans multiple epics, usually representing a business outcome.
Example: “Launch Subscription Billing Platform” or “Implement Enterprise Data Lake.”

Theme
A broad, strategic focus area that aligns with business goals. Think of it as a "bucket" of work
that ties back to company strategy.
Example: “Digital Transformation” or “Cloud Migration.”

Feature
A service or capability that delivers value to the customer and can be delivered by one
Program Increment (PI) or release.
Example: “Enable Credit Card Payments” or “Add Single Sign-On.”

21

Jira Workflows Best Practices Guide
Workflows is where I see teams mess up the most. It’s easy to get overwhelmed with
creating the perfect workflow that you often make critical mistakes that end up hurting the
team in the long term and the workflow doesn’t scale as your team evolves. Let’s discuss
some common best practices that you should be considering whenever making a workflow.
1. Keep It Simple

Avoid overengineering—start with the fewest statuses and transitions possible.
Train your team to use the global transitions as opposed to over complicating your
workflow to force your team into a specific transition path.
Add complexity only when the team has a clear need.
A typical agile team rarely needs more than To Do → In Progress → Done plus 1–2 other
key statuses.

2. Use Clear & Action-Oriented Status Names
Statuses should describe the state of work, not people’s roles.
Examples:

Good: In Review, Blocked, Ready for Testing
Bad: With QA, Dev Done, Waiting on Bob

3. Avoid Duplicate or Redundant Statuses
Don’t create Testing, QA Testing, and Verification unless each has a distinct purpose.
Too many similar statuses confuse reporting and transitions.
Avoid the “Ready For” statuses unless your team really needs the extra status.

4. Design for Reporting
Think about how workflow design affects Jira reports, dashboards, and burndown charts.
Example: If you add a Ready for Release status, make sure it still counts toward Done
when reporting sprint velocity.

5. Use Conditions, Validators, and Post-Functions Wisely
Conditions: Restrict who can transition work items (e.g., only QA can move to Tested).
Validators: Require fields before moving forward (e.g., must add “Fix Version” before
Ready for Release).
Post-functions: Automate repetitive tasks (e.g., auto-assign to QA when moving to In
Testing).

6. Map Workflows to Real Processes
Align workflows with how teams actually work—not an idealized process.
Interview the team to see where items get stuck or handed off.

7. Use Workflow Schemes
Don’t give every space a unique workflow unless necessary.
Standardize workflows across spaces where possible (e.g., all software teams share one
workflow).

22

Jira Workflows Mistakes to Avoid
Mistakes will always happen, but it’s better to learn from the mistakes that others have done
and try to avoid making the mistake yourself. In other words, learn from my mistakes and you
can be a better Jira admin because you don’t have to repeat.

1. Overcomplicating the Workflow
Dozens of statuses like In Review by QA, QA Verified, Waiting for Release, Ready for
Deployment.
Every team having its own version of the same workflow.
Every work item type having its own version of the same or similar workflow
Different workflows that are very similar having similar statuses for essentially the same
thing

Example: In Progress, In Development are too close that basically describe that work
is in flight by someone.

Why it’s bad: Creates confusion, makes reports unreadable, and slows teams down.

2. Not Using the Resolution Field Properly
Leaving work in “Done” without setting a Resolution.
Having a Resolution like Fixed, Duplicate, Will Not Fix but forgetting to apply it.
Setting the Resolution with a post function, but then prompting your user to also set the
Resolution which is always over written by the post function
Not clearing the Resolution when you transition out of your “Done” status
Why it’s bad: Jira reports (burndown, velocity, done vs not done) break if Resolutions
aren’t consistent.

3. Allowing Too Many Transition Paths
Connecting every status to every other status (“spaghetti workflows”).
Using a bad combination of global transitions and explicit transitions
Why it’s bad: Users get overwhelmed, make mistakes, and move work randomly.

4. Not Testing Before Rollout
Making changes directly in production spaces.
Deploying without team input.
Not using a sandbox to test out workflow status names, transition names, or advanced
post functions/automations.
Why it’s bad: You risk breaking active sprints, automations, or confusing everyone
overnight.

5. Using Workflows as a Micromanagement Tool
Adding extra statuses to monitor every handoff (“Dev Started”, “Dev Halfway”, “Dev
Almost Done”).
Why it’s bad: Creates friction, wastes time, and reduces trust in teams.

The Most Critical Mistake Jira admins make is renaming a status in Jira. This is a global
change in Company-managed spaces and should be avoided at ALL COSTS!

23

Jira Advanced Workflows Guide
1. Understand the Purpose of a Workflow
A workflow is not just a flowchart — it’s a contract of how work progresses. Advanced
workflows should balance structure vs. flexibility:

Too rigid → slows teams down.
Too loose → no accountability or visibility.

2. Advanced Workflow Patterns
Use Conditions and Transition screens to allow work to split (e.g., Dev + QA in parallel).

Example: "In Progress" can move to Code Review or Testing based on team roles.
Add statuses like Awaiting Approval and use Conditions so only managers or approvers can
transition forward.

Example: Code ready to deploy can only be deployed by Software Dev Lead
Add Post Function to auto-notify approvers.
Add Validators to ensure field data is filled out by user
Add Conditions to control transition paths based on specific use cases

Example: Work can transition to Escalated when Priority = Highest
Automate release transitions with CI/CD triggers.

3. Automation in Workflows
Use Post Functions to:

Auto-assign to reporter’s manager.
Auto-set resolution.
Update sprint or fix version.

Use Automation Rules (instead of over-engineering workflows) for:
Auto-closing stale work items.
Reopening bugs if linked ticket is reopened.
Sending Slack/email updates.

5. Example Advanced Workflow
Backlog → Selected for Development → In Progress → Code Review → Testing → Ready for
Release → Done
Validators: Ensure Acceptance Criteria is filled before “In Progress.”
Conditions: Only QA can move tickets into “Testing.”
Post Functions: Set resolution when transitioning to “Done.”
Automation: Auto-transition from “Ready for Release” → “Done” when build pipeline
succeeds.

4. Use Screens to Capture Information
In combination with the post functions, use specialized screens to capture specific field data
as your team transitions from status to status. Not all information is known at the beginning,
so it makes sense to ask for a Due Date once work moves to “In Progress”

24

Status Name Definition

To Do Work is prioritized and ready for the team to start.

Backlog Work has been identified but is not yet prioritized for action.

In Progress Work is actively being done.

In Review Work is completed but is product owner/manager review.

Code Review Pull Request has been created

Testing / QA The work is being tested to ensure it meets requirements.

Blocked Work cannot move forward due to a dependency,
problem, or external factor.

Done Work is completed, and the work item has a resolution set.

Jira Status Tips
Every team is going to be different. They have their own way of doing work and I’m not going to write
this and tell you that there is some magical pill you can take and you’ll have the perfect workflow.
Instead, I’m going to show you something that I do for the teams that I work with. Whatever their
statuses are, it’s important to write them down and define what each status (and transition) means.
Taxonomy is super important and many teams become frustrated with Jira not because it’s overly
complicated, but because they are overwhelmed with not knowing what all the different Jira elements
mean. Create a Confluence page and define each status so that every person in your company, no
matter the role, has the same basic understanding of what each status means.

25

Field Name Definition

Business Value Numerical score to prioritize work.

Risk Level Dropdown: Low / Medium / High.

Target Release / Delivery Date Helps with planning.

Stakeholder Person or team responsible.

Effort / T-Shirt Size S, M, L, XL, or numeric estimation.

Cost / Budge Estimated spend for the task.

RAG Status Red, Amber, Green health check.

QA Owner Person responsible for testing.

Acceptance Criteria Requirements for the work item

Jira Fields Tips
Every team is going to be different and will need different data to drive their business. Jira ships with
default fields that are very helpful, but more likely than not, you’ll need to create and define your own
set of custom fields. While every team is going to have different needs and there is no set list of
custom fields you should use, I’m going to show you something that I do for the teams that I work
with. Whatever their fields are, it’s important to write them down and define what each field means.
Taxonomy is super important and many teams become frustrated with Jira not because it’s overly
complicated, but because they are overwhelmed with not knowing what all the different Jira fields
mean. Create a Confluence page and define each field so that every person in your company, no
matter the role, has the same basic understanding of what each field means. I’m going to skip the
default, out of the box fields, but you’ll want to make sure every field in your process is defined.

Pro-tip: Break up your field definition by work item type

26

T-Shirt Size Fib # Definition

XS 1
Something super easy to complete, very trivial, and requirements
are known, no dependencies, no ambiguity, straight forward

S 2
Easy to complete, trivial, most, if not all requirements known, no
dependencies, assignee might have a question or two about what
it takes to complete this item.

M 3

Fairly easy to complete, somewhat trivial, some
requirements are not known. Some intra-team
dependencies, assignee will need to do some light follow
up to get clear picture of what is being asked to complete
this item

L 5

Can be completed within a sprint. Few requirements are known,
more investigation will need to be done. Some internal/external
dependencies. Work is somewhat ambiguous and follow ups will
be needed

XL 8

Will take most, if not all of the sprint to complete. Little, to no
requirements defined. Will required dependencies internally and
externally. This item will most likely be at risk of not being
completed within a single sprint if team isn't proactive toward
addressing unknowns.

XXL 13

Not achievable in a single sprint. Something super complex to
complete, not trivial at all, no requirements are known, multiple
dependencies, very ambiguous, requires a lot of discussion and
strategy to figure out. This needs to be broken down significantly.

Story Points Guide

27

Jira Custom Fields Mistakes to Avoid
1. Creating Duplicate Fields

Example: Multiple teams each create their own “Due Date,” “Target Date,” or “Delivery Date”
fields.
Why it’s bad: Causes reporting chaos—users don’t know which field to use, dashboards show
inconsistent data, and maintenance is harder.
Fix: Always search before creating a new field. Use field contexts instead of duplicates.

2. Too Many Custom Fields
Example: A Jira instance with 2,000+ custom fields (I’ve seen it).
Why it’s bad: Performance suffers (searches, screens, indexing). Users get overwhelmed with
irrelevant fields.
Fix: Limit fields to business-critical data. Audit and delete unused ones regularly.

3. No Naming Conventions
Example: “Due Date,” “duedate,” “Target Delivery,” and “ETA” all exist.
Why it’s bad: Confuses users, creates inconsistencies in JQL, dashboards, and automation.
Fix: Use prefixes or suffixes (e.g., Finance Invoice Number, Marketing Campaign Name).

4. Not Using Field Contexts
Example: Creating one global dropdown with 200 values for all spaces.
Why it’s bad: Most users see irrelevant options, cluttering the UI. Performance is hit.
Fix: Restrict custom fields to specific spaces/work types using contexts.

5. Creating Fields Instead of Using Versions/Components/Labels
Example: Making a custom field called “Region” when Components or Labels would do the job.
Why it’s bad: Increases field bloat and complexity unnecessarily.
Fix: Always ask: “Can an existing Jira feature (components, labels, versions) solve this?”

6. Using Free-Text Fields Too Often
Example: “Customer Name” as a text field. Users enter “IBM,” “I.B.M.,” and “ibm.”
Why it’s bad: Leads to messy, unreportable data.
Fix: Use dropdowns, user pickers, or cascading selects for consistency.

7. No Ownership or Governance
Example: Fields are created by request, but no one knows who owns them or why they exist.
Why it’s bad: Orphaned fields pile up and never get cleaned.
Fix: Maintain a field registry (in Confluence) with owner, purpose, and usage.

8. Not Considering Reporting Needs
Example: A text field “Risk Level” where people type in “High,” “HIGH,” “H.”
Why it’s bad: Impossible to filter or build meaningful dashboards.
Fix: Use controlled field types (select lists, radio buttons, numbers) where possible.

9. Custom Fields for Temporary Use
Example: A project creates “Event 2024 ID” and then never uses it again.
Why it’s bad: Adds clutter to the instance forever.
Fix: If temporary, document and schedule deletion/archiving.

28

How to Pick the Right Custom Fields Type?
When creating a new custom field, there are many different types available. Picking the right
type is both a little science and a little art. This guide is designed to help you determine which
custom field type you should select. It will show you questions you should ask the individual
requesting a custom field so that you pick the right type for the job.

Gate Checks — Do you even need a new field?
Reuse first: Does a standard field (Priority, Fix Version, Components, Labels, Assignee, Due
date, Environment) already cover it?
Existing custom field: Does one already exist with the same meaning? (Search admin →
fields.)
Structure over text: Will this drive reporting/automation? If yes, prefer structured types
(Select/Drop Down) over free text.
Context, not global: If you still need it, plan field context (which spaces/work types) before
creating.

Define the single question the field must answer
Write one sentence: “This field tells us ________ so that we can ________.”

If you can’t finish that sentence, don’t create the field.

Choose the data shape (drives field type)
Binary (yes/no)? → Select list (single choice) with Yes/No.
One choice from a known list? → Select list (single choice).
Multiple choices allowed? → Select list (multiple choice) (use sparingly).
Hierarchy (category → subcategory)? → Cascading select (Can only do 2 levels)
Short free text (IDs, short codes)? → Text field (a “tweet”).
Long text (requirements, acceptance criteria)? → Text field (multi-line).
Number, score, or currency amount? → Number field (only allows numbers).
Date only (no time-of-day)? → Date picker.
Date + time matters (deadlines w/ time zones)? → Date time picker (Be careful with this
one as it’s not supported in Plans)
Person/owner/approver? → User picker (single); multiple approvers → Multi-user picker or
JSM Approvers (Users must be licensed Jira users).
Team/Group responsibility? → Group picker (or Components for stable, reusable
ownership).
Link to Jira entity? → space picker, Version picker, or leverage Components/Labels.
A URL? → URL field (Don’t use this for Code links, you should configure your git repo
instead and use the native git integrations).
Time estimates/spent? → Prefer Jira’s Time tracking (don’t duplicate).
Flags / status toggles? → Checkbox (or small single-select if more than Yes/No).

Decide cardinality & constraints
 Single vs multi-value? Default to single unless you truly need multi.
 Required? Only if absolutely necessary (test first—required fields can block transitions).
 Defaults? Set a sensible default for single-selects to reduce noise

29

Screen & Schemes Cheat Sheet
Figuring out Screens, Screen Schemes, Work Type Screen Schemes isn’t for the faint of
heart. On top of that, it’s not always intuitive to know that when working with fields, you
don’t go directly to the field settings, but rather the screens. This cheat sheet is intended
to help you understand how screens work and how to successfully add a field to your Jira
space.

First, you want to use this cheat sheet to add a field that exists in Jira to a Jira space. If the
field doesn’t exist yet, then you need to create the field first.

Next, once the field exists, you have to determine which work type screen you are going to
add the field to. By default, Jira software spaces have two screen schemes. One for bugs
and one for everything else. If you are trying to add the field to the bug only, then your job
is very easy, but if you only want to add a field to an epic, then you need to do a little bit of
work first before you can add a field only to the epic.

1: Go to the gear → Work Items → Screens. From here, you can either copy an existing
screen (recommended) or start with a brand new screen. I wouldn’t do a new screen
because then you’ll have to remember to include required fields such as your Summary
field. It’s better to make a copy of the existing screen. Find the screen currently used by
your space.

2. Copy the screen and rename it to something that logically makes sense. Before you
proceed, remember that screen schemes have 3 different operations (Create, Edit, and
View). If you plan on allowing your users to create, edit, and view the field, then you only
need to make a single screen. Otherwise, you’ll want to make the appropriate number of
screens based on which operation is important to you.

3. Once the screens are all created, you need to go to Screen Schemes on the left and
either copy one of your spaces existing screen scheme or create a new one. For each
operations, add your screen and link to the appropriate operation.

4. Last step is to go back to your space. Under space Settings → Work items → Screens,
click on the action button and select Edit screens. From there, select the work item type
you want to associate with your newly created screen scheme. In this case, we want to
select Epic and then select your new Epic Screen Scheme which will have the appropriate
Screen which will then contain your field.

30

How to Make Fields Required Guide
There are a couple of different ways to make fields “required” in Jira, but there is officially
only one way to add the red * to a field. This guide will show you how to make fields
required without breaking Jira for everyone.

1. Go to the gear → Work Items → Field Configurations
2. Make a copy of the default field configuration
3. Rename your new copy to something that clearly tells you why you are making a new

field configuration. Don’t use generic names. Make sure field configuration is in the the
new name.

4. Find your new field configuration and click on Configure
5. Find the field(s) that you want to make required.

a. Slide the Required slider to make the field required.
6. On the left side, click on field configuration schemes
7. Click on the Add field configuration scheme button.
8. Provide an appropriate name and description. Make sure you include field configuration

scheme in the name.

You have two paths you can take. If you are going to make a field required for all work items,
then you’ll want to follow steps 9 - 11. If you are going to make a field required for a specific
work type, then skip down to step 12.

 9. Click on Edit for the Default field configuration.
 10. In the Field Configuration Drop down, select your newly created field configuration.
 Failure to make this change will result in you using the wrong field configuration.
 11. Click on Update to use the new field configuration. This field configuration is going to
 be applied to all the work types in your space.

If you want to leave the default field configuration, but only apply your new field
configuration to a specific work type, then follow the following steps.

 12. Click on Associate a work type with a field configuration
 13. Select your work item type and the field configuration we created previously.

Repeat for each additional field configuration.

Finally, go to the Jira space where you want to apply this new field configuration scheme.

 14. Space Settings → Fields → Actions → Use a different scheme → Select your new field
 configuration scheme.

Now, if you try to create a new work item, you will see your required fields correctly.
31

Permission Definition

Administration
This allows users to create releases, components, but also allows them to
rename/rekey a space. You should minimize the number of space admins.

Browse
This is the most important permissions for end users. Without the ability to
browse a space, the user cannot see the space and the work within it.

Assignable

This permission allows a user to be assigned a work item. If a user doesn’t
show up as a possible assignee, you want to make sure the user has this
permission. If that doesn’t work, there is a global permission that needs to
be configured for the person doing the assignment. They need to be in a
group that has the ability to search for users.

Schedule
This permission lets you set a due date for work, but more importantly, it
allows you to plan work into a sprint (set the sprint field).

Permission Scheme Breakdown
Company-managed space permissions can be overwhelming to understand. There are multiple
“levers” that can be pulled to tweak the permissions you want for a space. Because permissions are in
a scheme, they can be shared with other company-managed spaces. This breakdown will help you
understand how Jira permission schemes work.

There are many different ways to assign permissions but here are some considerations:
Every Jira “Software” space will use the same permission scheme out of the box. Keep this in
mind so that you don’t accidentally change the permissions for the incorrect space.
Every Jira “Business” space will use the same permission scheme. Just like above, be careful with
this as you’ll have to swap out permissions schemes to minimize impact.
Try to avoid making permissions schemes that are specific to just a single space. Specifically
adding a user is a great way to make a permission scheme work for a limited number of spaces.
Utilize groups, but I would recommend you only leverage the site/org/Jira admins group. For all
other groups, I would recommend you use them in the people section of a Jira space and then
map to a space role.
The best practice is to use space roles in your permission scheme. This will allow you to create a
one size fits many permission scheme and then each Jira space can use a combination of users
and groups to leverage the permission scheme.
Finally, don’t be fooled by available space roles that aren’t being used in your permission scheme.
space roles are global, so every space will display them, but the most important thing for you to
remember/know is that the permission scheme is what ultimately controls the permissions of your
space.
Below are the most important space permissions that need careful consideration.

32

Permission Schemes Best Practices
Remove any specific user unless absolutely necessary
Leverage roles over users and groups whenever possible
Will this permission scheme need to be used with other spaces? Heavily consider space
roles.
Grant Browse permission only if you want someone to have “read-only” access
Grant Edit, Manage Sprint, and Schedule work permission to anyone needing to plan a
sprint
Never remove atlassian-addons-space-acces as this will break apps and other integrations
When making a new permission scheme, make a copy of an existing one otherwise, apps
will not work as you’ll be missing atlassian-addons-space-acces.
When a user can’t assign a work item, double check the assign and assignable permission.
If that still does not fix the problem, double check the global setting for searching users
and groups.
Anyone with Administer permissions will be able to change the name and key of a space
which has the potential to break things.
Some permissions need to be stacked. For example, to transition a work item, you need
to be able to the the edit and transition permission.
Follow the principle of least privilege → only give people the access they need.
Delete work items should rarely go to anyone but admins.
Remove permissions from inactive users, unused groups, or legacy roles. This is
especially true if your permission schemes call out specific users and they are no longer
with the company or team.
Name schemes descriptively, using a generic name will cause confusion down the road
If you have customer-facing spaces, use a dedicated scheme with very limited
permissions, create a customer role, give that role Browse permissions only, remove the
Any logged in User from every other permission.

33

Adding Vendors to Your Jira Runbook
Before you get started with this, you must understand the impact of allowing a vendor to
access your Jira. Because by default, Jira is open to all users, inviting a customer or vendor
to your Jira is going to require you to update the default permission scheme. You have to
remove the Any logged in user from the Browse permission which is going to break access
to every user if you don’t do this correctly. Follow the subsequent steps exactly so you
avoid accidentally removing Jira access for users.

First, you want to create a new permission scheme. Make a copy of your current default
software scheme and if you are using “business” spaces, you’ll need to apply this new
permission scheme to those spaces as well.

Next, remove Any logged in user from the BROWSE permission. This step is super crucial as
this is what makes Jira open to everyone and we don’t want that when we have customers or
vendors in our Jira. You do NOT need to remove Any logged in user from any other
permissions because if you can’t see the space, then the other permissions do not matter.

This is where things get tricky. Because you just removed Any logged in user, whenever you
apply this new permission scheme to your space, users will lose access. You have a couple of
different paths to proceed with. My personal recommendation is that you create a role for
internal users and a role for vendors. You could use groups as well, but I prefer the role
option because it allows each space administrator to manage who does or doesn’t get access.

Once you create the Internal Users and Vendor roles, add both of those roles to the Browse
Permission. The permission scheme is now ready to be applied to every space that uses the
default software scheme.

Before you swap the new permission scheme, go space settings → people and add all users
that should have access and grant them the “Internal User” role. For any vendors that need
access, add them as well but give them the “Vendor” role. Once you do this for all the users
and for each space, now you can swap out the permission scheme with the new one that we
created. For team-managed spaces, you’ll need to close those up as well. Limited or Open
will not work here. The problem with all of this is that your users that typically access spaces
because they are wide open will not have access problems. And there is no way of knowing
100% who all those users are.

As you can see, adding a vendor to Jira is tricky and requires some significant technical and
time investments. It might be easier to user a 3 party plugin that allows you to externally
share specific work items or maybe a sync tool that syncs specific space data with a different
Jira.

rd

34

Making Jira Spaces Read-Only Run Book
Purpose
To temporarily or permanently restrict changes to a Jira space while still allowing users to
view work itemss. This is often required when:

A space is archived but not moved to Jira's built-in Archive (Data Center or
Premium/Enterprise Cloud feature)
Audits or compliance checks are in progress
Migration is happening and space data must be preserved in its current state
The space is being phased out but needs to remain visible

Prerequisites
Jira Administrator permissions (for permission schemes and space settings)
Knowledge of whether the space is Company-managed or Team-managed
Agreement with stakeholders on:

Duration of read-only mode
Who, if anyone, will still have edit permissions

Steps for Team-Managed Spaces
(Team-managed spaces don’t use global
permission schemes — control is done via
Roles)

1. Go to space Settings → Access
Review roles and permissions for all
groups.

2. Edit Roles
For all user roles except Admin:

Remove permissions for:
Editing work items
Creating work items
Commenting (optional)
Transitioning work items

Admins can retain edit access if needed.

35

Smart collaboration of teams
in every organization

t

Smart collaboration for all
teams in every organization

www.prepend.nl

https://www.prepend.nl/
https://www.prepend.nl/
https://www.prepend.nl/

Steps for Company-Managed spaces
1. Identify Current Permission Scheme

Navigate to:
 space settings → Permissions

Note the name of the permission scheme in use.

2. Create a Read-Only Permission Scheme
Go to:

 Jira Settings → Work Items → Permission schemes
Click Copy next to the current scheme to create a duplicate.
Rename it something like:

 Read-Only - <spaceName>

3. Remove All Edit/Transition Permissions
In the copied scheme, remove permissions such as:

Edit work items
Transition work items
Add Comments (optional — if you want comments blocked)
Delete work items
Create work items
Attach Files
Link work items (optional)
Assign work items / Schedule work items (optional)
Work On work items

Keep only: Browse spaces, View Voters and Watchers, View Development Tools, and other
“view” permissions.

4. Assign the Read-Only Scheme to the space
Go to the space’s Permission scheme setting.
Assign the new read-only scheme.

36

Top 5 Automation Rules for Everyone
Auto-Assign Work

Trigger: Work item created
Condition: Check work item type (e.g., Bug, Story, Task) or component
Action: Assign to a default assignee or round-robin between team members (using
groups)

** Ensures new work isn’t left unassigned.

Send Reminders for Stale Work Items
Trigger: Scheduled (e.g., run daily at 9 AM)
Condition: Work items in “In Progress” for > 7 days without update
Action: Add comment “This work item hasn’t been updated in a week, please review” or
notify assignee via Slack/Email

** Keeps work from getting stuck and forgotten.

Auto-Close Work Items if No Response from Reporter
Use Case: Keeps backlog clean, especially in Service or Support spaces.
Trigger: Scheduled (e.g., every day at 6 AM).
Condition: Work item with status = “Waiting for Customer” AND no update for X days.
Action: Transition work item to “Closed” and add a comment: “We haven’t heard back in
5 days, so we’re closing this work item. Please reopen if you still need help.”

 ** Reduces clutter and keeps focus on active requests.

Copy Labels or Components or any field from Epic to Child Work Items
Use Case: Ensures Stories/Tasks automatically inherit metadata from their Epic.
Trigger: Work Item created or linked to an Epic.
Condition: If work type = Story, Task, or Bug AND Epic field is not empty.
Action: Copy values from Parent → Labels, Components, or Custom Fields.

 ** Helps with reporting at Epic level and saves users from manual updates.

Notify Slack/Teams Channels on Key Transitions
Use Case: Keeps the team updated in real time without refreshing Jira.
Trigger: Work Item transitioned (e.g., to “In Review,” “Ready for Release,” or “Done”).
Condition: Only for certain work types (e.g., Bugs or High Priority Work).
Action: Send message to Slack/Teams channel with details: “ISSUE-123 (Bug) moved to
Done by Alex.”

 ** Improves transparency and communication as team doesn’t have to context switch.

37

JQL Queries
Find the work I have in current sprint
space = [project_name] and assignee = currentUser() and sprint in openSprints()

Find any bug that is assigned to me that aren’t fixed
assignee = current(user() and issuetype = Bug and resolution = unresolved

Find work that currently in a sprint, but not assigned to anyone
sprint in openSprints() and assignee is empty

Find work that in code review and assigned to me
status = “Code Review” and assignee = currentUser()

Find every Epic that is currently In Progress
issuetype = Epic and statusCategory = “In Progress”

Find every Epic that isn’t complete
issuetype = Epic and statusCategory in (“To-do”, “In Progress”)

Find every work item that is blocked
“Flagged[Checkboxes]” is not empty

Find every work item that has been completed within the last month
statusCategory = Done and resolved >= startOfMonth(-1) and resolved <= endOfMonth(-1)

Find overdue work that isn’t already completed
duedate < now() and resolution = Unresolved

Find Unestimated work
issuetype in (standardWorkTypes()) and “Story Points[NUMBER]” is EMPTY

Find Blocked items by blocked relationship
issueLinkType = “is blocked by” and resolution = Unresolved

Find work that is in upcoming release
fixVersion in earliestUnreleasedVersion() and resolution = Unresolved

Find work that is super high priority and isn’t complete yet
statusCategory != Done and priority in (Critical, Highest, High)

Find all unasssigned Bugs
issuetype = Bug and assignee = empty

38

How to Create and Share Filters with Your Team
Out of the box, your filters are configured to be private. This presents a big problem as folks normally
want to share their filters and when they share the link to their filter, they usually run into a problem
because their filter is set to private.

There is a global setting that your Jira admin can toggle to not make filters automatically private, but
chances are you don’t have the right admin rights to do this, so instead, I’ll show you what you need
to do to make your filters shareable.

First, create a filter. When you click on Save Filter, you’ll be prompted to provide a name and
description. Right below that, you’ll see the “viewers” and “editors’ section. To facilitate sharing a
filter, you’ll want to focus on the “viewers” section.

You have a few different options when settings the “viewers”

At a minimum, you should set your viewers to space and select the relevant space(s). This will allow
you to share your filter with anyone that has access to your space.

If you need to share your filter with a director or executive, they will most likely not have access to a
specific space, so you should set the viewers to My organization. This will open up your possibilities to
share to every licensed user which isn’t ideal, but will ensure that your executives and directors can
access the filter data. Keep in mind that space Access still governs if someone will be able to see the
work items or not.

If you know the name of your Jira group and the users within that group, then Group is a good option.
If you have no idea what groups are available or who is in the groups, then use the space instead.

Finally, you have the option to specifically add a user. This is okay if you only want to share the filter
with a specific person, but if you have to share with many, the space is still going to be a better
option.

39

Permission Definition Tip

Administer Jira

Create and administer spaces, work types, fields,
workflows, and schemes for all spaces. Users with
this permission can perform most administration
tasks, except: managing users, importing data, and
editing system email settings.

You should have the smallest number of
groups here. This empowers the out of
the box groups that can administer Jira

Browse users and groups

View and select users or groups from the user
picker, and share work items. Users with this
permission can see the names of all users and
groups on your site.

This allows users to tag someone in the
comments or assign a work item to

someone. If they aren’t in this
permission, they wont be able to search

for users.

Share dashboards and
filters Share dashboards and filters with other users.

This allows users to share the
dashboards or filters they create.

Doesn’t impact ability to create, just
share.

Manage group filter
subscriptions Create and delete group filter subscriptions. Allows users to create subscriptions

which are filter results that get emailed.

Make bulk changes Modify collections of work items at once. For
example, resolve multiple work items in one step.

Allows the users to update work items in
bulk

Atlassian Home for Jira
Cloud space connection

issue guidance

Enables the Atlassian Home for Jira Cloud issue
glance field in issue sidebars, for connecting a Jira
issue to a space overview

This is a new feature and you may want
to turn off if you aren’t using Atlassian

Home

Create team-managed
spaces

Create spaces separate from shared
configurations and schemes. Team-managed
spaces don't affect existing spaces or shared
configurations like workflows, fields or
permissions. Only licensed users can create team-
managed spaces.

Remove the ability for anyone to create
team-managed spaces. This should be

updated to just your Jira Admin group(s)

Global Jira Permission Settings Tips
There are a few global permissions that shouldn’t really be tweaked often, but it is important for you to
understand what these permissions do. There is one permission in particular, the ability to create team-
managed projects that is set to public by default. You’ll want to turn this “feature” off. Additionally, a common
problem that users have is that they can’t tag/assign work to someone on their team. After you’ve exhausted
licensing and space permission troubleshooting, you should confirm that the user is in the Browse Users and
Groups permissions below. Some apps might add their own global permissions (not noted here).

Access Global Permissions: Gear → System → Global permissions under Security

40

Configuration Definition Tip

Parallel
Sprints

Allow multiple sprints to run at the same
time. This feature doesn't apply to team-

managed spaces.

 Turned on by default, but you should
consider turning off since this is a

global setting and most teams
shouldn’t be running parallel sprints

Store Jira data
on your own

device

Store frequently accessed data on your
device to help your Jira board and backlog
load faster. This setting applies to all users

on your Jira site. When the setting is turned
off, any stored data will be deleted

Turned on by default, consider turning
off if you have strict data residency

requirements.

Public access
for forms

Allow Jira users to make forms available to
anyone online who has the link. When this
setting is turned off, public access will be
disabled for new forms, and any existing

forms with public access will be deactivated.

Similar to how JSM’s portal works,
this enables Jira users to share Jira

forms and anyone can submit,
regardless of Jira license.

Storage
management

Displays Work Items taking up a lot of space
(attachments)

Allows you to view which work items
have large attachments but can’t

actually do anything from this menu.
You need to go to the work item to

delete large attachments

Application
Links

Application links let you integrate Jira with
another Atlassian product or external

application so they can exchange
information, resources, and functionalities.

Connect Jira with another Jira. Useful
when you have multiple cloud or DC

Jira’s that need to share data.

Compass Control how Compass integrates with Jira.

Configures Jira spaces to leverage
Compass components. You should

revert back to Jira components if your
team doesn’t use Compass.

DVCS
accounts

Enjoy the seamless integration of work items
and code when you connect Jira to
your Bitbucket Cloud workspace.

Connect to your Bitbucket.

Jira Product Settings
Global, product specific settings that you should review and ensure are appropriately configured for your team.
Some should be turned off, but keep in mind that turning them off (or on) affects all your users.

41

1.Click on the gear → Work Items

2.Click on Screens (on the left menu)

3.While you might be tempted to create a blank screen, I recommend you use an existing

screen from an existing Jira space and make a copy

i. Search for the screen → Click (...) → copy

ii. Name the copy something valuable and clear

4.Search for your newly created Screen

5.Click on the screen name of your new Screen

i. Modify (Add, remove, reorder your fields as need)

6.Click on Screen Schemes (on the left menu) → Add Screen Scheme (blue button top

right)

7.Give it a name and description

i.Under Screen, select our new screen from the previous step → Add

 8. Click on Work type screen scheme (on the left menu)

 9. Find the Work Type Screen Scheme for your space

 10. Click the Work Type Screen Scheme → Click on Associate a worktype with a Screen

 Scheme (light gray button, top right)

 11. Select the WorkType → The new screen scheme we made earlier → Click Add

Adding a New Screen for a
Specific Work Type

42

1. Click on the gear → Work Items

2. Scroll down on the left and click on Workflows

3. Identify the Workflow you want to add a status to and click the edit button

4.This will take you to the workflow you want to edit

5.Click Add Status

If using an existing status, it will show up when you start typing. If you are using the new

editor, there is a section to search for existing statuses. Click Add.

If creating a new status, type in whatever name you want. If using the new workflow editor,

there is a section to create a completely new status.

 → click (new status)

→ pick the preferred status category

To do = no work is being done,

In progress = work is actively being performed, and

done = work is completed)

Click on Add.

 When finished adding statuses, Update workflow and don’t worry about having to save a

copy.

Adding a New Status to an
Existing Workflow

43

Adding New Work Type
to a Jira Space

If this is for a new work type that doesn't exist:
1. Click on gear → Work Items, this will automatically land you in the location to add new types
2. Click on Add work type (blue button, top right)
3. Give it a name and description.
4.Select the appropriate Work type scheme if you have one.
5. Select Standard work type (Level 0)

44

 6. Click Add
 7. Go back to your newly created work type
 8. Find the (...) on the right side → Edit
 9. Change the Avatar (otherwise, all work types will look the same). Then click Update.
10. On the left side menu, click on Work types schemes
11. Click the (...) next to the scheme you want to add the work type → Edit
12. Pull the Work Type from the Available Issue Types (Atlassian is working on updating the
word “Issue Types” to “Work Types”) add it to Issue Types for Current Scheme

13. Click Save
*This impacts/applies to all spaces that share this work-type scheme

1. Click on gear → Work Items → Fields

2. Click on Create new field

3. Pick a Field type from the drop-down menu

4. Give your Custom field a name. Depending on the type of field you create, you may need

 to provide values as well.

5. Click Create

6. Click Screens on the left side menu

7. Click on the name of the screen you want to add the field to

8. Go all the way to the bottom, where you will see a dropdown and find your screen

9. Once your field is in the screen list, that’s it. No need to save anything.

Creating and Adding
a Custom Field to a Screen

45

1. Go to Space setting → Work items → Screens

2. Click Screens on the left side menu

3. Click on the name of the screen you want to add the field to

4. Go all the way to the bottom, where you will see a dropdown and find your screen

5. Once your field is in the screen list, that’s it. No need to save anything.

48

Adding an Existing Field
to an Existing Screen

Deleting a Status, Transition, or
Adding Transitions

Know the workflow name you want to update first

1.Click on the gear → Work items → Workflows

2.Find the workflow you want to remove a status from and click on (...) → copy

 3a. Delete any status or transition

 3b. Add a new status - See instructions for “Adding a New Status to an Existing Workflow”

 page 43

 3c. Add a transition by connecting 2 statuses together

 i) Define the transition name (verb)

 ii) Make sure you account for all the transitions (in and out of each status)

 iii) Most only create a "happy" path, but you need transitions to move backwards in your

 workflow

 iv) When you are finished adding transitions, click the checkbox that says "Show

 transition labels" (top left)

 4. If everything looks good, you do NOT need to publish; it's a more complicated process

 5. In a new tab go to the space that needs the new workflow

 6. Go to the space settings → Workflows → Add workflow → Add existing

 *if your workflow scheme is shared by multiple projects, you'll need to add the new

 workflow to the workflow scheme instead

 7. Find your "New" workflow → Next

 8. Select the work type(s) that will be associated with your new workflow → Finish

 9. Go to your tab with the workflow and Publish your workflow

47

How to add and organize your users?
1.Create the following roles:

Developer: r/w

User: r

2.Create the following groups:

Developers • Users

3. In the permissions, scheme modify the browser permission Add:

Role: Developers

Role: Users

Group: Site Admins

Remove: Any logged-in user

 3.1 Create, Move, Transition, Edit

Remove: Any logged-in users

Add: role: Developers

Add: role: Administrators

 4. In the People Setting of your Jira Project add:

Group Developers to role Developer

Group Users to the role User

Add Yourself to the role Administrator

 5. Invite/Add your users to the appropriate group depending on if you want

 them to be an admin, developer, or user.

48

S p a c e S e t t i n g s G u i d e
Details:

Change the name of your space and key
The URL doesn't do anything helpful, you can leave that alone
Space type is locked and determined when the space created
Space category helps organize if you have a lot of Spaces
You can upload a custom avatar or choose from available options
You can provide a description of your spaces
The space lead "owns" the space
Leave the default assignee as unassigned

Summary:
Shows you all the configurations for the space at a glance

People:
This is where you add/grant users access to your space
Can grant access to individuals or groups
Permissions:
Configured by Jira Administrator and controls what users are allowed to do in the space

Notifications:
Determines what events trigger a notification and who receives it
1 notification scheme is typically used for all spaces or your admin can make you a new one

Automations:
Automate tedious tasks such as moving a work item to In Progress when a branch is created

Features:
All planning features are automatically enabled by default
Disable/Enable development, operations, and Confluence features

Workflows:
Configure the available statuses in your project
Only Jira admins can make modifications
By default, all work types share the same workflow
Each work type can hare its own workflow

Work Types:
Configure which work types can be created/used in your space

Work Type Layout:
Configure where and how fields are displayed when a user is viewing a work item

Work Type Screens:
Configure which fields are available in your space

Work Type Fields:
Configure which fields are required upon creation of a work item

Work Type Collectors:
Allow anyone on the internet to create work items in your project
Not recommended

Work Type Security:
Configure which users can see a work item
Just because a user has access to a space, doesn't mean they need to see all work items
Great for when you have contractors/external resources

Component:
Define the values that are available in the component fields

Apps:
Configure plugins that are available for your project

Development:
Connect to your team's source code repository 49

Kanban Board Guide
Default Statuses: Backlog → Selected for Development → In Progress → Done

All W types will show up on the Kanban board

A "dedicated" backlog can be enabled to hide non-prioritized work

A dedicated backlog allows the team to select items intended for "development" properly

If Epics panel is enabled, Epics will disappear from the board/backlog

Subtasks are visible (unlike in a scrum board) and grouped under their respective parent

WIP limits can be set on each desired column

Completed work items will remain in the farthest-most right column until work items are

either released OR after 1, 2, 4 weeks

You cannot estimate or view story points in a Kanban board

When a log is enabled, moving an issue from the status of "Backlog" to the status of

"Selected for Development" will then allow for the issue to show up in the Kanban board

Enabling a backlog will help keep your Kanban board clean and focused

50

B o a r d S e t t i n g s G u i d e
General:

Change the board name
Define any additional board admins (can make changes to the board settings)
Change the location of the board
Edit the filter query when you want to modify the work items that show up in the board
By default, the board will show all unresolved work items in a space
You can swap the saved filter for another filter (if you don't want to change the existing filter)
Control space shares as it determines who can see the board
Filter query shows you the criteria for which work items will show up
By default, the board has rank enable
If you change the ORDER BY in the board filter, you will lose the ability to rank
Based on your filter, the board may include work items from different spaces (brakes basic
roadmap)

Column:
Column constraints will add limits on how many work items can be in a column
Make sure you are always using a simplified workflow otherwise, your work items may not resolve
properly
Add columns and statuses as desired
Remove unwanted statuses and columns by adding to unmapped section

Swimlanes:
Change how work items are grouped/viewed on the board

Quick Filters:
Create custom JQL queries that allow you to quickly filter through the work items in your board

Card Color:
Add a super tiny sliver of color to the left side of a card based on specific criteria

Card Layout:
Add up to 3 fields to be displayed within the body of a work item's card

Estimation:
Determine if estimates are captured as Story points or using hours (original estimates)

Work Days:
Define which days your team works in order for board reports to be more accurate

Work Item Detail View:
Configure how fields show up when viewing and work items

Roadmap:
Enable/Disable the basic "free" roadmap
Enable/Disable if Sprints are displayed on the roadmap when a story is planed into a Sprint

Insights:
Enable/Disable which insights are presented in the backlog and/or board view

51

Scrum Board Guide
Default Status: To do → In Progress → Done

Only Stories, Tasks, and Bugs will show up

Epics are only visible in the Epic panel

Stories can be associated to an Epic by dragging the Story to an Epic in the Epic panel (or

using parent)

Story points can be added while a work item is in the Backlog or in a Sprint

When a work item is moved to a Sprint, the work item is not transitioned (there is no

"Backlog" status in a Scrum board)

A work item is in a Sprint whenever the Sprint field is set

You know a Sprint is active because you see the story points in the backlog and your

active Sprint will NOT be empty

Setting dates on your Sprint doesn't actually do anything

when you physically click the Start Sprint button, it sets the Sprint Start Date/Time

when you physically click the Complete Sprint button, it sets the Sprint End

Date/Time

If you forget to click either button your Sprint will either not start, or, it will remain active

indefinitely

By default, your Backlog can be ranked, but you can change this by altering your board

filter to include ORDER BY Any field

If you assign work items to individuals, you'll then be able to see how many work items

are assigned to each individual and how many story points they have for that Sprint. This

is the closes thing Jira does for Capacity Management.

52

DAY 9

DAY 3

DAY 5

DAY 7

DAY 1

DAY 6

DAY 8

DAY 4

DAY 2

DAY 10

Sprint Plan

Daily Scrum

Daily Scrum

Daily Scrum

Daily Scrum Scrum
Master Scope and refine
stories with tech lead and
developers

Daily Scrum

Daily Scrum

Daily Scrum

Daily Scrum
Sprint Review
Sprint Retrospective

Daily Scrum
PO Backlog Grooming
& Ranking
Create Features/Epics

The Sprint Cadence Guide

53

GETTING STARTED WITH
PLANS ADMINISTRATION

54

Plan Name
Name of the Plan, pick something big and descriptive and not specific to a

board or Jira space/space.

Plan Lead The owner of the plan, typically the space Manager

Who Can Edit The Plan
This should be set to restricted if you don’t want everyone making

changes otherwise, anyone can edit the data in the plan

Who Can View The
Plan

This can be left open since ultimately the Jira space permissions will
control who can/can’t view the Jira data.

Jira Plan Settings
Details:

Estimation and Scheduling:

Work in your plan:

Estimate Work Using
Stories - Use this if your team is using Story Points.

Days/Hours - Use this if your team uses Original Estimate, then just pick
your preference between Days or Hours

Start Date Any date field can be used here.

End Date Any date field can be used here.

Work Items with Empty
Start or End Dates

Defines what dates default to a work item when the start or end date are
missing.

Dependent Work Items
be scheduled to the

same iteration

If selected, any work item that is linked together will be scheduled to the
same sprint.

Overview
Visually confirm which work items are included in your plan. Edit plan

scope to add additional Spaces, Boards, or Filters.

Removed Work Items

Check this setting if you ever lose work items. By default, after an item
has been closed for 30 days, it will disappear from your plan. Update the
date to at least 100 days if doing quarterly planning. Just be careful with

hitting the 5000 work item limit of the plan.

56

Saved Views

Review which views exist in your Plan. Review who created the view, who
was the last person to update, and when the view was last updated. You
can also remove the view altogether or make a specific view, the default

view.

Fields Added to
Timeline

Review which custom fields have been added to the plan. You can review
the description of the field (if available), the type, and the work items the

field applies to. You can also remove the field from this setting view.

Timeline:

Program Boards:

Features:

Active Boards
Shows your active programs boards. Can have 10 per plan. Admins have

the ability to delete the program board.

Past Boards Review previous program boards.

Scenarios
Create multiple versions of your plan to tweak resources, dates, and other

important decision making data.

Auto-scheduler
Automatically schedule work items that have been estimated in your plan,

then adjust the generated plan to meet your exact needs.

Releases
Schedule work using releases for agile software teams, or hide them for a

simpler experience.

57

Setting Definition Tip

Permissions

These permissions govern all plans.
They specify the groups that can

potentially be administrators, users
or viewers of the Plans.

Make sure as many licensed
Jira users have access as plan

viewers. Especially ensure
your executives can at least

view the plans.

Hierarchy

Manage the work type hierarchy
by changing the level names and
structuring the hierarchy to your

needs.

Add work item types above
the Epic or rename the Epic.
You cannot add work item

types below the Epic.

Dependencies
Select the work item link types

that will be treated as
dependencies in plans

By default, Jira sets
dependencies as

Blocked/Blocked By. Here,
you can add more relationship

types.

Trash Deleted Plans show up here
Permanently delete or restore

Plans.

Archive Archived Plans show up here Restore archived Plans.

Financial Year
Configure the start month of the

financial year
This financial year sets the
quarters for all the Plans

Jira Advanced Plan Settings
These are global Plan settings that affect all your Plans. Carefully change these
configurations as they are not Plan specific, but rather global.

58

https://apetechq32025.atlassian.net/jira/admin/ViewLinkTypes!default.jspa

GETTING STARTED WITH PLANS
FOR PROJECT MANAGERS

59

Creating Your First Plan Tips and Tricks
Plans are a Jira Premium/Enterprise feature that every team should be using. Plans give you
a birds eye view to your Projects and Initiatives that your various teams are working on.
Instead of being limited by individual Jira spaces, you can aggregate all your Jira spaces in a
single place, a Jira Plan! The following is a guide to getting started with Jira Plans.

First, make sure you are on Jira Premium/Enterprise or DC. Jira Plans are not available for
Free or Standard cloud subscribers. Next, click on Plans and create a new Plan.

You Jira admin might have configured global settings preventing you from creating a plan. At
that point, you will want to speak with your Jira admin to either give you permission or help
you create your Plan.

Assuming you can create a Plan, let’s proceed. Your Plan will need a name. This is where a
lot of people make their first mistake. Plans can be used by all types of teams. Big teams,
small teams, geographically dispersed teams, all teams can take advantage of Plans. But,
where Plans provides the biggest return on investment, its when you combine two or more
Jira spaces together. You Jira Plans can present you with up to 5000 work items! With all of
that said, pick a name for your Plan that doesn’t just represent the small work your team is
working on, but rather think bigger. The name of your plan should be something big. Think
product, major project, or major initiative that a collection of teams are working towards
delivering.

With respect to access, I recommend you leave Open as restricted your plan doesn’t make
too much sense. Because of how Plans and Jira work, anyone that has access to the work
items within their Jira space will be able to modify the data. Making your plan private doesn’t
make the data private. Therefore, allow your stakeholders and team to access the space
freely, but restrict who can edit your views in the plan which you do in the Plan settings after
the Plan has been created.

Finally, add your work items to the Plan. Remember, you are limited to 5000 work items and
Jira doesn’t tell you if you are getting close to 5000 work items until after you hit the limit.
My recommendation is add a space or two and then, after your plan is created, add more
spaces/boards/filters because in the Plan settings, Atlassian will show you how many work
items are in your Plan.

Last tip, pull in your space if you are getting started with Plans for the first time. Boards are
great as they enable more advanced features, but sometimes boards have filters that limit the
data and you end up missing data in your plan. I avoid pulling in filters for the same reason,
they limit data that is retrieved and I’ve learned that most folks tend to miss data by using
Boards and Filters.

60

PI Planning with Jira Plans Guide
This is an advanced feature that can be used by all teams, but folks wanting to do Program
Increment (PI) planning will benefit the most. To use this feature, your team needs to be
using a Scrum Board and be using Story Points as their estimation method. When you create
your plan, you also need to use Boards as your resource instead of Spaces or Filters. Finally,
you’ll need to create at least 6 sprints to fully take advantage of the Program board

Create a Plan with Boards as your source then click on Program within the Plan’s UI

Click on Create program board

Provide a Board name and pick the start date for your program increment.
Select the duration of each iteration (sprint) and determine how many iterations you’ll have

Select the work that you want to include in your Program. If you don’t put anything in, all the
items in your board will be included, so only fill out this section if you want to intentionally
include or remove work items.

Now, all you need to do is drag work items from the left and place in their respective
iteration/sprint that your team should work on them. You can add dependencies to show
how all the work is related just like you would in a physical program board. Once you are
done, save your changes and all the work will automatically be added to their respective
sprints.

61

One of the best features of Jira Plans is that you can visually see how all your work is
connected. Unliked Jira spaces that do a really good job of displaying all the work within the
space, Plans take it to the next level by showing you all the work across all the data sources
you pull in to your Plan.

When you create your plan, make sure you include more than one source. If you simply
include a single Space/Board/Filter, then this will defeat the purpose. Make sure you include
at least 2 spaces that you have access to.

While you can add a work item link directly to the work item, in order to visualize the
relationship, you need to provide a start and an end date. Without these dates, you won’t be
able to truly visualize the dependencies. Also, you may want to consider making sure your
dependencies are visible by “line” and not by “badge”, but this is a personal preference based
on the number of dependencies that you have.

You should also keep in mind that dependencies can be across any type of work. You can link
Epic to Epic, but you can also do Epic to Story or even Epic to Sub-task. That last one might
not make a whole lot of sense, but if it works for you, do it!

Out of the box, you can only link work items with the Blocks and Is Blocked By relationship,
but your Jira administrator can add additional relationships.

Red dependencies lines mean that the end date happens after the start date of the task that
is dependent. This is not good. You want the end date to happen before or on the start of
the next item.

Finally, to visually see the dependencies, make sure your in the Timeline view. If not, you will
not be able to see the dates or the dependencies.

Cross-Team Dependency Management
With Jira Plans Tips

62

GETTING STARTED WITH
JSM ADMINISTRATION

63

Determining JSM Project Template Guide
Like with Jira, JSM ships with many different space templates based on your specific needs. This
guide is going to go over each template and help you figure out which space template is right for the
job. With the templates, there are basically two ways to go about this. You can start with a blank
slate and build everything on your own, or you can start with a pre-configured template and modify
some or most of the settings. I personally prefer to start with a blank slate, but choose whatever
makes sense to you. I would recommend you use each template so you can have better data to
determine which route is best for you.

The blank template gives you the basic barebones configurations and you are expected to know how
to modify all the settings such as the workflows, work item types, request types, etc.

If you aren’t a Premium/Enterprise subscriber or you don’t want all the bells and whistles of the ITSM
template, but need more than the General service management, the Basic ITSM template might be for
you. You get service requests and incidents out of the box. The template is the best of both worlds.

The ITSM templates gives you all the bells and whistles of JSM, but it’s only available to
Premium/Enterprise subscribers. It has everything you could possibly need to run a full ITSM solution
for your company and probably even more. Choose this only if you really need all those extra
features.

This is my favorite template. It gives you just enough configuration to get started, but doesn’t
overwhelm you like the ITSM template. When in doubt, use this template.

The rest of the templates are very use case specific. If you are setting up JSM for one of these
teams, these templates will probably serve as a good starting point. I would recommend you try
them out and determine if they actually help or if one of the more generic templates from above are
a better fit.

64

Now that you know the different space types and templates available, the most important question is how do
you determine which template you need.

The first step is to determine how much “help” you want from the out of the box templates. Nine times out of
ten, I usually select the General service management template. For those teams that want every single feature
and are on JSM Premium/Enterprise, then the ITSM template might make more sense.

Each template is going to come pre-packaged with work item types, workflows, and more importantly, request
types. My recommendation is check the details of each template and see if one of the templates will work for
you and your team. If you feel overwhelmed by all the Basic and ITSM template, I would recommend using the
General service management template as that one gives you just enough to get started, but doesn’t overwhelm
you.

Which template you select is ultimately going to come down to the request types that are available for each
space template. Therefore, you should have some idea of what types of requests you want to make available for
your customers.

What is important for you to understand and remember is that request types are ultimately tied to work item
types. And because of this, that means that request types are ultimately tied to the workflow that belongs to the
work item type. Therefore, my recommendation is to figure out how many “unique” processes you have to help
you determine how many request types you need. With the ITSM and Basic ITSM space templates, you are
going to get 2+ work item types and dozens of request types. But the key piece here is you have 2+ work item
types and therefore will have 2+ workflows. With the General service management template, you really only get
1 (technically 2, but I’m trying to keep it simple).

The blank template has the most basic of request types, the email so that means you’ll have to build everything
else from the ground up.

Long story short, if your team needs a true ITSM solution, you’ll want to use the ITSM template and make sure
you are on the Premium/Enterprise version of JSM. If you don’t have Premium, but still want an ITSM solution,
then Basic Service Management will be best. If you don’t care for ITSM, but also don’t want a completely blank
slate, then the General service management is the right template.

Finally, if you have a specific use case for JSM, then the Blank or any one of the use case specific templates might
be right for you.

How to determine what questions to ask
stakeholders before creating a JSM Space?

65

Setting Up a Team-Managed JSM Space
Step 1: Creating a Team-Managed JSM Space

Click on the + icon next to spaces.
Select Service Management on the left
Pick your favorite Service Management template

Refer to the guide that breaks down all the different templates
Click on Use Template, once you have selected the template you are going to use
Select Team-managed
Provide the Name, Key, Team Type, and Access/Permissions

The Team Type should be whatever is closest to the team that is going use this space

Step 2: Creating a New Request Type
Go to Space Settings → Request Management → Request types

Disclaimer: You’ll need to be a space administrator in order to create a request type.
Click on + Add request type.
You can either create from template or create blank. I normally always create from blank,
but just like with picking a JSM space template, choose whatever makes more sense to
you.
Provide a Name, Description, and Icon for your new request type.

The name of your new request type should be some type of help that your end user is
going to need from your team. For example, if you are running an IT help desk, you
may make a request to enable end users to submit for a new computer, or maybe a
new license request.

Click on Add when you are finished.

Step 3: Setting up a Request Type
Go to Space Settings → Request Management → Request types
Select an existing request type, or if you just created a new request type, you’ll already be
in the configuration for that request type.
For each request type, you want to modify/configure the fields that the end users will
eventually fill out. Some of these fields will be important, required fields, others will be
optional.
You can use any existing fields or you can create a new field. Place them in the Customer
Form section. Optionally, you can build a form and create/place your fields there.
For every field (new or existing) that you add to your request type, you can choose to:

Display a different name
Provide “helper” text
Make the field required

Once you finish configuring your request type, save your change and preview the form by
clicking on View.
Repeat for any other request types you want to configure.
Refer to setting up a team-managed space for workflow configurations.

66

Setting Up a JSM Space for ITSM Run Book
Space Setup
When creating a company-managed JSM space, select the IT Service Management (ITSM)
template. This gives you preconfigured elements aligned with ITIL practices.
The ITSM template organizes requests into four main work categories:

Service requests (e.g., new laptop, access to systems)
Incidents (e.g., outage, performance degradation)
Problems (e.g., recurring email failures)
Changes (e.g., patching, deployments, upgrades)

Core Work Types
The ITSM template comes with these standard work types (recommended to keep them as
is):

Service Request – User requests for help, information, or service (new software, access).
Incident – Something broken or degraded that needs fixing quickly.
Problem – Root cause investigation of recurring issues.
Change – Planned adjustments to infrastructure, applications, or processes.
Task – General work item not tied to ITSM practices.

You can add additional work types as appropriate for your specific processes.
The work types are different than the request types from the first step.

Recommended Workflows
Each Work type has its own workflow. Here’s a suggested setup:
Service Requests
Statuses: To Do → In Progress → Waiting for Customer → Closed
Notes: Keep simple for speed; use automation to auto-resolve if customer doesn’t reply.

Incidents
Statuses: To Do → In Progress → Waiting for Vendor → Resolved → Closed
Notes: Consider adding Major Incident path with escalations and comms.

Problems
Statuses: To Do → Under Investigation → Known Error → Resolved → Closed
Notes: Use problem linking to incidents.

Changes
Statuses: To Do → Assess → Approved → In Progress → Completed → Closed
Notes: Add CAB Review status if you run formal CABs.

Tasks
Simple To Do → In Progress → Closed.

Recommended Fields
Here are must-have fields by work type:

Service Request: Request Type, Priority, Description, Assets (optional).
Incident: Summary, Priority, Description, Affected Services, Linked Problems.
Problem: Summary, Description, Priority, Root Cause, Workaround.
Change: Summary, Priority, Risk, Impact, Implementation Plan, Backout Plan, Start/End
Date, Approvers.
Task: Summary, Description, Assignee, Due Date.

Use Forms in JSM to make these fields easier for customers to fill in.

68

Recommended Request Types
These are common request types you should configure in your ITSM portal:
Service Requests

Request new hardware (laptop, monitor, phone)
Request new software / access to system
Password reset
General question
Incidents
Report an outage
Application not working
Performance issues

Problems
Report recurring issue
Request root cause analysis

Changes
Standard change (pre-approved, low risk)
Normal change (needs approval)
Emergency change (fast-tracked, incident-related)

Tasks
General IT work item

Automations to Enable
Auto-assign work items based on request type (e.g., network → network team).
SLA breach alerts.
Auto-close service requests after X days of inactivity.
Post-resolution surveys. (Survey Monkey)
Link major incidents to problems automatically.

SLAs to Configure
Incidents: Time to first response (30 min), Time to resolution (4 hrs for high priority).
Service Requests: First response (8 hrs), Resolution (3 business days).
Problems: Time to acknowledge (24 hrs).
Changes: Time to review/approve (2 business days).

69

Space
A container for your service desk work. In JSM, a space holds all requests, queues,
SLAs, automations, and portal settings for one team or service.

Team-Managed
space

A self-contained JSM space where configuration (workflows, fields, request types) is
managed at the space level. Perfect for small/independent teams.

Space Settings
The admin panel for the space. This is where you configure request types, SLAs,
queues, automations, notifications, and portal branding.

Request Type
The customer-facing form customers use in the portal. Each request type maps to a
Jira work item type (e.g., “Need a laptop” = Service Request). You customize request
types to control what customers see.

Work Item Type

The internal classification of work. JSM comes with common work types: (Service
Request, Incident, Problem, Change)
You can add custom ones depending on your team’s needs

Portal (Customer
Portal)

The website where customers submit and track requests. You configure it with
request types, instructions, and branding.

Help Center
If you have multiple JSM spaces, the Help Center shows customers all the portals in
one place.

Queues
Custom views for agents. Queues are built from filters and help agents organize work
(e.g., “Unassigned tickets,” “High priority,” “Waiting for support”).

SLA (Service
Level

Agreement)

Time-based goals you define per space. SLAs are measured automatically in JSM
(e.g., “Respond within 2 hours,” “Resolve within 5 days”).

Approvals
Workflow steps where requests pause until certain people approve/reject. Common
in Change Management projects.

Channels

Ways customers can create requests:
Portal (default)
Email (set up during space configuration)
Chat/Slack/Teams (if integrated)
API (for system-to-system requests)

JSM Space Setup Glossary

70

JSM Spaces Creating Mistakes To Avoid
1. Confusing Request Types with Work Item Types

Mistake: Admins create dozens of work item types thinking they’ll show up on the portal, or they
re-use software space work item types without tailoring them.
Why it’s a problem: Customers see a messy, technical portal (“Incident,” “Bug,” “Change”) instead
of clear language (“Need new laptop,” “Report outage”).
Fix: Keep a small set of work item types (Service Request, Incident, Problem, Change) and build
customer-friendly request types on top.

2. Overloading the Portal with Too Many Request Types
Mistake: Making 30+ request types for every small variation (“Request mouse,” “Request
keyboard,” “Request monitor”).
Why it’s a problem: Customers get overwhelmed and don’t know what to pick → they abandon
the portal and email your team instead.
Fix: Start broad (“Request new hardware”) and use forms or fields to capture specifics.

3. Not Setting SLAs Properly
Mistake: Leaving default SLAs in place or setting unrealistic ones (like “Resolve all requests in 1
day”).
Why it’s a problem: SLAs drive team accountability and reporting. If they don’t match business
expectations, you’ll either always fail or not measure the right thing.
Fix: Define SLAs with stakeholders (e.g., “Critical incidents: 1 hr response, 4 hr resolution”).

4. Forgetting to Configure Business Hours
Mistake: Not setting calendars → SLAs tick 24/7.
Why it’s a problem: Tickets logged at 10pm show as “breached” the next morning.
Fix: Configure working calendars to match team hours before SLAs go live.

5. Overcomplicating Workflows
Mistake: Adding too many statuses (e.g., “Pending Triage,” “Pending Assignment,” “Pending Work,”
“Pending QA,” “Pending Closure”).
Why it’s a problem: Agents ignore them, and customers get confused.
Fix: Keep workflows lean → usually “Open → In Progress → Waiting for Customer → Resolved.”

6. Not Customizing Customer Notifications
Mistake: Leaving default Jira emails on.
Why it’s a problem: Customers get spammed with cryptic Jira emails (“AP-42 status changed to In
Progress”). They stop engaging.
Fix: Customize notifications with plain language (“We’re working on your request. We’ll update
you soon.”).

7. Mismanaging Permissions
Mistake: Letting anyone browse the space or forgetting to restrict agent licenses.
Why it’s a problem: Costs skyrocket when too many users become “agents” by accident.
Fix: Assign roles carefully → only true support staff should be agents. Everyone else = customers.

71

JSM Request Types Guide
IT Service Desk / IT Support

Report an Issue – “Something’s broken.”
Request New Hardware – laptops, monitors, peripherals.
Request New Software – apps, licenses, installations.
Password Reset – unlock or reset accounts.
Access Request – system, application, or shared drive access.
Email/Account Setup – create or remove user accounts.
Network/Connectivity Issue – Wi-Fi, VPN, or internet issues.
Printer/Device Issue – printing, scanning, or peripherals not working.

HR Service Desk
Onboarding Request – new hire setup (accounts, equipment, permissions).
Offboarding Request – revoke access, collect equipment.
Payroll/Compensation Inquiry – salary, benefits, deductions.
Leave/Time Off Request – PTO, sick leave, vacation.
Policy Question – HR policies or employee handbook queries.
Employee Relations Concern – workplace issues or conflict reporting.

Finance / Procurement Service Desk
Purchase Request – order equipment, software, or services.
Expense Reimbursement – submit expenses for approval.
Invoice Question – billing or payment inquiries.
Budget/Forecast Request – ask for financial reports or allocations.
Vendor Management Request – add or update vendor details.

Facilities / Operations Service Desk
Maintenance Request – broken furniture, HVAC, lighting.
Office Move Request – moving desks or departments.
Badge/Access Card Request – building or room access.
Event Setup Request – conference rooms, catering, equipment.
Health & Safety Issue – hazards or safety concerns.

Marketing / Creative Service Desk
Design Request – graphics, slide decks, branding assets.
Campaign Request – launch or support for marketing campaigns.
Content Request – blogs, social posts, copywriting.
Website Update – content changes, bug fixes.
Event/Trade Show Request – collateral, logistics, registrations.

General Service Desk / Enterprise Support
General Inquiry – catch-all request type.
Request Information – policies, documentation, FAQs.
Submit Feedback – suggestions or complaints.
Report a Problem – any non-IT issue.
Service Complaint – escalate a poor experience.

72

JSM Workflows With Approvals Guide
JSM allows JSM admins to create workflows with approvers. These types of workflows are
technically available in team-managed Jira spaces, but they work much better in JSM. You
select a status that you need an approver on and then you select who will be the approver(s).
Then, if they approve, you determine which status the work item will transition to. If they
reject, you’ll also need to determine which status the work item should transition to. The
nice thing about approval workflows in JSM is that anyone can be an approver, as long as
they have an agent or customer license. An automated email is sent out to the approver and
they can approve through the email, through the JSM portal, or if they are an agent, on the
work item directly.

Pro tips: If you are creating a new workflow, or are using a workflow that hasn’t yet been
associated with a JSM space, you will not be able to utilize the approval feature. Make sure
you create all your statuses and transitions first and then apply the workflow to a JSM space.
Once you publish, you’ll be able to go back into the workflow and apply the approval feature.

For your approver, you can use the out of the box Approvers field, or, if you want a group of
approvers, you can use the approvers group. Additionally, you can use any custom User
Picker field.

Determine how many total users need to approve. JSM will allow you to select a first come
to approve situation, or you can enforce that everyone approves. If you are using group
approvals, you can specify if only 1 person from each group needs to approve, or if all users
need to approve.

Depending on your requirements, you may want to exclude the reporter or assignee from
being able to approve so that they don’t “accidentally” circumvent your approval process.

73

JSM SLAs Guides
What Are SLAs in JSM?

An SLA (Service Level Agreement) is a time-based goal you set for requests in your JSM
space.
They help track response times and resolution times to meet customer expectations.
SLAs in JSM are automated, visible in work items, and can trigger notifications or
escalations.

Key SLA Concepts
Start condition: When the SLA timer begins (e.g., work item created, status = “Waiting for
support”).
Stop condition: When the SLA timer stops (e.g., work item resolved or closed).
Pause condition: When the SLA timer is temporarily paused (e.g., status = “Waiting for
customer”).
Calendars: Define working hours and holidays so SLA timers reflect your team’s schedule.
Goals: Different time targets based on priority, request type, or other conditions.

Why Use SLAs?
Set clear expectations for customers.
Prioritize work by urgency and importance.
Increase accountability — everyone sees SLA progress directly in the ticket.
Automate escalations to managers when tickets breach SLAs.
Improve reporting — track SLA success rate over time.

Common SLA Examples
Time to First Response

Start: Work item created
Stop: First public comment added by agent
Goal: High = 1 hour, Medium = 4 hours, Low = 1 business day

Time to Resolution
Start: Work item created
Stop: Work item resolved/closed
Goal: High = 4 hours, Medium = 3 business days, Low = 5 business days

Time in Status (custom)
Start: Work item enters “In Progress”
Stop: Work item moves to “Waiting for Customer”
Goal: Track time spent actively working

Best Practices for SLAs
Start small – focus on 2–3 critical SLAs (First Response + Resolution) before adding more.
Use pause conditions wisely – prevents unfair breaches when waiting on the customer.
Customize by request type – not all requests need the same SLAs.
Set realistic goals – align with team capacity and customer expectations.
Monitor breaches – use automation to escalate tickets close to breach.
Train agents – make sure they understand SLA timers shown in work items.

74

How to Configure SLA’s
Step 1: Open SLA Settings
Go to your JSM space → space settings → SLAs.

Step 2: Create a New SLA
Click Add SLA.
Name your SLA (e.g., “Time to First Response”).

Step 3: Define SLA Conditions
Start counting time when: Select trigger (work item created, status changed, etc.).
Stop counting time when: Select resolution conditions (resolved, closed, comment added).
Pause counting time when: Optional (e.g., “Waiting for customer”).

Step 4: Apply Goals
Add multiple goals using JQL conditions.
Example:
Priority = High → 1h
Priority = Medium → 4h
Priority = Low → 1d

Step 5: Attach a Calendar
Create a Calendar with your team’s working hours (e.g., 9 AM – 5 PM, Mon–Fri).
Add holidays if needed.
Apply this calendar to SLA so timers don’t count downtime.

Step 6: Save & Test
Apply SLA → Save.
Create test work items with different priorities to verify SLA timers work as expected.
Depending your start SLA setting, you may not immediately see an SLA, it will only show up
once the start SLA has been triggered.

75

License Definition What they can do

Agent
Your support team — the

people working on
requests.

View and work in queues.
Respond to customer requests
(internal & external comments).
Be assigned work items.
Set SLAs, run reports, configure
space settings.
Approve requests.

Customers
End users who submit
requests through the
portal, email, or chat.

Submit requests (via portal, email,
chat, or integrations).
Track their own requests in the
portal.
Comment/reply on their requests.
See requests raised by their
organization (if configured).

Stakeholders

Internal stakeholders (like
executives, managers, or

business leaders) who
only need visibility into
requests and reports.

Can view requests and the customer
portal.
Can track progress of work items
they’re interested in.
Can receive notifications.
Cannot work requests (no
transitions, assignments, or internal
comments).

Collaborators

Internal team members
(like developers, HR,

finance, or other business
staff) who occasionally

need to help resolve JSM
requests.

Can be @mentioned in comments.
Can add internal comments to help
agents.
Can browse and view requests.
Cannot manage queues, SLA rules, or
customer communications.

JSM Licensing Guides

76

JSM Customers and Organizations Guide
Customers

Who they are: The people submitting requests into your service space.
License cost: Free (customers do not need a Jira license).
What they can do:

Log in to the customer portal or send emails to create requests.
View and track their own requests.
Comment on their requests (publicly with agents).
If allowed by settings, view requests raised by others in their organization.

Best use case: Employees inside your company (for IT/HR requests) or external clients
(for support).

Organizations
What they are: A grouping of customers.
Purpose: Makes it easier to manage who sees what.
What they can do:

All customers in an organization can (if allowed by space settings):
Raise requests on behalf of the org.
View all requests submitted by others in their org.
Great for companies that want visibility across all their requests (e.g., “Acme Corp”
wants all employees to see and track IT issues).

Best use case: Group customers by company, department, or client account.

Example
Let’s say you run an IT Helpdesk:

Customer: John Smith (employee at Acme Corp) submits a ticket: “Laptop won’t start.”
Organization: John is part of the “Acme Corp” organization. By default, Acme employees
in that org can see each other’s requests and avoid duplicates.
Or, if you run an external support desk:
Customer: Jane Doe (client from Widget Inc) submits: “Need help setting up integration.”
Organization: Jane belongs to “Widget Inc.” Everyone at Widget Inc can see all support
requests their colleagues opened.

77

JSM Assets Guide
What is JSM Assets?

Assets is Jira’s CMDB (Configuration Management Database) and asset management tool.
It lets you track anything your team supports or manages: laptops, software licenses,
office equipment, servers, vendors, contracts, even employees.
Assets link directly to requests so agents always know who owns what and what’s
impacted.

Why Use Assets?
Better context for requests – e.g., when a user requests IT help, agents can instantly see
their assigned laptop, software, and warranty info.
Reduce resolution time – no more chasing down asset details; it’s tied to the ticket.
Track dependencies & impact – see relationships between systems (e.g., if Server A goes
down, it impacts Application B and Team C).
Central source of truth – move away from scattered spreadsheets.
Improve reporting – understand cost, usage, and lifecycle of assets.

Term Meaning Example

Object An individual item tracked in Assets. Laptop “Dell-12345”

Object Type Category/group of similar objects.
“Laptops,” “Employees,”
“Vendors”

Schema
A container for objects & their
relationships. Think of it like a
database.

“IT Assets Schema”

Attributes Data fields describing objects.
Serial number, purchase date,
location

Relationships Links between objects. Employee → owns → Laptop

Asset field
A field in JSM requests that lets
customers or agents select an object
from Assets.

“Which device needs repair?”

Asset Terms to Know

78

Getting Started with Assets
Step 1: Enable Assets
In JSM Premium or Enterprise, Assets is included.
On the left navigation, click on Assets. Assets is now it’s own App.

Step 2: Create a Schema
Fine Schemas at the top left corner and click on the + button.
Use a template or create a blank schema.
Name it based on scope (e.g., “IT Assets,” “HR Resources,” “Facilities Equipment”).
Provide a key, or accept the default that Jira creates for you.
Optionally add a description.
Click on the Create Schema blue button.

Step 3: Define Object Types
Within your schema, create object types (categories).
Example for IT:
Hardware → Laptops, Desktops, Phones
Software → Licenses, Applications
People → Employees, Vendors
Under Schema Tree, click on + Add object type
Provide a Name, an Icon. Optionally, provide a Parent and Description.
Add attributes to describe each object type (e.g., for laptops: model, serial number, purchase date,
owner).

Step 4: Import or Add Objects
Manual entry → Good for small setups.

Click on the blue Create Button.
Select the Schema, the Object Type, an icon, and the name for the object.

CSV import → Upload large lists of assets.
Integrations → Use marketplace apps or APIs to sync with tools like Intune, SCCM, Jamf, or AWS.

Step 5: Create Relationships
Link objects together:
Employee → owns → Laptop
Application → runs on → Server
In the attributes for an object, add an attribute and select object as the format.
Select one of the default references or create your own reference to associate two objects.
Relationships let you visualize dependencies and troubleshoot faster.

Step 6: Connect Assets to JSM Requests
Go to Request types in your JSM space.
Add an Assets custom field (e.g., “Select your device”).
Configure it to pull from the right schema/object type.
Example: On “Hardware issue” request type, show a dropdown of laptops assigned to that customer.

79

JSM Forms Conditional Fields and Sections
JSM forms help you structure requests so customers provide all the information your team
needs. Using forms reduces back-and-forth, ensures consistent data, and improves
resolution times. Forms don’t exactly replace the need to add fields to request types, but
they make it a lot easier. Forms in JSM are also much more powerful than forms in Jira. You
can create local fields to the form only, or you can create custom fields and reference those
fields in the form.
1: Creating a Form

Go to your JSM space → space settings → Request management → Forms.
Create a new from from blank or from a template.
I’m going to go with a blank to begin.
Feel free to add any fields to build out your form.

Text fields (short answer, long answer)
Dropdowns (e.g., hardware type: Laptop, Monitor, Mouse)
Checkboxes / Multi-selects (e.g., software access needs)
Date picker (for scheduling requests)
Mark fields as required if they are essential for fulfilling the request.

The Display name is the name of your “new” field. Replace Label with whatever name you want.
If you want to link the “new” field with Jira, then the field needs to exist before you use it in
the form. If you don’t already have the field available in Jira, you’ll want to go and create the
field first (will need a Jira admin for this) and then you can use this.

Forms are great because it allows non Jira admins to create fields however, the fields that are in
the form only aren’t searchable by JQL. So, if you want to query the data the end users submits
or if you want to include any of that data in a dashboard, then a Jira admin needs to create the
field in Jira first.

2: Conditional fields and sections
If you are using a select list (dropdown) field, you can dynamically make sections appear on your
form based on the value the user selects. This is one the best JSM Forms feature that is missing
from Jira.
Click on Add section.

Provide a name for the section and switch the Show section to Conditionally.
Select the field that you want to drive whether the section is shown or not.
Select which value(s) will trigger the section to be displayed.
Click on any white space and the section will now be created.
You can now add fields that will only be displayed when the previous field matches your
show section criteria.
Once you finish adding those fields, you have the option to add another section that is either
conditionally shown (based on the new fields you just added. Alternatively, you can add a
section that is always shown. Finally, you can simply just end your form there and be done.

When finished, click on the Save changes button.
Preview the form by clicking on Preview at the top.
Test and confirm that the section that are supposed to be conditional work based on your logic.

80

Configuration
General JSM settings, but most importantly, determines if emails
become new requests or if they contain the work item key, get

appended as a comment

Email Requests Set up settings for how emails are handled.

Customer Access
Configure how new accounts are created for customers to send

requests and access portals.
These settings impact all service spaces on this site

Authentication Configure customer login settings to portals. These settings impact
all Jira Service Management spaces on this site

Organizations Configure global organizations to organize Customers

Incident
Management

Set up tools and view incident management settings for all your IT
service management spaces.

Knowledge Base
Permissions

Configure how space admins can manage who can view and edit
articles in their knowledge base spaces.

Compliance
Settings

Choose to hide sensitive and confidential information. Also,
configure HIPAA notification alert settings.

Feature Usage Track how many assets and virtual agents your team is using.

JSM Product Administrative Setting

81

Knowledge Base Setup Guide
Benefits of Using a Knowledge Base in JSM

Customers often find answers themselves without creating a request.
This reduces repetitive “How do I reset my password?” type tickets.
Agents can search KB articles directly inside Jira and share them with customers in one
click.
Cuts down response time and keeps answers consistent.
Improved Customer Experience
Customers get immediate, 24/7 access to solutions.
No need to wait for an agent.
As agents spot repetitive issues, they can create KB articles to prevent future tickets.
Over time, this builds a rich self-service library.

How to Configure a Knowledge Base in JSM
Requirement:

You’ll need Confluence (Atlassian’s wiki product). JSM integrates directly with it. If you
don’t have it, you’ll need to add Confluence to your Atlassian site.
You’ll need to open/loosen your Confluence permissions so that Customers can access
information

Step 1: Link Confluence to Your JSM space
Go to your JSM space → space settings → Channels and Self Service
Select Knowledge base from the menu → Try Now → Confluence
Choose Link a space or Create a new space.
You can also link to a Confluence on a different site (but this is more risky as your users
might not have access to that site).
Feel free to add more spaces as needed.

Step 2: Configure Permissions
Who can view articles?

Confluence users - must have a Confluence license.
Internal only - Any logged in user with a JSM license
Anyone - Customers (public articles visible in the portal).

Who can create/edit articles?
Usually, agents and KB managers.

Step 3: Add KB Articles
In the JSM space, go to Knowledge Base
Select/group articles so that end-users can access the articles easily.
As long as Show Suggestions is enabled, when a user starts to submit a request, a
“related” Confluence article will show up.

Pro tip: Start with the top 10 most common requests (like password reset, access request,
onboarding) — document those first. This gives you maximum impact right away.

82

GETTING STARTED WITH JIRA
PRODUCT DISCOVERY

ADMINISTRATION

84

Setting Up a JPD Space Check List
1. Create the Space

 Hover over Spaces on the left nav → Click on the + button → Select Product management
 Choose Product discovery template → Use template
 Name the space and define the space key
 Set the desired access level for the space (same as team-managed spaces).

2. Define Fields & Custom Attributes
 Review default fields: Impact, Effort, Confidence, Goal, Target date
 Add custom fields as needed, e.g.:

Customer Value
Strategic Fit
Revenue Potential
Risk Reduction

 Standardize scales (e.g., 1–5, t-shirt sizing, percentages)

3. Set Up Views
 Ideas backlog (default)
 Roadmap (Kanban/Timeline for visibility)
 Impact vs Effort matrix (2x2 view for prioritization)
 Scoring views (weighted score formula across fields)
 Executive summary (filtered, simplified view for leadership)

4. Configure Workflows / Statuses
 Default statuses: Draft → Under Consideration → Planned → In Progress → Done
 Adjust to match product team process (e.g., Parked, Validated, Not pursuing)
 Ensure statuses align with reporting and roadmap needs

5. Set Up Prioritization Framework
 Agree on scoring model (RICE, WSJF, custom)
 Configure formula fields if needed
 Create saved views for ranking ideas

6. Set Permissions & Collaboration Rules
 Define who can:

Create ideas (product team vs everyone)
Comment/vote/react (often open wider to stakeholders)
Edit fields (restricted to product managers)

 Add stakeholders and contributors to space
 Encourage voting & insights collection

85

JPD Space Setup Glossary
Core Concepts

Idea – The main work item in JPD. Represents a potential product improvement, feature,
or initiative.
Insight – Supporting evidence (customer feedback, market research, support tickets,
analytics) attached to ideas.
Views – Saved configurations of how ideas are displayed (table, board, timeline, matrix).
Used for prioritization, roadmaps, or stakeholder presentations.
Roadmap – A visualization of ideas over time, often grouped by quarter, release, or
initiative.

Fields & Prioritization
Impact – How valuable or beneficial an idea is if implemented.
Effort – Estimated work required to deliver the idea (can be story points, t-shirt size,
hours, etc.).
Confidence – How sure the team is about the accuracy of impact/effort assumptions.
Scoring Model – A prioritization framework applied to ideas (e.g., RICE: Reach, Impact,
Confidence, Effort or WSJF: Weighted Shortest Job First).
Formula Field – A calculated field in JPD that applies a mathematical formula to multiple
attributes (e.g., Impact ÷ Effort).

Collaboration & Permissions
Contributors – Team members who can create and edit ideas.
Stakeholders – Users who can comment, vote, or view ideas but not manage fields or
workflows.
Voters/Reactions – Lightweight stakeholder input to signal interest or priority.
Space Lead – Primary owner of the JPD space.

Advanced JPD Features
Matrix View – 2x2 chart (e.g., Impact vs Effort) for visual prioritization.
Timeline View – Calendar-style view for roadmap planning.
List/Table View – Spreadsheet-style format for scoring and sorting.
Grouping – Organizing ideas by category, owner, status, or strategic goal.
Filtering – Narrowing views to only show relevant ideas (e.g., high impact, Q1 delivery).
Delivery Link – A connection between a JPD idea and Jira Software work item(s), usually
an Epic.

86

Setting Up a JPD Space for Product
Management Run Book

Core Prioritization Fields
Impact (1–5 scale) – potential business/customer value
Effort (1–5 scale) – rough dev complexity
Confidence (High/Med/Low) – certainty in assumptions/data
Reach (# of customers affected) – optional if you want RICE
Score – auto-calculated (e.g., RICE or ICE formula)

Workflow/Status Fields
Status – (Idea → Prioritized → In Discovery → Ready for Delivery → In Delivery → Shipped)
Category – Bug / Feature / Improvement / Experiment / Other
Theme/Initiative – to group ideas under product pillars

Metadata Fields
Owner (PM) – person responsible for the idea
Target Audience / Persona – optional if you’re customer-focused
Source – where the idea came from (Customer, Sales, Internal, Market Trend, etc.)
Insights (linked) – feedback, research, or tickets connected to the idea
Delivery Link – link to Epic(s) in Jira Software

Views You Should Create in JPD
Idea Intake View

Layout: List
Fields: Idea, Owner, Category, Source, Created Date
Purpose: Triage new submissions, clean duplicates, and tag appropriately.

Prioritization View (RICE/ICE Matrix)
Layout: Table
Fields: Impact, Effort, Confidence, Reach, Score
Purpose: Compare and prioritize ideas based on scoring framework.
Tip: Sort by Score or add conditional formatting for clarity.

Strategic Alignment View
Layout: Board or Table
Fields: Theme/Initiative, Status, Impact, Effort
Purpose: Show how ideas ladder up to product strategy pillars.

Delivery Tracking View
Layout: Timeline or Board
Fields: Status, Delivery Link, Owner
Purpose: Connect ideas to Jira Software epics/stories and track progress from discovery to
shipped.

87

JPD Spaces Creating Mistakes To Avoid
Strategic Mistakes

Treating JPD like a backlog dump
Teams often import every idea, feature, or request without prioritization → JPD becomes
overwhelming and useless for decision-making.
Fix: Define what qualifies as an “idea” and set entry criteria.

Not defining the product vision upfront
Without a vision/strategy, prioritization fields like “impact” or “value” become arbitrary.
Fix: Align fields and views to product goals before adding ideas.

Mixing customer feedback with ideas
Some teams create duplicate or scattered feedback items instead of linking feedback directly to
ideas.
Fix: Use the Insights feature to connect customer input to ideas. Use a different JPD space for
customer feedback to keep things organized.

Configuration Mistakes
Overcomplicating fields

Adding too many custom fields early → every idea becomes heavy to create/manage.
Fix: Start simple with core fields (Impact, Effort, Confidence, etc.) and expand later.

Not tailoring views for stakeholders
PMs, execs, and engineers all want different views. If everyone sees the same messy list, it creates
confusion.
Fix: Build separate views (Roadmap, Prioritization matrix, Delivery board, etc.) per audience.

Failing to connect JPD to Jira Software
Ideas stay in JPD but aren’t linked to Epics/Stories in delivery → no visibility of progress.
Fix: Set up delivery link rules or automation to sync with Jira Software spaces.

Collaboration Mistakes
Not giving the right permissions

Either too strict (only PMs can add ideas) or too open (everyone spams ideas).
Fix: Decide roles (contributors vs voters) and control who can add vs vote/comment.

Ignoring voting and insights
Teams use JPD just as a “feature wishlist” and forget to capture actual stakeholder/customer
voices.
Fix: Actively encourage voting and connect customer feedback tools (e.g., Slack, Intercom,
Salesforce).

Not closing the loop with stakeholders
Ideas go in, but stakeholders never see updates → they stop contributing.
Fix: Use statuses and share roadmap views so people see progress.

Reporting Mistakes
Not defining prioritization criteria

Relying on gut feeling instead of using fields like Reach, Impact, Confidence, Effort.
Fix: Agree on scoring models (RICE, ICE, custom) early.

Treating JPD as static
Teams create a roadmap once and never update → it loses trust.
Fix: Review and groom ideas regularly (weekly/biweekly) to keep the project alive.

Forgetting executive-friendly communication
Leaders want clear roadmaps and high-level priorities, not the raw idea backlog.
Fix: Build “Executive views” with grouped/rolled-up ideas.

88

Setting Definition

Access

Jira admins can control who is able to see views in JPD.
Admins can configure a “contributor” license that is free and

enables others in your organization to view JPD views. There
is a second setting that is open to all users on the internet.

More caution should be exercised when enabling this.

Global Fields

Global fields, not quite the same as “custom” fields in
company-managed fields, allow you to create fields that can
be used across JPD spaces. This is slightly better than team

specific fields, but not as good as global fields from company-
managed Jira spaces.

Dates
Allows a Jira admin to set the start date for the year. This is a
global setting so it would apply to all JPD users. Once set, this

will then guide the quarterly roadmap.

Beta Features

Whenever Atlassian releases new features for JPD, your Jira
admin can come and turn those features on. Given Atlassian’s

current trends, expect most of these features to be for
Premium subscribers. Also, keep in mind these features are in

beta, I wouldn’t depend on them for production systems as
they may change over time and/or break things.

JPD Product Administrative Setting

89

GETTING STARTED WITH
CONFLUENCE

ADMINISTRATION

90

Space
Child Page
Parent Page
Macros
Live Doc

Space Settings
Star space
Automation
Space Directory
Content Tools

Database
Space Permissions
Anonymous Access
Page Restrictions
Global Permissions

Page Tree
Blueprints
Page Templates
Labels
Space Categories

Space Archive
Whiteboard
Homepage
Page
Space Trash

Determining Confluence Template Guide
When creating a Confluence Space, there are 3 different types of “templates” that you can
use. Picking one of these templates will govern which pages are automatically available
under your space content page tree when your space is created. It doesn’t really matter
which template you pick as all the pages that are automatically created can be renamed,
removed, or you can just create the ones your team will actually use. These are just there for
inspriation.

Collaboration

The collaboration template provides you with the following pages:
Template - Project Plan - An outline for a project plan that can be used for other project
plans. You make a copy of this page and nest future project plans under this page.
Template - Decision Document - An outline for how your team can handle major
decisions.
Template - Meeting Notes - An outline for how to take meetings.

These templates can be modified after the space is created. Make sure you make any
modifications before team members start to use them.
Optionally, you can remove these and create blueprints (templates) that your team can
utilize, more on this later in this book!

The Knowledge base is more technical and personal as opposed to the more open and
collaborative nature of the collaboration template.

Template - How-to guide - A super basic template that contains an instructions section to
help you document a step by step guide.
Template - Troubleshooting - Very similar to the how-to guide, but focused on providing a
template that you can use to document troubleshooting steps.

The Custom template is the template you want to use if you don’t want any preconfigured
templates. The custom template is just an empty space that you and your team get to
configure however you want.

I usually just use the Custom template whenever I create a new Space.

91

What to ask stakeholders before
building a Confluence space?

A Confluence space is much more flexible, you more carefully want to structure the pages of
your space. How you structure pages will determine how well organized your team
documentation is.

Think about the “big buckets” of content you’ll have:
Reference Information – policies, SOPs, how-tos
Collaboration Work – meeting notes, project docs, brainstorming pages
Announcements/Updates – team updates, release notes
Knowledge Capture – FAQs, troubleshooting, lessons learned
Keep the homepage as a navigation hub, not a wall of text.
Page tree should have 3–4 top-level categories max (avoid too much nesting).
Use templates for consistency (meeting notes, space briefs, decision logs).
Consider how people will search vs browse → design for both.

Do you want the space open to everyone, or restricted by team?
Should outsiders (e.g. other departments, customers) have view-only access?
Will some content need page-level restrictions (sensitive docs, drafts)?
Will guests be able to access this space?
Are you going to share individual pages with Public Links?
If you’ll have multiple spaces (HR, IT, Product, Marketing), agree on naming conventions
and layout patterns so people don’t feel lost.

Example: All spaces start with “About This Space,” “How to Use This Space,” and
“Index Page.”

Who owns the space? (space admin / content steward)
Will pages be archived, reviewed, or pruned on a schedule?
If this is documentation → consider versioning or labeling for “current vs outdated.”
Plan how to use labels/tags to improve searchability.
If you’re scaling knowledge management → consider using Confluence apps like
Metadata or Scroll Documents for structured info.
If this space supports a Jira space → how will you link work items (e.g., release notes,
requirements, retrospective docs)?
Will you embed Jira boards, roadmaps, or reports in Confluence?

92

Questions to ask

Setting Up a Confluence Space Check List
Purpose & Audience

 What is the primary purpose of this space? (Documentation, Team hub, Knowledge Base, Project
tracking, etc.)
 Who is the main audience? (Internal team, whole company, leadership, external customers)
 Will the content be long-term reference or short-term collaboration?

Content & Structure
 What are the big content categories I’ll need? (e.g., Policies, Meeting Notes, Roadmaps, FAQs)
 Do I have a homepage plan? (Navigation, quick links, intro text)
 How will the page tree be structured? (Max 3–4 top-level categories, shallow hierarchy)
 Do I need to set up templates for common content? (Meeting notes, decision logs, specs, etc.)

Permissions & Access
 Who should have view access?
 Who should have edit/create access?
 Do I need any restricted pages (sensitive or draft content)?
 Who will be the space admin/owner responsible for upkeep?

Findability & Consistency
 Will I use labels/tags for search
optimization?
 Do I need a consistent naming
convention for pages?
 Is this space aligned with other spaces
(look, feel, naming)?

Maintenance & Lifecycle
 Who is responsible for reviewing
and archiving old content?
 Do I need a content lifecycle
policy (e.g., quarterly reviews)?
 How will people know which
pages are current vs outdated?

Integration & Extras
 Do I need to link this space with Jira
spaces/work items?
 Will I embed Jira boards, roadmaps,
or reports?
 Do I need any apps/macros
(Calendars, Draw.io, Metadata, etc.)?

Confluence Space Creation Glossary
Space

A top-level container for content in Confluence. Every space has its own set of pages,
permissions, and settings.

Page
A document inside a space where content is created and edited. Pages can be nested into
a hierarchy.

Child Page / Parent Page
Pages form a tree structure: parent pages hold child pages beneath them. Used to
organize content hierarchically.

Homepage
The landing page of a space. Usually customized to provide navigation, instructions, or
key info.

Global Permissions
 Permissions granted at the site level (e.g., who can create spaces, administer spaces).

Space Permissions
Permissions that apply to an entire space (e.g., who can view, add, delete, or administer
pages in that space).

Page Restrictions
Permissions applied at the page level. Pages can be restricted to specific users/groups for
view or edit.

Anonymous Access
When a space or page is visible to people who aren’t logged into Confluence (commonly
used for public Knowledge Bases).

Page Tree
The hierarchical navigation menu on the left side of a space showing all pages and their
structure.

Templates (Page Templates - a page you copy/duplicate)
Pre-defined page layouts that help maintain consistency (e.g., Meeting Notes, Project
Plan).

Blueprints
Special types of templates provided by Confluence for common use cases (e.g., Product
Requirements, Decision log). Can be created by Atlassian, Confluence Admins, or Space
Admins

Labels
 Tags added to pages to improve searchability and grouping of related content.

Space Categories
 Labels applied to spaces (not pages) that help group spaces together in the space
directory.

94

Space Settings
Admin panel for each space where you configure permissions, look & feel, content tools,
and integrations.

Star space
A bookmark for your space so that you can easily navigate to the space, helpful when you
have access to many different spaces.

Watch Page
Receive notifications when others edit this specific page that you watched.

Automation
Created by Space Admins, allows for things to automagically happen in the background or
with the press of a button if the automation rule is a manual trigger.

Content Tools
 A space admin feature for managing things like templates, trash, and export options.

Space Directory
 A list of all spaces in Confluence, often searchable and filterable by category.

Trash
 Deleted pages in a space go here; space admins can restore or permanently delete them.

Space Trash
Deleted spaces go here; space admins can restore or permanently delete them.

Space Archive
If you don’t want to permanently delete a space, but don’t want anyone to access, you
have the option to archive a space. Note, this is a Confluence Premium/Enterprise
feature only.

Macros
 Small add-ons you embed in a page to display dynamic content (e.g., Jira Work Items
macro, Table of Contents, Page Tree).

Jira Link / Jira Macro
 Integration that lets you embed live Jira work items, boards, and reports into Confluence
pages.

Public Links (if enabled)
 A feature that allows sharing a Confluence page with external users without giving them
full access.

Live Doc
Like a Confluence page, but no publishing is required. Multiple people can collaborate at
the same time without having to publish or refresh to get changes. You lose version
history.

Whiteboard
A collaborative whiteboard that allows you to visually communicate with your team.

Database
A table to store data more dynamically than you would with a regular table in Confluence

95

Setting Up a Confluence Space
for Software Teams Run Book

Home (Space Homepage)
 |── Team Overview
 | |── About the Team
 │ |── Roles & Responsibilities
 │ |── Contact Information / Slack channel links
 │ └── Onboarding Guide
 │
 |── Goals & Strategy
 │ |── OKRs / KPIs
 │ |── Roadmap (linked from Jira or manually updated)
 │ └── Product Vision / Charter
 │
 |── Projects & Work
 │ |── Active Projects
 │ │ |── Project 1 Overview
 │ │ |── Project 1 Specs / Requirements
 │ │ └── Project 1 Decisions
 │ |── Archived Projects
 │ └── Backlog Ideas (link to Jira Product Discovery or Idea pages)
 │
 |── Documentation
 │ |── How-to Guides
 │ |── Architecture & Systems
 │ │ |── System Diagrams
 │ │ |── APIs
 │ │ └── Dependencies
 │ └── Tools & Processes
 │
 |── Meetings & Rituals
 │ |── Sprint Planning Notes
 │ |── Retrospectives
 │ |── Daily Standup Notes (optional, if team uses them)
 │ └── Stakeholder Updates
 │
 |── Announcements
 │ |── Release Notes
 │ |── Change Logs
 │ └── Team Updates
 │
 └── Resources
 |── Templates
 |── Glossary
 └── External References

96

Project / Feature Pages
Project Overview Template: Goals, stakeholders, timeline, Jira links.
Product Requirements Template: Problem statement, solution design, acceptance criteria,
Jira epics/stories linked.
Decision Log Template: Context, decision taken, alternatives considered, date, owner.

Agile Rituals
Sprint Planning Template: Sprint goal, committed stories, capacity.
Retrospective Template: What went well, what didn’t, action items.
Standup Notes Template (if documented): Yesterday, today, blockers.

Knowledge Sharing
How-to Guide Template: Problem, steps, expected outcome, troubleshooting.
Architecture Doc Template: Diagram (use Draw.io / Gliffy macro), description, key
contacts.
Onboarding Checklist Template: Accounts, tools, documentation links, mentors.

Communication
Release Notes Template: Version, features, fixes, screenshots, links.
Team Update Template: Weekly/monthly updates, highlights, blockers.

Keep hierarchy shallow → avoid burying pages more than 3 levels deep.
Make the homepage a launchpad → use macros like “Children Display” or “Page Tree” plus
quick links to Jira boards.
Use labels → tag pages with meeting-notes, decision, architecture to improve searchability.
Link to Jira → embed live Jira work items, roadmaps, or boards inside project pages.
Automate with templates → encourage consistency for meetings, projects, and
documentation.
Archive ruthlessly → move old projects into an “Archive” section to keep the space clean.

Software Teams Templates

97

Setting Up a Confluence Space
for HR Teams Run Book

Home (Space Homepage)
 |── About HR
 │ |── Mission & Values
 │ |── Team Directory & Roles
 │ └── Contact HR / Support Channels
 │
 |── Policies & Guidelines
 │ |── Employee Handbook
 │ |── Code of Conduct
 │ |── Workplace Policies (Leave, Travel, Remote work)
 │ └── Compliance & Legal
 │
 |── Onboarding & Offboarding
 │ |── New Hire Welcome Guide
 │ |── Onboarding Checklist
 │ |── Training & Learning Resources
 │ └── Offboarding Checklist
 │
 |── Compensation & Benefits
 │ |── Salary Bands / Pay Structure (internal-only)
 │ |── Benefits Overview
 │ |── Health & Wellness Programs
 │ └── Perks & Discounts
 │
 |── HR Processes
 │ |── Recruiting & Hiring
 │ │ |── Job Descriptions
 │ │ |── Interview Guides
 │ │ └── Referral Program
 │ |── Performance Reviews
 │ |── Promotions & Career Development
 │ └── Time-off Requests & Holidays
 │
 |── Employee Relations
 │ |── Feedback Channels
 │ |── Grievance Process
 │ └── DEI (Diversity, Equity & Inclusion) Initiatives
 │
 |── Announcements
 │ |── Company Updates
 │ |── HR Newsletters
 │ └── Policy Changes
 │
 └── Resources
 |── HR Templates & Forms
 |── Training Materials
 |── FAQs
 └── External Resources (links to payroll system, benefits portal, etc.)

98

Employee Lifecycle
New Hire Onboarding Template: Welcome, accounts setup, training checklist, buddy
assignment.
Exit Interview Template: Questions, feedback summary, action items.
Training Session Template: Agenda, materials, attendance, key takeaways.

Policies & Documentation
Policy Page Template: Purpose, scope, policy details, effective date, owner, review date.
HR Process Template: Step-by-step workflow, responsible parties, links to forms/systems.
FAQ Template: Question, answer, related resources.

Communication
Announcement Template: Subject, summary, details, effective date, next steps.
Newsletter Template: Highlights, HR spotlight, upcoming events, resources.

People Management
Performance Review Template: Goals, feedback, ratings, next steps.
Career Development Plan Template: Strengths, growth areas, milestones, training.

HR Teams Templates

Confluence Spaces Creating
 Mistakes To Avoid

Creating Too Many Spaces
Spinning up a new space for every small project or team.
Leads to fragmentation, duplication, and hard-to-find content.
Instead: consolidate into fewer, well-structured spaces with clear page hierarchies.

No Clear Purpose for the Space
Starting a space without defining its goal or audience.
Users don’t know if it’s for documentation, collaboration, or policies.
Before creating, answer: “Who will use this space and why?”

Poor Page Hierarchy / Flat Structure
Dumping all pages at the root with no logical organization.
Makes navigation difficult and discourages content contributions.
Use a top-level “Home” page with clear sections (Knowledge, Policies, Projects, etc.).

Not Using Templates or Standards
Everyone creates content differently (free-text pages, no structure).
Knowledge base articles look inconsistent.
Provide templates for meeting notes, policies, incident reports, FAQs, etc.

Ignoring Permissions & Access Controls
Giving everyone full admin rights → chaos.
Locking down everything → no collaboration.
Balance permissions: admins for governance, contributors for team content, and read-only for
others.

Forgetting About Labels & Metadata
Content is untagged → search becomes useless.
Users can’t filter by topic.
Encourage consistent labeling (e.g., “incident”, “policy”, “how-to”).

Not Setting a Space Homepage
Default homepage looks empty/uninviting.
Users can’t find key info at a glance.
Design a landing page with navigation, search bar, and quick links.

Duplicating Jira/Other Tool Data
Copy-pasting Jira work items or roadmaps manually → goes stale.
Instead: embed Jira filters, roadmaps, or Trello boards dynamically in Confluence.

No Governance or Archiving Strategy
Old content piles up → search results become noisy.
Establish content lifecycle rules: review quarterly, archive outdated pages, and mark drafts.

Not Considering End-User Experience
Spaces built for admins, not for the people who actually use them.
End-users struggle to find FAQs, guides, or policies.
Think of your space like a website: make it easy to browse and search.

100

Confluence Blueprint Creation Guide
Step 1: Understand What a Blueprint Is

A blueprint is different from a normal template but most use template and blueprint
interchangeably. Blueprints can be space specific, or global.
Templates = reusable page structures. Any page can be a “template” because you just duplicate
the page.
Blueprints = templates + extra functionality (like automatic indexing, prompts, or page creation
wizards).
Examples Atlassian provides: Meeting Notes, Product Requirements, Decision Logs.

Use a blueprint when:
 You want consistency across multiple spaces
 You need a create-page wizard that asks questions before building the page
 You want to auto-organize pages (e.g., all meeting notes under a “Meetings” parent page)

Step 2: Decide What Content Needs a Blueprint
Ask:

Do you want a team-wide standard format (e.g., Incident Postmortem, Onboarding Checklist,
Project Charter)?
Do I want my team to follow the same format every time they create this type of page?
Should metadata (labels, dates, authors) be added automatically?

Step 3: Prepare the Template Content
Go to Space Settings → Look and Feel → Templates
Click on Create a new template
Draft the layout of the page you want standardized. This is basically like creating a
normal page.
Use headings, tables, and macros (status, panels, task lists).
Example (Incident Postmortem Blueprint):

Summary
Timeline of Events
Root Cause
Lessons Learned
Action Items (task list macro)

Publish → users can now select it in the “Create” page dialog.

Step 4: Test It
Create a test page, but this time search for the blueprint name in the template browser search.
Check if metadata is applied, parent page works, and structure looks right.
Get feedback from end-users.

101

Confluence Space Permissions Guide
1. What Are Space Permissions?

Space permissions control who can access and do what in a Confluence space.
They apply at the space level (not page level — that’s done with page restrictions).
Permissions can be assigned to groups or individual users.
Each permission grants a specific action, like viewing, adding pages, exporting, or
administering the space.

2. Types of Permissions
Here’s a breakdown of the main permission categories:

Permission Type / Role What It Allows Example Use Case

Admin
Can manage everything
in the space

Folks that can rename space, create
automation rules, create blue prints

Manager
Can manage people and
content, but no space
settings

Power user, but maybe not technical enough
to change space settings.

Collaborator
Can add and edit
content

Folks that need to interact by creating and
editing content.

Viewer
Can view and comment
on content

Folks that should only be able to see content,
but not create anything or edit anything.

Custom Access
Defined by Confluence
Admin

Custom role that can be tweaked to contain
over 20 different permissions.

3. Where to Configure Space Permissions
Go to the space → Space Settings → Users
To add a new person, click on Add people on the right side.
In the pop up window, search for a user or group and assign to one of the available groups.
Click on save.

To edit an existing user or groups role, search for the user/group in the User’s page and then
click on the drop down for the role.

You can also remove a user/group from the User’s page.

102

Confluence Page Permissions Guide
1. What Are Page Restrictions?

Page restrictions control who can view or edit an individual page.
They override space permissions as they are a “subset” from the space permission.
Useful when you need to share a space broadly, but lock down specific sensitive pages.
Two main types:

View Restriction → Who can see the page.
Edit Restriction → Who can make changes to the page.

2. When Should You Use Restrictions?
Sensitive information (e.g., salary policies in HR space).
Drafts you don’t want visible yet.
Confidential project plans limited to a subset of a team.
Postmortems or incident reports with security details. Don’t use them as your main permission
system — that’s what space permissions are for.

3. How to Add Restrictions to a Page
Step 1: Open the Restrictions Dialog

Go to the page you want to restrict.
In the the Share button (will have a lock).
Select the users that you want to “share” the soon to be locked page.

Step 2: Choose Restriction Type
You’ll see three options:
No restrictions (anyone with space permissions can view/edit).
Editing restricted (everyone can view, but only selected users/groups can edit).
Viewing and editing restricted (only selected users/groups can view/edit).

Step 3: Verify
Log in as a test user or use “View as user” (if available in your Confluence version).
Confirm the right people can see/edit the page.
Alternatively, have someone that should have access to the page confirm they can see the
page
Have someone that shouldn’t be able to access the page confirm they can’t see the page.

4. Managing Restrictions
Inherited Restrictions:
If a parent page is restricted, child pages may inherit those restrictions.
Example: If you lock a top-level “HR” page to HR staff only, all subpages inherit that restriction
unless changed.
Checking Existing Restrictions:

Go to the Share Button → Restrictions to see who has access.
Or use the Page Information option to see restrictions history.

Removing Restrictions:
Open the restrictions dialog and click the x next to a user/group.
Switch the page back to No Restrictions to reset it.

103

ATLASSIAN CLOUD
ADMINISTRATION

104

User Management Billing Guide
Al users across your Atlassian cloud products are managed in admin.atlassian.com. Here, you
grant licenses, grant product access, manage groups, and so much more. This guide is
designed to help you keep your costs down by knowing how to audit your users. So many of
the teams I work with have dozens and sometimes hundreds of inactive users that are
costing them thousands of dollars.

Step 1: Invited Users
When you invite users, if you grant them access to a product (Jira/Confluence), they will
count against your billing.
Make sure you encourage users to actually log into the tools, otherwise remove them
because you’ll be paying for every month they don’t actually log in.

Step 2: Last Log In Date
Some users log into Jira once or twice and then forget about it. As a Site/ORG admin,
you should audit every user and watch for the last time they logged into either Jira or
Confluence.
Remove product access/license from any user that hasn’t used the product within the
last 90 days. This will help free up licenses as opposed to buying more licenses.
If you set up your App Access correctly, unactivated users can easily retrieve their
licenses after you revoke them.
Don’t delete or suspend the user, just remove their product access/license.

Step 3: App Access Review
Atlassian makes it easy for users to get licenses. In fact, they make a little too easy. As a
result, most organizations have very lose restrictions and simply allow anyone that a URL
to a Jira work item or a Confluence space to automatically join and get a license.
Don’t do this unless you want to very quickly inflate your Atlassian bill
At a minimum, you should only allow for Any Domain users to be JSM Customers (if you
are using JSM). All other apps should be turned off.
For your companies main domain(s), you can configure this however you want, but I
would recommend, if your goal is to keep costs down, to require all user requests to be
reviewed by a Site/ORG admin before the actual license is granted.

Step 4: Cross Instance Audit
If you aren’t an Enterprise customer and you have multiple Jira’s / Confluence’s, then
audit any users that shouldn’t be access the extra Jira/Confluence. Standard and
Premium subscribers have to pay for each user, across each product. So, if someone
needs to access 2 or more Jira’s, you’ll pay 2 or more times for that specific individual.

105

ORG ADMIN

SITE ADMIN

administrator

Jira Admin Confluence Admin

Space Admin Space Admin

Understanding Atlassian Administrators Guide

Ultimate administrator. Oversees all of the
Atlassian cloud products and ultimately
responsible for billing. Is an admin for each
and every site under the org. Can manage all
users across all sites.

Very similar to the org admin, but with two
key differences. The site admin doesn’t
oversee billing, and is the site admin for only
the specific site. Can manage users only for
their specific site.

Below the Site admin, the administrator is a
technical administrator for both Confluence
and Jira. Cannot manage any users.

Technical administrator
for Jira only. Can
manage workflows,
fields, etc.

Administrator of a
specific space. If the
space is company
managed, they can
rename the space. If it’s
team managed, they can
modify workflows, fields,
etc.

Technical administrator
for Confluence only.
Can manage spaces,
global automations,
global templates, etc.

Administrator for a
specific space. Can
add users, groups,
create local
automations, local
templates, etc.

107

Atlassian Guard Shadow IT Guide
When you are an Atlassian Guard subscriber, you pay for each user’s ability to use their email
(domain) to SSO/Authenticate with your Atlassian Cloud products. Atlassian Guard is a
separate subscription and is in addition to your Jira/Confluence/JSM subscription. If you are
an Enterprise subscriber, Atlassian Guard is included in your annual pricing, except for one
special condition that I wanted to cover here.

This technically applies for all Atlassian Guard subscribers, but the effects are harsher for
Enterprise subscribers. With Enterprise, you pay for once for each user and as long as they
access an Enterprise Jira/Confluence/JSM, then that’s it, you don’t pay anything else. The
problem is IF a user accesses a non Enterprise Jira/Confluence/JSM.

If a user goes to Atlassian.com and “buys” their own Jira/Confluence (remember these
products are technically free) AND they don’t access one of your Enterprise products, but
they used their company email, then Atlassian is going to count this user as a billable user and
will send you a separate Atlassian Guard bill when you renew. Luckily, Atlassian is going to let
you know that the user created a “discovered” product (more on this later in the book). The
only way to fix this is for the user to remove their product or you pull them into one of your
Enterprise Jira/Confluence/JSM. You also have the option to upgrade their Jira/Confluence
to an official Enterprise product under your Org.

A second scenario is if a user accesses a different Jira/Confluence. Maybe a vendor or
consultant invited one of your users to use their Jira/Confluence. If they are using their
company email which is tied to your Atlassian Guard AND they don’t normally access one of
your Enterprise products, then you’ll also see a bump in your Atlassian Guard billing.

A third scenario is if the user accesses a different Atlassian product like Trello or Bitbucket.
Again, if they don’t normally access one of your official Enterprise products, then Atlassian is
going to happily bill you for these users.

I find that Atlassian doesn’t really give us any way to prevent this from happening, but they
do allow us to see who the individuals are. I find that it’s best to simply communicate with
these individuals and make them aware of the hidden costs from Atlassian. 99% of the time,
people just don’t know how Atlassian works and/or bills when customers have Atlassian
Guard.

I hope this guide helps you save a few (hundred) dollars.

108

Discovered Products

Whenever a user with your domain “purchases” their own
Atlassian cloud product, it will show up here. You don’t
technically pay for these products as the person that purchased
the product will need to provide billing details, but if you have
Atlassian Guard, you will need to pay for their Guard license
assuming they don’t already have one (by accessing one of your
enterprise products only).

User API Tokens

Depending on your Authentication Policy, users may be able to
get their own API tokens. Any tokens generated by any of your
users will show up here. You can revoke any license and/or
update your Authentication policy to prevent users from getting
an API token.

IP Allowed List

If you want to make your Atlassian Cloud a little more secure,
you can specify which IP’s are allowed to access your cloud
products. This becomes a lot harder to manage if your users
aren’t using a VPN to get on to your network.

Audit Log

If you have Atlassian Guard, you can see a log of every
interaction by every user. This is a very powerful log and I
would recommend making sure you have guard for this feature
(and SSO/Authentication).

Authentication
Policy

Controls the rules security rules that will govern a specific user
(or groups of users). Most importantly, you can set how long a
user stays logged in for, how they log in, and if they can get an
API token.

Insights
See how your users are using your Atlassian cloud products.
This is very helpful to understand how many actual active users
you have versus how many licensed users you have.

User Counts
The ONLY way to truly see how many licenses your
organization is consuming. Keep a watchful eye on this.
Atlassian will alert you when you hit 80% of your license counts.

Advanced Administration Guide

109

Marketplace App Evaluation Framework
1. Define the Business Need

Problem statement: What gap are you solving? (e.g., “We need better time tracking,” or “We need
advanced reporting.”)
Alternatives: Can Jira natively handle this, or with automation/custom fields/workflows?
Impact: Who benefits? (admins, end-users, executives?)
If you can’t clearly define the business value, don’t install the app.

2. Evaluate Vendor Reputation
Vendor profile: Are they an Atlassian Platinum Partner or a small shop?
App age: How long has the app been in the Marketplace?
Active installs: How many customers use it?
Reviews: What do other admins say about support and reliability?
Update frequency: Is the app actively maintained and compatible with the latest Jira versions?
Look for vendors with strong Marketplace presence and active development.

3. Security & Compliance Checks
Atlassian Cloud Fortified? → Has it passed Atlassian’s enhanced security checks?
Data residency: Where is customer data stored?
Data handling: Does the app store data outside Atlassian? (Check the privacy policy.)
SOC2 / ISO27001 compliance if relevant for your company.
Permissions requested: Does the app request more access than it should need?
Work with your security/compliance team if data is sensitive.

4. Functionality Fit
Core features: Does it meet your exact use case?
Ease of use: Is it intuitive for non-admins?
Ask for a demo or free trial to test in a sandbox.

5. Performance & Reliability
Impact on Jira performance: Any reports of slowdowns?
Cloud vs. Data Center differences: Same features across hosting models?
Uptime & SLAs: Does the vendor provide status pages or uptime guarantees?

6. Cost & Licensing Model
Pricing tiers: Does cost scale with user count? (Most Marketplace apps do.)
Hidden costs: Training, consulting, admin overhead.
New Pricing Models: What functionality do you get on Standard vs Advanced?
ROI check: Does the app save enough time/money to justify cost?
Calculate annual cost at your full license tier (not just current user count).

7. Support & Documentation
Documentation quality: Is it clear, up to date, and easy to follow?
Support SLAs: How quickly does the vendor respond?
Community presence: Are there active community/forum discussions?
Choose vendors with strong documentation and responsive support.

ALWAYS TEST IN A SANDBOX ENVIRONMENT FIRST!!!!

110

 Agile Project
Management

111

Aspect Scrum Kanban

Core Philosophy

Iterative Development. Work is
done in fixed-length cycles
(Sprints) to deliver a "Potentially
Shippable Increment."

Continuous Flow. Focus is on
visualizing the workflow, limiting Work
in Progress (WIP), and maximizing
efficiency.

Cadence & Rhythm

Time-boxed and regular. Sprints
are typically 1-4 weeks (ideally 2)
long, providing a consistent
rhythm for planning and review.

Continuous and event-driven. There
are no prescribed iterations. Work is
pulled into the system as team
capacity becomes available.

Roles

Prescribed Roles. Requires a
Product Owner (manages the
backlog), a Scrum Master
(facilitates the process), and the
Development Team (does the
work).

No Prescribed Roles. It's designed to
be applied to your existing team
structure. Roles may emerge but are
not required.

Key Metrics

Velocity (how much work is
completed per Sprint) and
Burndown Charts (tracking
progress toward the Sprint Goal).

Lead Time (total time from request to
completion), Cycle Time (time from
when work begins to completion), and
Throughput (items completed per
unit of time).

Handling Change

Changes are discouraged during a
Sprint to protect the Sprint Goal.
New priorities are addressed in
the next Sprint Planning.

Changes can be made at any time by
re-prioritizing items in the backlog.
New work can be pulled in as soon as
capacity allows.

Meetings &
Ceremonies

Prescribed and required. Includes
Sprint Planning, Daily Scrum,
Sprint Review, and Sprint
Retrospective.

No prescribed meetings. Teams often
adopt meetings as needed, such as a
daily stand-up, replenishment
meetings, and service delivery
reviews.

Release Cycle

Releases typically happen at the
end of a Sprint, but can be done
at any time. The focus is on a
regular, predictable delivery of
value.

Continuous Delivery. A new item can
be released as soon as it is finished.
There is no set schedule for releases.

Boards
The Scrum Board is reset at the
end of every Sprint.

The Kanban Board is persistent.
Columns represent workflow states,
and cards move across the board
continuously.

Scrum vs. Kanban Comparison Table

113

Scrum Glossary
Scrum Team

Scrum Team: A cohesive unit of professionals focused on one objective at a time, the Product
Goal. It consists of one Scrum Master, one Product Owner, and Developers.
Product Owner: The person accountable for maximizing the value of the product resulting from
the work of the Scrum Team. They are primarily responsible for managing the Product Backlog.
Scrum Master: The person accountable for establishing Scrum as defined in the Scrum Guide.
They do this by helping everyone understand Scrum theory and practice, both within the
Scrum Team and the organization.
Developers: The people in the Scrum Team that are committed to creating any aspect of a
usable Increment each Sprint.

Scrum Events
Sprint: A fixed-length event of one month or less to create consistency. A new Sprint starts
immediately after the conclusion of the previous Sprint. All the work necessary to achieve the
Product Goal, including Sprint Planning, Daily Scrums, Sprint Review, and Sprint Retrospective,
happens within Sprints.
Sprint Planning: The event that initiates the Sprint by laying out the work to be performed. The
plan is created by the collaborative work of the entire Scrum Team.
Daily Scrum: A 15-minute event for the Developers of the Scrum Team to inspect progress
toward the Sprint Goal and adapt the Sprint Backlog as necessary.
Sprint Review: The second to last event of the Sprint, held to inspect the outcome of the Sprint
and determine future adaptations. The Scrum Team presents the results of their work to key
stakeholders and progress toward the Product Goal is discussed.
Sprint Retrospective: The final event of the Sprint. The purpose is to plan ways to increase
quality and effectiveness. The Scrum Team inspects how the last Sprint went with regards to
individuals, interactions, processes, tools, and their Definition of Done.

Scrum Artifacts
Product Backlog: An emergent, ordered list of what is needed to improve the product. It is the
single source of work undertaken by the Scrum Team.
Sprint Backlog: A plan by and for the Developers. It is composed of the Sprint Goal (the "why"),
the set of Product Backlog items selected for the Sprint (the "what"), as well as an actionable
plan for delivering the Increment (the "how"). Jira only has a single “backlog”
Increment: A concrete stepping stone toward the Product Goal. Each Increment is an additive
to all prior Increments and thoroughly verified, ensuring that all Increments work together. To
be considered a part of an Increment, the work must meet the Definition of Done.

Other Key Terms
Product Goal: Describes a future state of the product which can serve as a target for the Scrum
Team to plan against. The Product Goal is in the Product Backlog.
Sprint Goal: The single objective for the Sprint. It is an objective set by the Scrum Team and
provides focus and coherence during the Sprint. The Sprint Goal is part of the Sprint Backlog.
Definition of Done (DoD): A formal description of the state of the Increment when it meets the
quality measures required for the product. When a Product Backlog item meets the Definition
of Done, an Increment is born.

114

Kanban Glossary
Kanban Board Elements

Kanban Board: A visual tool used to manage and track work as it moves through a
process. Each column on the board represents a stage in the workflow.
Work Item (Card): A single unit of work that is being tracked. In its simplest form, a card
on a Kanban board represents a task. Cards contain information about the work, such as
a description, owner, and due date.
Columns (Workflow States): The vertical lanes on a Kanban board that represent the
different stages of the workflow. Common examples include "To Do," "In Progress," and
"Done," but these are customized to fit the team's actual process.
Swimlanes: Horizontal lanes on a Kanban board used to categorize work items.
Swimlanes can be used to separate different types of work, priorities (like an "expedite"
lane), by Epic, by assignee, or custom queries.

Key Metrics
Work in Progress (WIP): The total number of work items that have been started but not
yet completed. This is the work that is currently "in the system."
WIP Limits: A constraint placed on a column (workflow state) or the entire system to limit
the number of work items that can be active at one time. This is a crucial mechanism for
creating a pull system.
Lead Time: The total time a work item spends in the system, from the moment it is
requested (committed to) until it is delivered.
Cycle Time: The time it takes to complete a work item from the moment work actively
begins until it is finished. Cycle time is a subset of lead time.
Throughput: The number of work items completed per unit of time (e.g., tasks per week).
This is a measure of the team's delivery rate.

Kanban Events (Feedback Loops)
While Kanban does not prescribe mandatory meetings like Scrum, it encourages regular
feedback loops to improve the process.

Kanban Meeting (Stand-up): A short, daily team meeting held in front of the Kanban
board. The focus is on the flow of work, discussing blocked items and what can be done
to move work to the next stage.
Replenishment Meeting: A meeting held to review items in the backlog (or "input queue")
and decide which ones to select next for the team to work on. This is the point where the
team "pulls" new work into the system.
Service Delivery Review: A meeting focused on reviewing the team's performance
against their service-level expectations (SLEs). The team analyzes metrics like lead time
and throughput to see if they are meeting their delivery goals.

115

Agile Roles & Responsibility Guide
Scrum Roles
The Scrum framework prescribes three specific, accountable roles within a cohesive unit called
the Scrum Team. These roles are not job titles but represent a set of responsibilities.

1. Product Owner
The Product Owner is the voice of the customer and is accountable for maximizing the value of
the product created by the team.

Key Responsibilities:
Managing the Product Backlog: This includes creating, clearly communicating, and ordering
backlog items to best achieve goals and missions.
Defining the Product Goal: The Product Owner is responsible for developing and explicitly
communicating a long-term objective for the product.
Stakeholder Management: Works with stakeholders to understand their needs and ensure the
Product Backlog reflects them.
Guiding the Development: Makes the final decision on what the team will work on during a
Sprint and is the only person who can cancel a Sprint if the Sprint Goal becomes obsolete.

2. Scrum Master
The Scrum Master is a servant-leader responsible for ensuring the Scrum framework is
understood and enacted. They serve the Product Owner, the Developers, and the organization as
a whole.

Key Responsibilities:
Facilitating Scrum Events: Ensures that Sprint Planning, Daily Scrums, Sprint Reviews, and
Sprint Retrospectives take place and are positive, productive, and kept within their timeboxes.
Removing Impediments: Helps remove blockers to the team’s progress.
Coaching the Team: Coaches the team members in self-management and cross-functionality.
Promoting Scrum Practices: Helps the team and the wider organization adopt and understand
Scrum theory, practices, rules, and values.

3. Developers
The Developers are the professionals within the Scrum Team who are committed to creating any
aspect of a usable product Increment each Sprint. For teams that don’t do software
development, developers are any member of the team that does the actual work.

Key Responsibilities:
Creating the Increment: Performs the hands-on work of designing, building, and testing the
product.
Managing the Sprint Backlog: Creates a plan for the Sprint (the Sprint Backlog) and adapts it
each day to meet the Sprint Goal.
Ensuring Quality: Instills quality by adhering to a Definition of Done.
Holding Each Other Accountable: As professionals, Developers are expected to manage their
own work and collaborate effectively to achieve the Sprint Goal.

116

Kanban Roles
Kanban is a method, not a framework, and is less prescriptive than Scrum. It does not require
specific roles and is designed to be applied to your existing organizational structure. The
focus is on the work and the flow, not on predefined job titles.

However, over time, some service-oriented roles often emerge to help manage the flow.

1. Service Request Manager (or "Flow Manager")
This is an emergent role that focuses on understanding customer needs and managing the
flow of work from request to commitment. This person often helps facilitate the
Replenishment Meeting. This role is sometimes compared to the Product Owner in Scrum.

Key Responsibilities:
Managing Customer Expectations: Acts as a liaison between the customer and the delivery
team.
Prioritizing the Backlog: Helps the team decide what work to pull in next based on business
value, risk, and other factors.

2. Service Delivery Manager (or "Flow Master")
This role is focused on improving the efficiency and effectiveness of the team's workflow.
This role is sometimes compared to the Scrum Master.

Key Responsibilities:
Facilitating Kanban Meetings: Ensures feedback loops like the daily Kanban Meeting and
Service Delivery Review are effective.
Analyzing Flow Metrics: Tracks metrics like Lead Time, Cycle Time, and Throughput to
identify bottlenecks and opportunities for improvement.
Protecting the Flow: Helps the team manage blockers and improve their process policies
to create a smoother, more predictable delivery system.

117

Scrum Master Playbook
Here is a step-by-step guide for a Scrum Master's Playbook, designed to help a Scrum Master
navigate their role from joining a new team to fostering continuous improvement.

Step 1: The First 30 Days - Observe and Connect
Your initial goal is to understand the landscape without making drastic changes. The focus is
on observation, relationship-building, and assessing the current state of agility.

Meet the Team: Schedule one-on-one meetings with every member of the Scrum Team
(Product Owner, Developers) and key stakeholders. Ask open-ended questions about
their roles, challenges, and what they think is working well.
Observe the Events: Silently observe each Scrum event (Planning, Daily Scrum, Review,
Retrospective). Take notes on how they are run, the level of engagement, and any
immediate anti-patterns you notice.
Understand the Product: Spend time with the Product Owner to understand the Product
Goal, the state of the Product Backlog, and the key business objectives.
Assess Agile Maturity: Create a baseline understanding of the team's grasp of Scrum
principles. Note their strengths and identify the top 1-2 areas that could benefit from
coaching.

Step 2: Facilitating Your First Full Sprint Cycle
Now you move from a passive observer to an active facilitator. Your goal is to ensure each
event is productive and stays true to its purpose as defined in the Scrum Guide.

Sprint Planning:
Before: Work with the Product Owner to ensure the Product Backlog is in good
shape and a potential business objective for the Sprint is ready.
During: Guide the team in crafting a clear Sprint Goal. Ensure the Developers have
enough information to select the work and create a plan (the Sprint Backlog).
After: Make sure the Sprint Goal and Sprint Backlog are visible to everyone.

Daily Scrum:
During: Ensure the meeting starts on time and stays within the 15-minute timebox.
Coach the Developers to focus on their progress toward the Sprint Goal and to
identify any impediments. It is their meeting; you are primarily there to ensure it
happens correctly.

Sprint Review:
Before: Encourage the team to prepare for a "show, not tell" session.
During: Facilitate a collaborative working session, not just a demo. Actively encourage
feedback from stakeholders and guide the conversation back to the Product Goal.
Every team member should present something.

Sprint Retrospective:
During: Use an engaging format (e.g., "4Ls," "Sailboat") to guide a constructive
conversation about what went well and what could be improved.
After: Ensure the team's improvement items are actionable and visible, perhaps by
adding them to the next Sprint Backlog.

118

Step 3: Driving Continuous Improvement
With the basics in place, your focus shifts to a higher level: coaching, removing systemic
impediments, and elevating the team's performance.

Impediment Management:
Create and maintain an impediment log that is visible to the team.
Coach the team to solve their own problems first, but be ready to escalate
organizational impediments they cannot resolve themselves.

Coaching:
For Individuals: Provide one-on-one coaching to team members on Agile principles
and practices.
For the Team: Coach the team toward self-management, encouraging them to take
ownership of their process and decisions.

Using Metrics Wisely:
Introduce metrics like burndown charts or cycle time not as performance reports for
management, but as tools for the team to inspect and adapt their own process.
Facilitate conversations around these metrics during the Sprint Retrospective to
identify patterns and opportunities for improvement.

119

Work Type Hierarchy Breakdown
Level 1: Theme
A Theme is a high-level strategic objective that drives the creation of various product
features and initiatives. It represents a broad area of focus for the business and typically
spans multiple quarters or even years.

Purpose: To align the organization around a major business goal.
Example: "Improve Customer Retention in 2025"

Level 2: Initiative
An Initiative is a collection of large-scale projects or Epics that work together to achieve a
specific Theme. Initiatives are often managed at the portfolio level and may involve multiple
teams.

Purpose: To break down a strategic theme into more manageable, actionable parts.
Example: "Launch a Customer Loyalty Program"

Level 3: Epic
An Epic is a large body of work that can be broken down into a number of smaller, deliverable
pieces of functionality. It is a feature or project that is too big to be completed in a single
sprint.

Purpose: To group related user stories together into a complete feature.
Example: "Develop a Points-Based Rewards System for Customers"

Level 4: User Story
A User Story is a small, self-contained unit of development work that delivers a specific piece
of value to an end-user. It is typically written from the user's perspective.

Purpose: To describe a software feature in a way that is understandable to both business
and technical team members.
Example: "As a customer, I want to see my current points balance on my account
dashboard so that I can track my rewards."

Level 5: Task / Sub-task
A Task or Sub-task is a specific, actionable piece of work that needs to be done to complete a
User Story. These are the granular activities that developers work on day-to-day.

Purpose: To break down a user story into the technical steps required for its
implementation.
Example:

"Create a new component for the account dashboard to display the points balance."
"Develop an API endpoint to fetch the user's points data from the database."

120

Backlog Grooming Guide
Backlog Refinement is a continuous process where the Product Owner and the Developers
collaborate to ensure the Product Backlog is in good shape. The goal is to keep the backlog
clean, well-understood, and prioritized so that the team is ready for upcoming Sprints. It's not
a formal Scrum event but an essential ongoing activity.

Key Activities in Backlog Refinement
The core of refinement involves making sure the items at the top of the backlog are ready for
development. This is often remembered by the acronym DEEP: Detailed appropriately,
Estimated, Emergent, and Prioritized.

Reviewing and Clarifying: The team reviews upcoming Product Backlog Items (PBIs) to
ensure everyone has a shared understanding of the work.
Adding Detail: The Product Owner adds details, acceptance criteria, and mockups to user
stories.
Estimating Stories: The Developers add size estimates (using story points, t-shirt sizes,
etc.) to the PBIs. This helps in forecasting and planning.
Breaking Down Large Items: Large items (Epics) are broken down into smaller, more
manageable user stories that can be completed in a single Sprint.
Re-Prioritizing: Based on new information and feedback, the Product Owner may re-
order the backlog to ensure the most valuable work is always at the top.

Who Participates?
The Product Owner: Leads the meeting, presents the backlog items, and answers
questions about business value and user needs.
The Developers: Ask technical questions, provide insights on implementation, and give
size estimates for the work.
The Scrum Master (Optional): Can facilitate the meeting to ensure it stays on track and is
productive.

How to Run an Effective Refinement Session
1.Preparation (Product Owner): Before the meeting, the Product Owner should prepare a

handful of the highest-priority items to be discussed.
2.The Meeting (The Whole Team):

The Product Owner presents each item one by one.
The Developers ask questions to clarify requirements and technical feasibility.
The team collaborates to add acceptance criteria.
The Developers provide an estimate for each story.

3.Outcome: By the end of the session, the team should have a set of well-understood and
estimated stories at the top of the backlog, ready to be pulled into the next Sprint
Planning.

Consistent backlog refinement is one of the most effective ways to ensure your Sprint
Planning meetings are fast and efficient and that the team maintains a steady, predictable
pace of development.

121

Sprint Planning Playbook
Step 1: Before You Begin - The Preparation
A productive Sprint Planning meeting starts before the event itself. Without preparation, the meeting
can become unfocused and inefficient.

Product Owner: Comes prepared with an ordered Product Backlog that has been refined with the
team. They should also have a business objective in mind for the upcoming Sprint.
Developers: Should have an idea of their upcoming capacity (accounting for any time off) and be
familiar with the work at the top of the backlog from refinement sessions.
Scrum Master: Ensures the meeting is scheduled, attendees are invited, and the purpose of the
event is clear to everyone.

Step 2: Topic One - Define the Sprint Goal (The "Why")
The first part of the meeting is dedicated to crafting a single, unifying objective for the Sprint.

Propose the Objective: The Product Owner presents the business objective for the Sprint and
highlights the Product Backlog Items (PBIs) that support it.
Collaborate and Negotiate: The entire Scrum Team discusses the objective. The Developers
provide input on the technical feasibility, and together, the team crafts a concise Sprint Goal.
Finalize the Goal: The goal should be a short statement that provides focus and direction. It
becomes the "why" for the Sprint.

Step 3: Topic Two - Select the Work (The "What")
With the Sprint Goal established, the Developers select the PBIs they forecast they can complete
within the Sprint to achieve that goal.

Developers Pull the Work: The Developers, not the Product Owner, pull items from the top of the
Product Backlog.
Discuss Capacity: The team discusses their available capacity, using past performance as a guide.
Ask Clarifying Questions: The Developers ask the Product Owner detailed questions about the
selected items to ensure a clear understanding before committing to the work.

Step 4: Topic Three - Create the Plan (The "How")
This is where the Developers create an actionable plan for how they will turn the selected PBIs into a
finished Increment.

Break Down the Work: The Developers decompose the selected PBIs into smaller, more granular
tasks. This is the initial Sprint Backlog.
Organize the Plan: The Developers may start to organize the work for the first few days of the
Sprint. This plan is not rigid and can be adapted throughout the Sprint.
Confirm the Forecast: After creating their initial plan, the Developers confirm their forecast of
what they believe can be accomplished to meet the Sprint Goal.

Step 5: The Outcome - A Shared Commitment
By the end of Sprint Planning, the entire Scrum Team should be aligned and ready to start the Sprint.

The Sprint Goal is Finalized: It is made visible to the team and stakeholders.
The Sprint Backlog is Created: It consists of the Sprint Goal (the "why"), the selected PBIs (the
"what"), and the Developers' plan (the "how").
The Team is Aligned: Everyone on the Scrum Team agrees on the goal and is committed to
working together to achieve it.

122

1

2 PLANNING

PRE-PLANNING

Sprint Planning Checkl ist

60-90 MINUTES FIRST

DAY OF THE SPRINT

SCRUM MASTER

SCRUM MASTER, DEVELPER , P.O.,

TECHNICAL LEADS/MANAGERS

TIME
DATE

CORDINATOR
ATTENDEES

Refinement of new stories

Rank backlog based on product owner guidance/priority

Determine the sprint goal

Determine team capacity account for: (PTO/Travel/Holidays)

Tie-up previous sprint lose ends

Create new sprint or close previous sprint

Set dates and duration

Set sprint goal

Ensure all developers are present

Use any rolled over stories as baseline for new sprint

Estimate backlog items

Assign items from backlog to developers

Pull work items into sprint until 80% of capacity for each developer is

met Review Insight to ensure sprint appropriately planned Review sprint

capacity distribution

Start sprint!

123

Sprint Execution Playbook
Step 1: Kick-Off and Focus
The first day of the Sprint sets the tone. The goal is to ensure the plan is visible and the team is aligned
on its objective.

Visualize the Plan: Immediately after Sprint Planning, ensure the Sprint Backlog is up-to-date and
visible to the entire team on their physical or digital board.
Display the Sprint Goal: Make the Sprint Goal prominent. It should be visible every day to serve as a
constant reminder of the "why" behind the work.
Start the Work: The Developers begin working on the items in the Sprint Backlog. A good practice is
for the team to "swarm" or collaborate on the highest-priority item to get it done faster.

Step 2: The Daily Cadence
The heartbeat of the Sprint is the Daily Scrum. This is the team's opportunity to inspect progress and
adapt their plan for the day.

Hold the Daily Scrum: Every day, at the same time and place, the Developers meet for 15 minutes.
Inspect Progress: The focus of the conversation should always be on the progress toward the Sprint
Goal. Team members share what they accomplished, what they plan to do next, and any impediments
they face.
Adapt the Plan: Based on the discussion, the Developers update the Sprint Backlog and create a plan
for the next 24 hours. The Daily Scrum is a planning meeting for the Developers, not a status report
for managers.

Step 3: Managing Work and Quality
Throughout the Sprint, the team is responsible for managing their work and ensuring it meets the
required quality standards.

For the Developers:
Collaborate: Work together on tasks, use pair programming, and maintain a focus on getting
items to "Done."
Maintain Quality: Adhere to the Definition of Done for all work. This includes writing tests,
conducting code reviews, and ensuring the work is integrated.
Update the Sprint Backlog: As work is completed, the board should be updated in real-time to
accurately reflect the state of the Sprint.

For the Scrum Master:
Remove Impediments: Actively work to remove any blockers that the Developers have
identified.

For the Product Owner:
Clarify Requirements: Be available to answer questions and provide clarity on the Product
Backlog Items as the Developers are working on them.

Step 4: Preparing for the Finish
As the Sprint nears its end, the team's focus shifts to completing the work and preparing to show what
they've accomplished.

Focus on "Done": The team's primary focus should be on completing any remaining "in-progress"
items to meet their forecast. It's better to have fewer items completely "Done" than many items
almost done.
Ensure the Increment is Ready: Verify that all completed work is integrated and meets the Definition
of Done, resulting in a potentially releasable Increment.
Prepare for the Sprint Review: The team prepares to demonstrate the completed work to
stakeholders. This is not about creating a polished presentation but about being ready to show the
actual, working product.

124

Daily Scrum Checkl ist

Start on time

Have Jira active sprint view ready

Ensure team sticks to the scrum prompt

STOP side conversations that get too much into the weeds

Document blockers/impediments

Listen for any impediments that are currently not in a blocked status in Jira

Listen for any work in progress, but not reflected in Jira

If someone is absent, encourage them to update via slack/email

Be on the look out for stale work items in Jira

Ask for any go backs before closing scrum out

Schedule follow up calls for discussions that were cut short

End meeting on time!

15 MINUTES

DAILY

SCRUM MASTER

SCRUM MASTER DEVELPERS

PRODUCT OWNER

CORDINATOR
ATTENDEES

TIME
DATE

126

Record the meeting!

Start sprint review and summarize what attendees should expect to see

Notify first presenter that they are next

Go through each developer (team member)

Ensure each developer does not exceed allocated demo time

Take notes in Jira comments of action items made during the story
demonstration
Capture action items that need to be followed up on (non story related)

Move PO approved stories to done

1

2 REVIEW

PRE-REVIEW

Sprint Review Checkl ist

Check with team to determine items to be scheduled

Define sprint review agenda

Email out agenda to attendees

For any developers not present, get recording of their demos

Remind developers to prepare demo environments

Make offering to demo gods

Move any PO failed stories back to in progress

Play video from any absent developers

Make sure every developer demonstrates something

Make closing comments, thank everyone for coming, and
close review!

60-90 MINUTES

LAST DAYOFSPRINT

SCRUM MASTER

ENTIRE TIEAM
TIME
DATE

CORDINATOR
ATTENDEES

127

Sprint Retrospective Guide
Step 1: Set the Stage
The goal of this first step is to create a safe and positive environment where everyone feels comfortable
sharing their honest thoughts.

Welcome Everyone: Greet the team and briefly restate the purpose of the retrospective: to inspect the
last Sprint and create a plan to improve.
Emphasize the Prime Directive: Remind the team of the retrospective prime directive: "Regardless of
what we discover, we understand and truly believe that everyone did the best job they could, given
what they knew at the time, their skills and abilities, the resources available, and the situation at hand."
Do a Quick Check-in: Use a simple icebreaker or ask a question like, "In one word, how did the last
Sprint feel?" to get everyone engaged.

Step 2: Gather Data
This step is about helping the team remember and share their experiences from the Sprint. The goal is to
create a shared picture of what happened.

Choose an Activity: Use a simple and engaging format to collect data. A classic method is "Mad, Sad,
Glad":

Set up a Confluence retrospective board. Give everyone a few minutes to silently write down
things from the Sprint that made them feel mad, sad, or glad.

Share and Cluster: Have each person briefly share what they wrote as they place their sticky notes on
a whiteboard. Group similar or related notes together to start identifying themes.

Step 3: Generate Insights
Now that you have the data, the goal is to dig deeper to find the root causes behind the key themes you've
identified.

Identify Key Themes: As a group, look at the clustered sticky notes and identify the most significant
topics.
Facilitate a Discussion: For the most important themes, facilitate a discussion. Ask powerful, open-
ended questions like:

"Why do we think this happened?"
"What patterns do we see here?"

Use the "5 Whys" Technique: For a particularly challenging issue, ask "Why?" five times to drill down
from a symptom to its root cause.

Step 4: Decide What to Do
The most important step is to turn your insights into concrete, actionable improvements.

Brainstorm Solutions: For the 1-2 most important issues identified, have the team brainstorm potential
solutions or experiments to try in the next Sprint.
Create Action Items: Collaboratively create 1-3 specific, measurable, achievable, relevant, and time-
bound (SMART) action items.
Assign Owners: Each action item should have a volunteer from the team who will be responsible for
seeing it through.

Step 5: Close the Retrospective
End the meeting on a positive and forward-looking note.

Summarize Action Items: Quickly recap the action items and their owners to ensure everyone is clear
on the plan.
Appreciate and Thank: Thank everyone for their active participation and honest feedback.
Do a Quick Check-out: You can do a quick "fist of five" for confidence in the next Sprint or ask for a
closing word from each person. This provides a sense of closure.

128

Retrospective Formats Library
Start / Stop / Continue

Ask the team: What should we start doing? What should we stop doing? What should we
continue doing?
Good for simple reflection and quick action items.

Mad / Sad / Glad
Team members share what frustrated them (mad), what disappointed them (sad), and what made
them happy (glad).
Great for uncovering emotions and morale issues.

4Ls (Liked, Learned, Lacked, Longed For)
Encourages balanced reflection: things enjoyed, lessons learned, gaps noticed, and wishes for
improvement.

Sailboat (a.k.a. Speedboat)
Visual metaphor:

Wind = things helping the team
Anchors = things holding the team back
Rocks = risks ahead
Island = goals

Fun, visual, and metaphor-driven.
Keep / Problem / Try (KPT)

Simple categorization: what’s working, what’s problematic, and what to try next.
Helps drive experimentation.

Hot Air Balloon
Balloon = things lifting us up
Sandbags = things weighing us down
Storms = external risks/challenges
Sun = positive forces ahead

Starfish
Categories: Start, Stop, More Of, Less Of, Keep Doing.
Provides more granularity than Start/Stop/Continue.

Timeline Retrospective
Map key events of the sprint/PI along a timeline.
Encourages storytelling and uncovering hidden frustrations.

Weather Report
People rate the sprint using weather icons (sunny, cloudy, rainy, stormy).
Quick pulse check of morale.

Movie Critic
Rate the sprint like a movie: best scenes, worst scenes, plot twists, cliffhangers.
Playful and engaging for creative teams.

5 Whys
Pick one issue and ask “why?” five times to get to the root cause.
Good for teams who struggle with recurring problems.

129

Sprint Retrospective Checkl ist

Make sure only Scrum Master & developers are present

Start with an ice breaker

Encourage people to bring lunch or snack

Perform a trust building exercise

Use Confluence to take notes

If in-person, give everyone sticky notes to answer prompt

If virtual, ensure everyone makes a comment on each prompt

Take attendance in Confluence so members get a link to notes

Capture any actions items discussed

Follow up on each action item before next restrospective

Address challenges/friction within the team

Focus on process/people feedback, not technical challenges

60-120 MINUTES

LAST DAY OF

SPRINT

SCRUM MASTER

SCRUM MASTER &

DEVELOPERS ONLY

CORDINATOR
ATTENDEES

TIME
DATE

130

New bug

Steps to
reproduce?

Has affects
version?

Has
environment?

Has
priority?

Has
severity?

(Optional)
Set Parent

Plan into
appropriate

 sprint

Set fix version

(Optional) Set
Component

(Optional)
Link/Block/Story

Triaging Bugs Guide

Se
nd

 b
ac

k
to

 re
po

rt
er

No

Yes

Yes

Yes

Yes

No

No

No

No Yes

131

Priority 1: Critical impact
to the business

Release is current, up
coming release OR
item is a critical fix for
previous release

Work can be completed
within remaining Sprint
duration

New
ITem

Determine
Impacted
Release

Assign and
Set Sprint

Value

Determine
Priority Level

Determine
Level of Effort
(Story Points)

Any other
priority

Release is the next
release, which can wait

Defer to
Next Sprint

Work will exceed remaining
Sprint Duration

How To Deal With
Scope Creep Guide

132

Product Owner Playbook
Step 1: Laying the Foundation - Define the "Why" and "Who"
Before a single feature is built, the Product Owner must establish a clear vision and understand the audience.
This foundation guides all future development decisions.

Create the Product Vision: Work with key stakeholders to define the overarching goal and purpose of the
product. Use a tool like a Product Vision Board to articulate the target users, their needs, the key features,
and the business goals.
Identify and Analyze Stakeholders: Create a list of all stakeholders (customers, users, internal departments,
executives). Use a Stakeholder Map to understand their level of influence and interest, which will inform
your communication strategy.
Develop User Personas: Create detailed, fictional profiles of your key user segments. This helps the entire
Scrum Team empathize with users and make user-centric decisions.

Step 2: Building and Prioritizing the Product Backlog
With a clear vision, the next step is to translate that vision into a tangible, ordered list of work. The Product
Backlog is the single source of truth for what the team will build.

Gather Requirements: Use techniques like user story mapping, interviews, and competitor analysis to gather
potential features and requirements.
Write Effective User Stories: Frame the work from a user's perspective. Each Product Backlog Item (PBI)
should be understandable, estimable, and testable.
Prioritize Ruthlessly: The most crucial job of a PO is to order the backlog to maximize value. Use a clear
technique to make decisions:

Value vs. Effort Matrix: Plot items to find high-value, low-effort "quick wins."
MoSCoW Method: Classify features as Must-have, Should-have, Could-have, or Won't-have for a
specific release.

Conduct Backlog Refinement: Regularly meet with the Developers to add details and estimates to upcoming
PBIs, ensuring they are ready for future Sprints.

Step 3: Executing and Guiding the Sprint
During the Sprint, the Product Owner's role shifts to providing clarity and making tactical decisions to ensure
the Sprint Goal is met.

During Sprint Planning:
Present the highest-ordered Product Backlog items.
Propose a Sprint Goal that provides a cohesive objective for the Sprint.
Be available to answer the Developers' questions so they can select the work and create their plan.

Throughout the Sprint:
Be accessible to the Developers to clarify requirements.
Accept completed stories as they meet the Definition of Done, providing quick feedback.

During the Sprint Review:
Present the completed Increment to stakeholders.
Facilitate a discussion to gather valuable feedback.
Use this feedback to make adjustments to the Product Backlog.

Step 4: Closing the Loop - Feedback and Adaptation
The work of a Product Owner is never truly done. The final step is a continuous cycle of releasing value,
gathering feedback, and adapting the plan.

Engage with Users: Actively seek feedback on the released Increment through user interviews, surveys, and
analytics.
Communicate with Stakeholders: Keep stakeholders informed of progress and any changes to the product
roadmap. Practice transparency about what is and isn't being worked on.
Adapt the Product Backlog: Use the feedback and data gathered to make informed decisions about what to
build next. The Product Backlog is a living artifact that should evolve based on what is learned.

133

Project Manager Playbook
Here is a step-by-step playbook for a Project Manager, structured around the traditional
phases of project management. This guide is ideal for managing projects that require a more
formal structure and planning upfront.

Step 1: Initiation Phase - Defining the Project
This initial phase is about defining the project at a high level and securing the necessary
authority to proceed. The goal is to ensure the project is aligned with business objectives
before significant resources are committed.

Develop a Project Charter: This is the project's foundational document. It should include
the business case, high-level goals, scope, key stakeholders, and the project manager's
authority. Its approval formally authorizes the project.
Identify Stakeholders: Create a stakeholder register to list everyone who is impacted by
or has an interest in the project. Analyze their influence and expectations to create a
communication plan later.
Conduct a Feasibility Study: Assess the project's viability in terms of budget, timeline,
and resources to confirm it's a worthwhile investment.

Step 2: Planning Phase - Creating the Roadmap
This is the most intensive phase, where you create a detailed plan that will guide the team
through execution and control. A thorough plan is the key to managing scope, time, and
budget.

Define Scope: Create a detailed scope statement that clearly outlines what is and is not
included in the project.
Create a Work Breakdown Structure (WBS): Break down the major project deliverables
into smaller, more manageable work packages. The WBS is the foundation for all other
planning.
Develop the Schedule: Use the WBS to sequence activities, estimate their duration, and
create a project schedule. A Gantt chart is the most common tool for visualizing this
timeline.
Plan Resources, Budget, and Risks:

Resource Plan: Define the roles, responsibilities, and team structure.
Budget: Create a detailed cost estimate for all labor, materials, and other expenses.
Risk Management Plan: Identify potential risks, analyze their impact, and plan
response strategies.

Leverage Jira Plans (if you are a Jira Premium/Enterprise customer).
Jira Plans will help you define all of this and help you organize your project within Jira
in a more “traditional” way as opposed to only relying on backlog/board.

134

Step 3: Execution Phase - Getting the Work Done
In this phase, the project plan is put into action. The project manager's focus shifts from
planning to leading the team and managing communication.

Lead and Manage the Team: Assign tasks, provide direction, and motivate the project
team to perform their work.
Manage Communications: Execute the communication plan to keep all stakeholders
informed. This includes running status meetings, distributing reports, and ensuring a
steady flow of information.
Engage Stakeholders: Actively manage stakeholder expectations and ensure they remain
engaged and supportive throughout the project.

Step 4: Monitoring & Controlling Phase - Tracking Progress
This phase runs in parallel with the Execution phase. It’s about measuring project
performance against the plan and taking corrective action when necessary.

Track Performance: Use Key Performance Indicators (KPIs) to monitor progress against
the schedule, budget, and scope baselines.
Manage Changes: Implement a formal change control process. Any requested changes to
the project scope, schedule, or budget must be formally reviewed, approved, and
documented.
Monitor Risks: Continuously keep an eye on identified risks and look for any new ones
that may arise. Implement risk response plans as needed.

Step 5: Closing Phase - Finishing the Project
The final phase involves formally closing the project and ensuring all work is completed to
the satisfaction of the stakeholders.

Obtain Formal Acceptance: Deliver the final product or service and get formal sign-off
from the client or sponsor that the project deliverables meet the agreed-upon
requirements.
Conduct a Lessons Learned Session: Hold a meeting with the project team to discuss
what went well, what didn't, and what could be improved for future projects.
Archive Project Documents: Organize and store all project documentation in a central
repository for future reference.
Release the Team: Formally release the project team members, ensuring their
contributions are recognized.

135

Product Manager Playbook
Step 1: Discovery and Research - Find the Problem
Before building anything, your primary job is to become an expert on the market, the user,
and the problem you're trying to solve.

Identify Market Problems: Talk to potential and existing customers, sales teams, and
support staff to uncover unmet needs and pain points.
Conduct User Research: Go beyond what users say and observe what they do. Use
techniques like user interviews, surveys, and usability tests to develop deep empathy for
their experience.
Analyze the Competition: Perform a thorough competitive analysis to understand the
market landscape, identify gaps, and determine how your product can uniquely win.

Step 2: Strategy and Vision - Chart the Course
Once you understand the problem space, you must define a clear and compelling vision for
your product and create a high-level plan to get there.

Define the Product Vision: Craft a concise statement that describes the future state you
are trying to create. This vision becomes the North Star for your entire team.
Set Goals and Objectives: Use a framework like Objectives and Key Results (OKRs) to set
measurable, ambitious goals for the product. This aligns the team around specific
outcomes.
Create the Product Roadmap: Develop a high-level, strategic roadmap that visualizes the
direction of the product over the next several quarters. This is a communication tool for
stakeholders that focuses on outcomes, not just a list of features.

Step 3: Planning and Prioritization - Decide What to Build
With a strategy in place, you must translate it into an actionable plan. This involves making
tough decisions about what to build next to deliver the most value.

Develop a Business Case: For significant initiatives, justify the investment by outlining
the expected costs, revenue, and strategic impact.
Create a Prioritization Framework: Use a structured method to remove bias from your
decision-making. Common frameworks include:

RICE: (Reach, Impact, Confidence, Effort) - A quantitative model for scoring features.
Kano Model: Categorizes features based on their ability to satisfy customers (e.g.,
Basic, Performance, Excitement).

Write Product Requirements: Create a Product Requirements Document (PRD) or use
Agile epics and user stories to clearly define the problem, user needs, and acceptance
criteria for the features you plan to build.

136

Step 4: Execution and Go-to-Market - Ship It
During this phase, you work closely with engineering to get the product built and with marketing
and sales to launch it successfully.

Collaborate with Development: Act as the voice of the customer during the development
process. Participate in Agile ceremonies like sprint planning and sprint reviews to ensure the
final product meets the requirements.
Develop a Go-to-Market (GTM) Plan: Work with marketing, sales, and support to create a
comprehensive launch plan. This includes positioning, messaging, pricing, and channel strategy.
Enable the Sales and Support Teams: Provide your internal teams with the training and
documentation they need to effectively sell and support the new product or feature.

Step 5: Growth and Iteration - Measure and Adapt
Your job isn't done at launch. The final step is a continuous loop of measuring performance, learning
from users, and iterating on the product.

Analyze Product Metrics: Define and track Key Performance Indicators (KPIs) related to user
engagement, retention, and satisfaction. Use this data to understand what's working and what
isn't.
Gather User Feedback: Create channels for continuous feedback, such as in-app surveys,
customer advisory boards, and feature request systems.
Manage the Product Lifecycle: Use the data and feedback you've gathered to make decisions
about what to improve, what new features to build, and when to retire old features or products.

137

Technical Lead Playbook
Step 1: Establish Technical Vision and Architecture
Your first responsibility is to define the technical foundation and long-term strategy. This ensures the
team is building a robust and scalable system.

Define the Technical Strategy: Collaborate with product managers and architects to create a
technical roadmap that aligns with the product vision.
Choose the Right Tools: Lead the evaluation and selection of technologies, frameworks, and
platforms. Focus on creating a tech stack that is fit for purpose and maintainable.
Set Architectural Standards: Document and communicate clear architectural principles and design
patterns for the team to follow. This includes standards for security, performance, and reliability.

Step 2: Guide the Day-to-Day Development Process
You are the hands-on leader who ensures the team is building things the right way. This involves
active participation in the entire development cycle.

Lead Technical Design Sessions: Facilitate sessions where the team breaks down complex
features into manageable technical tasks. Guide discussions to ensure the proposed solution is
sound.
Champion Code Quality: Set the standard for code quality. Lead by example in your own code
and establish a rigorous but constructive code review process. Ensure meaningful feedback is
given and received.
Implement a Testing Strategy: Work with the team to define and implement a comprehensive
testing strategy, including unit, integration, and end-to-end tests, to ensure software quality.

Step 3: Mentor and Grow the Team
A key part of your role is to elevate the technical skills of every engineer on your team. You are a
multiplier of the team's talent.

Mentor and Coach: Provide regular one-on-one mentorship to developers, especially junior and
mid-level engineers. Help them with their career growth and technical challenges.
Unblock Team Members: Be the first point of contact when a developer is stuck on a difficult
technical problem. Help them think through the issue and guide them toward a solution.
Foster Knowledge Sharing: Create a culture of learning by encouraging tech talks, pair
programming sessions, and the documentation of complex systems.

Step 4: Manage Technical Debt and Operations
Your responsibilities extend beyond shipping new features. You must also ensure the long-term health
and stability of the system.

Manage Technical Debt: Create a strategy for identifying, prioritizing, and paying down technical
debt. Ensure there is a healthy balance between building new features and improving existing
code.
Ensure Smooth Deployments: Own the team's CI/CD (Continuous Integration/Continuous
Deployment) pipeline. Work to make deployments automated, safe, and frequent.
Lead Incident Response: When production issues occur, you are the technical leader for the
incident response. You guide the team in diagnosing the problem, implementing a fix, and
conducting a post-mortem to prevent future occurrences.

139

QA Playbook
Step 1: Test Planning and Strategy
Before any testing begins, you need a clear plan. This phase is about defining the scope, objectives,
and approach to ensure everyone understands what quality means for the project.

Understand Requirements: Work closely with product managers and developers to thoroughly
understand the features, user stories, and acceptance criteria.
Define Test Scope: Clearly identify what will be tested (in-scope) and what will not be tested (out-
of-scope).
Choose Testing Types: Determine the right mix of testing for the project, such as:

Manual Testing: For exploratory and usability testing.
Automated Testing: For repetitive regression tests.
Performance Testing: To check speed and stability under load.

Set Up the Test Environment: Ensure a stable and dedicated environment is available for testing,
with the necessary hardware, software, and data.

Step 2: Test Design and Development
With a plan in place, the next step is to create the specific assets you will use for testing. Clear and
well-designed tests are essential for effective quality control.

Write Test Cases: Create detailed, step-by-step test cases for each feature. A good test case
includes a clear description, steps for execution, expected results, and actual results.
Develop Automation Scripts: For the parts of the application covered by automation, write robust
and maintainable test scripts.
Prepare Test Data: Create or acquire the data needed to run your test cases. This might include
creating sample user accounts or generating specific data sets to test edge cases.

Step 3: Test Execution and Defect Management
This is the active phase where you run your tests and find bugs. The goal is to execute the plan and
clearly communicate any issues you discover.

Execute Tests: Run the manual test cases and automated scripts according to the test plan.
Log Defects: When a test fails, log a bug in your tracking system (like Jira). A high-quality bug
report includes:

A clear and concise title.
Steps to reproduce the bug.
The expected result vs. the actual result.
Screenshots or video recordings.

Triage and Track Bugs: Work with the product manager and developers to prioritize bugs. Track
the bug through its entire lifecycle, from being reported to being fixed and verified.

Step 4: Reporting and Continuous Improvement
The final step is to communicate the state of the product's quality and learn from the process to make
it better next time.

Create Test Summary Reports: At the end of a testing cycle, create a report that summarizes the
testing activities. This should include metrics like the number of test cases executed, pass/fail
rates, and the number of open vs. closed bugs.
Analyze Results: Look for trends in the defects. Are bugs concentrated in a specific part of the
application? This can help identify areas that need more attention.
Conduct a Retrospective: Hold a meeting to discuss what went well in the QA process and what
could be improved. Use this feedback to refine your playbook for the next project.

140

Developer Playbook
Step 1: Understand the Work
Before writing a single line of code, your goal is to have complete clarity on the "what" and the "why."
A clear understanding upfront prevents rework and ensures you build the right solution.

Participate in Planning: Actively engage in sprint planning or backlog refinement sessions. Ask
clarifying questions to understand the business value and user impact of a feature.
Deconstruct the Task: Break down the user story or task into smaller, manageable sub-tasks. This
helps you create a clear plan of action and identify potential complexities early.
Collaborate on a Technical Plan: For complex features, work with your Tech Lead or other senior
engineers to create a high-level technical design. This ensures your approach aligns with the
team's architectural standards.

Step 2: The Development Loop
This is the core "build" phase. The focus is on writing clean, maintainable code and maintaining a tight
feedback loop through frequent commits and communication.

Write Clean Code: Follow your team's established coding standards. Write code that is simple,
readable, and easy for other developers to understand and maintain.
Commit Frequently: Make small, logical commits to your version control system (like Git). Write
clear and descriptive commit messages that explain the purpose of the change. This creates a
clean history and makes code reviews easier.
Open a Pull Request (PR) Early: Don't wait until you are completely finished to open a PR.
Pushing your code early (even as a "Work in Progress") allows teammates to see your approach
and provide feedback before you've gone too far down a path.

Step 3: Ensure Quality and Collaborate
You are responsible for the quality of your own code. This step is about verifying your work and
collaborating with your peers to ensure the entire team is shipping a high-quality product.

Write Your Tests: Write unit and integration tests to cover your code. Good tests act as living
documentation and prevent future regressions.
Conduct Thorough Code Reviews: When reviewing a teammate's PR, provide constructive,
respectful, and actionable feedback. When receiving feedback, be open and receptive. The goal is
to improve the code, not to criticize the person.
Work with QA: Collaborate closely with the Quality Assurance team. Be responsive to the bugs
they file and provide them with the information they need to test your features effectively.

Step 4: Ship It and Learn
Getting your code into production is the goal, but your job doesn't end there. This final step is about
ensuring your feature is working as expected and learning from the process.

Merge and Deploy: Once your PR is approved and has passed all automated checks, merge it into
the main branch. Support the deployment process and be available to help if any issues arise.
Monitor Your Feature: After deployment, keep an eye on monitoring and logging dashboards to
ensure your feature is performing as expected in production.
Participate in the Retrospective: Actively participate in the team's retrospective. Share what went
well, what challenges you faced, and how the team can improve its process in the next cycle.

141

Story Points vs. Time Estimates
Cheat Sheet

Aspect Story Points Time Estimates

What it Measure

A relative measure of
effort, complexity, and
uncertainty. It answers,
"How big is this
compared to that?"

An absolute measure of duration. It
answers, "How long will this take in hours
or days?"

Type of Scale

Relative (e.g., Fibonacci
sequence: 1, 2, 3, 5, 8...).
The numbers only have
meaning in relation to
each other.

Absolute (e.g., hours, days). Each number
has a fixed, real-world meaning.

Precision

Low precision (abstract).
Intentionally abstract to
avoid false precision and
focus on the overall size.

High precision (concrete). Tries to be an
exact prediction of the time required.

Impact of Team Changes

Less impacted. Since the
points are relative to the
team's own baseline, the
team's velocity will
naturally adjust over
time.

Highly impacted. A task estimated at 8
hours for a senior developer might take a
junior developer 16 hours.

Focus
Encourages a team
conversation about
complexity and effort.

Encourages a conversation about
duration and deadlines.

Best For

Long-term forecasting
(velocity) and prioritizing
the product backlog
based on value vs. effort.

Short-term, detailed planning where a
specific timeline is required for a small
batch of work.

Key Takeaway
Use Story Points to understand the size of the work.
Use Time Estimates to predict the duration of the work.

142

Definition of Ready &
Definition of Done Examples

Definition of Ready (DoR)
The Definition of Ready is a checklist of criteria that a user story must meet before it can be
pulled into a Sprint. It's an agreement between the Product Owner and the Developers to
ensure that stories are well-understood and immediately actionable.

Purpose: To prevent half-baked ideas from entering a Sprint, which reduces ambiguity and
ensures a smoother workflow.

Example Checklist:
[] The user story is written from a user's perspective.
[] Acceptance criteria are clear and testable.
[] The story has been estimated by the Developers.
[] Any dependencies on other teams or stories have been identified.
[] The necessary designs or mockups are attached and approved.

Definition of Done (DoD)
The Definition of Done is a checklist of all the activities that must be completed for a user
story before it can be considered "done" and part of the product Increment. It is a shared
understanding of what it means for work to be complete.

Purpose: To ensure a high level of quality and consistency for all work the team delivers.

Example Checklist:
[] The code is written and peer-reviewed.
[] All unit and integration tests are passing.
[] The feature meets all acceptance criteria.
[] The code has been merged into the main branch.
[] The feature has been tested and verified by QA.

Key Difference
Definition of Ready is the entry criteria for a Sprint.
Definition of Done is the exit criteria for a Sprint.

143

PI Planning Runbook
A Program Increment (PI) Planning Runbook is a step-by-step guide for facilitating the PI
Planning event, a cornerstone of the Scaled Agile Framework (SAFe). The event's purpose is
to align all teams on an Agile Release Train (ART) to a shared mission and vision for the next
8-12 weeks.

Phase 1: Preparation (Before the Event)
Success in PI Planning is heavily dependent on preparation. The goal is to have the vision and
top priorities ready for the teams.

Define Business Context: Leadership prepares a presentation on the current state of the
business and the vision for the future.
Prepare the Top 10 Features: Product Management refines and prioritizes the top 10
features for the upcoming Program Increment.
Present Architectural Vision: The System Architect or senior technical leaders prepare a
briefing on the architectural runway and any technical guidelines.
Logistics: The event facilitator (often a Release Train Engineer or RTE) ensures all logistics
are handled, whether the event is in-person, remote, or hybrid.

Phase 2: The PI Planning Event (2 Days)

Day 1: Planning
Business Context (Agenda Item 1): A senior executive presents the business vision and
goals for the upcoming PI.
Product/Solution Vision (Agenda Item 2): Product Management presents the top
features from the program backlog.
Architectural Vision (Agenda Item 3): The architect presents the technology vision, new
enablers, and any system-level changes.
Team Breakouts #1 (Agenda Item 4): Teams meet to create their draft plans for the
upcoming iterations. They identify risks, write draft PI Objectives, and map out
dependencies on other teams using a program board.
Draft Plan Review (Agenda Item 5): Each team presents a summary of their draft plan,
highlighting their capacity, draft objectives, and key risks.

Day 2: Finalizing the Plan
Planning Adjustments (Agenda Item 6): Based on feedback from the draft plan review,
teams adjust their plans and resolve dependencies with other teams.
Team Breakouts #2 (Agenda Item 7): Teams finalize their iteration plans and PI
Objectives. Business Owners assign a business value (on a scale of 1-10) to each
objective.
Final Plan Review (Agenda Item 8): Each team presents its final plan and PI Objectives to
the entire group for review.

145

Address Program Risks (Agenda Item 9): All identified risks are discussed and categorized
using the ROAM method:

Resolved: The risk is no longer a concern.
Owned: Someone takes ownership of managing the risk.
Accepted: The risk is understood and accepted as is.
Mitigated: A plan is created to reduce the impact of the risk.

Confidence Vote (Agenda Item 10): The entire Agile Release Train votes on their
confidence in meeting the PI Objectives. This is typically done on a scale of 1 to 5. If the
average is low, the plan may need to be reworked.
Plan Rework (If Necessary): If confidence is low, the team reworks the plan until a
sufficient level of confidence is achieved.

Phase 3: Post-Event Follow-Up
The work isn't done when the meeting ends. The outputs of PI Planning must be captured
and used to guide the execution of the Program Increment.

Synthesize Objectives: The Release Train Engineer (RTE) collects and summarizes the PI
Objectives from all teams into a program-level view.
Input into Tooling: All stories, features, and dependencies are loaded into the team's Agile
project management tool (e.g., Jira Align, Rally).
Schedule Follow-ups: Any necessary follow-up meetings for owned or mitigated risks are
scheduled.

146

Team Member
Name

Total Business
Days in Sprint

Days Off (Vacation,
Holidays)

Available
Days

Productive
Hours per Day

*

Total
Available

Hours

Example: Alice 10 1 9 6 54

Example: Bob 10 0 10 6 60

Example: Charlie 10 3 7 6 42

Capacity Planning Worksheet
Purpose: To determine the team's total available work capacity for a Sprint. This helps the team create a
realistic and achievable Sprint Backlog during Sprint Planning.

Step 1: Sprint Details
Sprint Name/ Number: Sprint 25-20
Start Date: September 29, 2025
End Date: October 10, 2025
Total Business Days in Sprint: 10

Step 2: Team Capacity Calculation
Fill out the table below for each member of the team.

Note on Productive Hours per Day: A standard 8-hour day does not equal 8 hours of project work.
Account for meetings, emails, and other daily activities. A realistic number is often between 5-6 hours. Your
team should agree on this number and adjust it based on experience.

Step 3: Using Your Capacity
Now that you have your total capacity number, here’s how to use it in Sprint Planning:

For Teams Using Time Estimates (Hours):
The Total Available Hours (e.g., 156 hours in the example) is the maximum number of hours the team
should commit to in the Sprint Backlog.
As the team selects work, sum the time estimates for each task. The total should not exceed the team's
capacity.

For Teams Using Story Points:
Your primary guide for how much work to pull into a Sprint is your team's historical velocity (the
average number of story points completed in previous Sprints).

The capacity worksheet is still a valuable tool to understand why your velocity might change for a
given Sprint.

Example: If your average velocity is 25 story points, but the capacity worksheet shows that two team
members are on vacation, you know you should commit to fewer than 25 points. This calculation
provides the data to support that decision.

By taking a few minutes to calculate capacity, your team can create a much more realistic and achievable
plan, leading to more successful and less stressful Sprints.

TOTAL 156

147

Release Planning Guide
Step 1: Preparation (The Inputs)
Before the planning session, you need to gather the necessary inputs to ensure the meeting is
productive.

Prioritized Product Backlog: The Product Owner should have a well-ordered backlog with the
most important features at the top.
Estimated Stories: The development team should have provided relative estimates (like story
points) for a significant portion of the backlog items.
Team Velocity: You need the team's average velocity from the last 3-5 Sprints. This is the key
metric used for forecasting.
Product Vision: A clear vision and goal for the release, so the team understands the "why" behind
the plan.

Step 2: The Release Planning Event
This is a collaborative meeting involving the Product Owner, the development team, and the Scrum
Master.

Present the Vision: The Product Owner kicks off the meeting by presenting the release goal and
the key features to be delivered.
Review Capacity and Velocity: The team reviews their average velocity and notes any known
capacity changes for the upcoming Sprints (e.g., holidays, team members on vacation).
Map Features to Sprints: The team maps out the Sprints in the release and starts allocating
features from the top of the backlog to each Sprint based on their velocity.

Example: If a team's velocity is 25 story points and the release will be over 4 Sprints, they can
forecast completing approximately 100 points of work. They would pull the highest-priority
stories from the backlog, up to a total of 100 points, and lay them out across the Sprints.

Identify Risks and Dependencies: The team discusses potential risks that could impact the release
and identifies any dependencies on other teams.

Step 3: Executing and Adapting the Plan
An Agile release plan is a forecast, not a guarantee. It is meant to be adapted as the team learns more.

Communicate the Plan: The release plan is shared with stakeholders to provide visibility into the
upcoming work. It's crucial to communicate that this is a forecast and is subject to change.
Track Progress: At the end of each Sprint during the Sprint Review, the team should review their
progress against the release plan.
Adapt as Needed: Based on feedback and the team's actual velocity, the Product Owner may
need to adjust the release plan by re-prioritizing or removing features. This ensures the plan
always reflects the current reality.

148

Agile Reporting in Jira

Report Board Type Purpose How to Use It

Burndown Chart Scrum
Tracks remaining work in
a sprint

Use it to see if the team is
on track to complete the
committed sprint work. A
steep drop means
completed work; a flat
line means no progress.

Burnup Chart Scrum
Shows work completed
vs. total scope

Use it to visualize both
progress and scope
changes (scope creep is
obvious if the top line
rises).

Sprint Report Scrum
Summarizes completed
and incomplete sprint
work

Review at sprint
retrospectives to discuss
carry-over work and
blockers.

Velocity Chart Scrum
Shows work completed
per sprint

Use it for forecasting and
capacity planning. Helps
teams understand their
sustainable pace.

Epic Report
Scrum &
Kanban

Tracks progress of an epic
over time

Use it to see completed
vs. remaining work in an
epic, and how quickly
progress is being made.

Epic Burndown Scrum
Shows how an epic is
burning down across
sprints

Great for long-term epic
tracking and spotting
scope creep within epics.

Release Burndown Scrum
Tracks release progress
across multiple sprints

Use it to monitor if the
team will hit release goals
and to adjust scope or
resources if needed.

Cumulative Flow Diagram
(CFD)

Kanban &
Scrum

Visualizes work in
different workflow states

Use it to detect
bottlenecks (e.g., if “In
Progress” keeps
expanding) and ensure a
smooth flow.

149

Report Board Type Purpose How to Use It

Control Chart
Kanban &
Scrum

Measures cycle time &
lead time

Use it to assess
predictability. A stable
chart means consistent
delivery; spikes mean
bottlenecks.

Version Report Scrum
Tracks progress toward a
version (release)

Use it to forecast whether
a release will be delivered
on time. Considers
velocity and scope.

Created vs. Resolved
work items

Kanban &
Scrum

Compares work items
created vs. resolved over
time

Use it to see if the team is
keeping pace with
incoming work or
accumulating backlog.

Average Age Report
Kanban &
Scrum

Shows average age of
unresolved work items

Use it to detect lingering
work items that need
attention.

Pie Chart Report
Kanban &
Scrum

Visualizes work items by a
chosen field (e.g., status,
assignee, priority)

Use it for high-level
breakdowns of work
distribution.

User Workload Report
Kanban &
Scrum

Shows number of work
items assigned per user

Use it to spot uneven
workload distribution
across team members.

Time Tracking Report
Kanban &
Scrum

Compares estimated vs.
actual time spent on work
items

Use it to improve
estimation accuracy and
track effort.

Resolution Time Report
Kanban &
Scrum

Shows average time to
resolve work items

Use it to track efficiency
and help with SLA-type
commitments.

150

Scaling Agile Frameworks Overview
1. Scaled Agile Framework (SAFe®)
SAFe is a highly structured and prescriptive framework designed for large-scale enterprise agility. It
organizes multiple Agile teams into a virtual team-of-teams called an Agile Release Train (ART), which
works together to deliver value.

Core Philosophy: To provide alignment, collaboration, and delivery for a large number of Agile
teams. It is a top-down approach that provides a lot of guidance and defined roles.
Key Event: Program Increment (PI) Planning, a multi-day, face-to-face event where all teams on
the ART plan their work together for the next 8-12 weeks.
Best For: Large, hierarchical organizations that need a high degree of predictability and a
structured, prescriptive approach to scaling.

2. Large-Scale Scrum (LeSS)
LeSS is a framework for scaling Scrum that emphasizes simplicity. It applies the principles and roles of
a single Scrum team to multiple teams working on the same product.

Core Philosophy: "More with LeSS." It aims to scale Scrum with minimal additional process, roles,
or artifacts. It is a bottom-up approach that centers around having one Product Owner and one
Product Backlog for all teams.
Structure: LeSS has two variants: LeSS for 2-8 teams and LeSS Huge for more than 8 teams.
Best For: Organizations that are already proficient in Scrum and want to scale without adding
significant organizational overhead.

3. Nexus™
Nexus is a lightweight framework from Scrum.org (the organization of Scrum co-creator Ken
Schwaber). It is designed to guide 3-9 Scrum teams in delivering an integrated increment of a product
each Sprint.

Core Philosophy: To provide an "exoskeleton" for Scrum. It adds a new role (the Nexus Integration
Team) and new events (like the Nexus Daily Scrum) to manage dependencies and integration
issues between the teams.
Focus: Its primary focus is on resolving the integration challenges that arise when multiple teams
work from a single Product Backlog.
Best For: Organizations that want a simple extension to their existing Scrum practice to manage
the work of several teams on one product.

4. Disciplined Agile (DA)
Disciplined Agile is a flexible and adaptable toolkit acquired by the Project Management Institute
(PMI). It's not a single framework but a collection of strategies and practices from various sources like
Scrum, Kanban, and Lean.

Core Philosophy: "Choose your Way of Working (WoW)." It is a goal-driven approach that
provides guidance to help organizations select the best practices for their specific context.
Structure: It is a decision-making framework that helps you "stitch together" a process that is
right for your team.
Best For: Organizations that prefer a flexible, adaptable toolkit over a single, prescribed
framework.

151

Agile Anti-Patterns List
An Agile Anti-Pattern is a common practice that may seem beneficial on the surface but
ultimately undermines the principles of Agile, leading to inefficiencies, low morale, and
reduced value delivery.

Team Anti-Patterns
Hero Culture: Relying on one or two individuals to consistently overwork and "save the
day." This leads to burnout and creates a single point of failure.
Silos: Team members operate in functional silos (e.g., "front-end," "back-end," "QA")
instead of collaborating as a cross-functional unit. This creates bottlenecks and slows
down work.
Scrum Master as a Scribe: The Scrum Master acts as a team secretary, taking notes and
managing the board, instead of facilitating, coaching, and removing impediments.

Process Anti-Patterns
Sprint Zero: An initial Sprint dedicated solely to setup, architecture, and planning without
delivering any user value. Agile advocates for doing this work incrementally.
Standups as a Status Report: The Daily Standup becomes a status report to a manager
instead of a planning session for the Developers to synchronize their work.
Weaponized Metrics: Using metrics like velocity to pressure a team, compare teams
against each other, or measure individual performance. Velocity is a forecasting tool for
the team, not a productivity metric.
Stretching the Sprint: Extending the Sprint deadline when the work isn't finished. This
breaks the consistent rhythm of Scrum and hides underlying issues.

Product Anti-Patterns
Absent Product Owner: The Product Owner is not available to the team to answer
questions, leading to delays, guesswork, and building the wrong thing.
Feature Factory: The team focuses on shipping a high volume of features ("output")
without measuring whether those features deliver any real value to the user ("outcome").
Proxy Product Owner: A middleman (like a project manager) is placed between the
development team and the true Product Owner, creating a communication bottleneck.

152

Daily Standup Best Practices
1. Keep it Consistent
Consistency is key to making the Daily Standup a routine habit.

Same Time, Same Place: Hold the meeting at the same time and place every day. This
reduces complexity and helps build a rhythm.

2. Timebox it to 15 Minutes
The meeting should be brief and to the point. The 15-minute timebox keeps the discussion
focused and prevents it from turning into a long problem-solving session.

Action: Use a timer and be diligent about sticking to the time limit.

3. It's for the Developers
This meeting is a planning session for the Developers, by the Developers. It is not a status
report for the Scrum Master, Product Owner, or any other managers.

Action: The Developers should run the meeting themselves. The Scrum Master's role is to
ensure the meeting happens and is effective, but not to lead it.

4. Focus on the Sprint Goal
The primary focus of the meeting should be on the team's collective progress toward the
Sprint Goal, not just individual tasks.

Action: Instead of just listing tasks, frame your updates in the context of the goal. For
example, "Yesterday, I finished the payment validation, which moves us closer to our goal
of a working checkout process."

5. Walk the Board Kanban
A highly effective practice is to structure the meeting around the work, not the people.

Action: Instead of going person by person, move across your team's board from right to
left (from the columns closest to "Done" to the ones on the left). This keeps the focus on
finishing work, not just starting it.

6. Take Problem-Solving Offline
The Daily Standup is for identifying problems, not solving them.

Action: If a detailed discussion is needed to solve a problem, schedule a separate, follow-
up meeting with only the necessary people. This respects everyone's time and keeps the
standup on track.

153

Kanban WIP Limits Playbook
A Kanban WIP Limits Playbook is a guide to implementing and using one of the most critical
practices in Kanban: limiting your Work in Progress (WIP). WIP limits are the engine of a Kanban
system, creating a "pull" system that improves flow and exposes bottlenecks.

Step 1: Visualize Your Workflow
Before you can set limits, you must have a clear, visual representation of your team's workflow on
a Kanban board.

Action: Define the columns on your board to represent each distinct stage of your process,
from when work is started to when it's completed (e.g., "To Do," "In Development," "Testing,"
"Done").

Step 2: Set Your Initial WIP Limits
Start simple. Don't try to set a limit for every single column at the beginning.

Action: Set an overall WIP limit for all of your "in-progress" columns combined. A common
starting point is 1.5 times the number of people on your team.
Example: For a team of 4 people, a good starting WIP limit would be 6 (4 x 1.5 = 6). This
means there should never be more than 6 items being actively worked on at one time.
Visualize the Limit: Place this number at the top of your "In Progress" section.

Step 3: The "Stop the Line" Play
This is the most important rule. When your WIP limit is reached, the team's priority shifts from
starting new work to finishing existing work.

Action: If the number of items in your "In Progress" columns equals the WIP limit, the team is
not allowed to pull any new work.
The Play: The team's entire focus should now be on unblocking the existing work and moving
items to "Done." This "stop the line" approach is what creates a smooth, continuous flow.

Step 4: Identify Bottlenecks
WIP limits will quickly make your process bottlenecks visible.

Action: Observe your Kanban board. The column where work consistently piles up is your
bottleneck. For example, if your "Testing" column is always full, you have a bottleneck in your
testing process.

Step 5: Adjust and Refine Your Limits
Your initial limits are a starting point. The goal is to continuously adjust them to improve your
workflow.

Action: Once you've identified a bottleneck, you can refine your limits. You might lower the
overall WIP limit to reduce multitasking, or you could add a specific WIP limit to the
bottleneck column to prevent it from getting overloaded.
Example: For the team of 4, you might adjust from an overall limit of 6 to specific limits: "In
Development" (WIP Limit: 4) and "Testing" (WIP Limit: 2).

154

Team Working Agreement Template
A Team Working Agreement is a living document created and agreed upon by the entire team. It outlines a set
of norms and expectations for how the team will work together to achieve its goals. Its purpose is to foster a
positive, productive, and psychologically safe environment.

Here is a template your team can use to create its own working agreement.

Team Working Agreement Template
Team Name: [Insert Team Name]
Date Created: September 29, 2025

1. Our Core Values
What principles are most important to us as a team?

Example:
Respect: We listen to understand, not just to respond.
Transparency: We are open and honest in our communication.
Collaboration: We succeed or fail as a team.

2. Communication Norms
How, when, and where do we communicate?

Primary Communication Channel (e.g., Slack): For quick questions and daily updates.
Formal Communication (e.g., Email): For communication with external stakeholders.
Core Working Hours: We will be available and responsive between [e.g., 10 AM and 4 PM].
Response Times: We will acknowledge non-urgent messages within [e.g., 4 hours].

3. Meeting Guidelines
How do we ensure our meetings are effective?

Agendas: All meetings must have a clear agenda sent out in advance.
Punctuality: We start and end all meetings on time.
Participation: We encourage everyone to contribute, and we will be mindful of not interrupting others.

4. Ways of Working
What are our agreements on how we get work done?

Definition of Done: [Link to or list your team's Definition of Done]
Code Reviews: All code requires at least one approval before merging. Feedback should be constructive and
timely.
Focus Time: We will respect "no meeting" blocks on calendars to allow for deep work.

5. Decision Making
How will we make decisions as a group?

Our Approach: For most decisions, we will use [e.g., consensus, majority vote, or consult with the Tech Lead].

6. Conflict Resolution
How will we handle disagreements?

Our Process: We agree to address conflicts directly and respectfully with the person involved first. If a
resolution can't be reached, we will involve the [e.g., Scrum Master or Manager] to facilitate.

Team Agreement
By signing below, we agree to uphold these principles and hold each other accountable.

[Team Member 1 Name]
[Team Member 2 Name]
[Team Member 3 Name]

155

Step 1: Identify and Analyze Your Stakeholders
The first step is to identify who your stakeholders are and then categorize them to determine how to engage
with them. A common tool for this is the Power/Interest Grid.

Action: List all your stakeholders and place them into one of the four quadrants below.

Stakeholder Group Communication Goal Key Message Channel Frequency

Example: Project
Sponsor

Gain approval, ensure
confidence

Progress against
goals, key risks

1:1 Meeting Weekly

Example: Executive
Leadership

Provide high-level
status

KPI Dashboard, key
milestones

Email Summary Monthly

Example: End Users
Gather feedback,
provide updates

New features,
upcoming changes

Newsletter Bi-weekly

Example: Marketing
Team

Align on launch
activities

Release timeline,
feature benefits

Sync Meeting Weekly

Stakeholder Communication Guide

High Power / High Interest (Manage Closely): These are key players. You need to fully engage with them
and make the greatest efforts to satisfy them.
High Power / Low Interest (Keep Satisfied): Put enough work in with these people to keep them satisfied,
but not so much that they become bored with your message.
Low Power / High Interest (Keep Informed): Adequately inform these people, and talk to them to ensure
that no major issues are arising.
Low Power / Low Interest (Monitor): Monitor these stakeholders, but do not bore them with excessive
communication.

Step 2: Create a Communication Plan Matrix
Once you've categorized your stakeholders, create a simple plan that outlines how you will communicate with
each group.

Action: Fill out a matrix like the one below to create a clear and actionable plan.

Step 3: Execute and Adapt
Your communication plan is a living document. The final step is to put it into action and be prepared to adapt.

Be Consistent: Stick to the cadence you've defined. Consistent communication builds trust and
predictability.
Be Clear and Concise: Tailor your message to your audience. Executives need a high-level summary, while a
development team may need technical details.
Listen and Gather Feedback: Communication is a two-way street. Actively listen to your stakeholders'
feedback and concerns.
Adapt Your Plan: Periodically review your communication plan. If a certain channel isn't working or if a
stakeholder's needs change, be ready to adjust your approach.

157

Risk Management in Agile
1. Continuous Risk Management Through Agile Events
Agile frameworks like Scrum have built-in mechanisms for managing risk in every Sprint.

Sprint Planning: The team discusses risks related to the work they are committing to,
such as technical uncertainty or dependencies.
Daily Scrum: This is a daily risk identification meeting. When a team member raises an
impediment, they are identifying a risk to the Sprint Goal.
Sprint Review: By demonstrating a working increment of the product to stakeholders
every Sprint, the team mitigates the single biggest risk: building the wrong thing.
Sprint Retrospective: The team discusses and addresses process-related risks, such as
communication issues or technical debt, to improve their workflow.

2. Using the Backlog as a Risk Mitigation Tool
The Product Backlog is a powerful tool for managing risk.

Prioritize Risky Work First: The Product Owner can prioritize technically challenging or
uncertain user stories to be worked on early. This "risk-first" approach ensures that the
biggest unknowns are tackled when the team has the most time to deal with them.
Use Spikes: When there is a significant technical or design uncertainty, the team can
create a Spike. A Spike is a time-boxed research task that is added to the backlog. Its goal
is to gain knowledge and reduce uncertainty, thereby mitigating the risk.

3. The ROAM Technique for Risk Management
A simple yet effective way to manage identified risks is the ROAM technique. When a risk is
identified, the team collaboratively decides which category it falls into:

R - Resolved: The risk is no longer a concern and has been addressed.
O - Owned: Someone on the team has taken ownership of managing the risk.
A - Accepted: The risk is understood, and the team has decided to accept it without
taking any action at this time.
M - Mitigated: The team creates a plan to reduce the probability or impact of the risk.

4. Transparency as the Best Defense
The most effective risk management strategy in Agile is a culture of transparency and
psychological safety. When team members feel safe to raise concerns early, risks are
identified when they are small and easy to manage, rather than after they have become major
problems.

158

Agile Mindset & Culture Guide
The Four Pillars of an Agile Mindset

1. Customer Collaboration over Contract Negotiation
An Agile culture prioritizes building a partnership with the customer. The focus is on a
continuous feedback loop to ensure the team is building the right thing.

Fixed Mindset: "We delivered what the contract specified."
Agile Mindset: "We worked with the customer to solve their problem."

2. Responding to Change over Following a Plan
Change is not seen as a disruption but as an opportunity to learn and deliver more value. Agile
teams expect and welcome change, even late in the development cycle.

Fixed Mindset: "We must stick to the original plan."
Agile Mindset: "How can we adapt to this new information?"

3. Individuals and Interactions over Processes and Tools
 While processes and tools are important, an Agile culture values the people doing the work
and their ability to collaborate effectively. Empowered, self-managing teams are trusted to
find the best way to get the work done.

Fixed Mindset: "Did you follow the process?"
Agile Mindset: "Did you collaborate with your team to solve the problem?"

4. Working Software over Comprehensive Documentation
The primary measure of progress is the delivery of a working, valuable product. While
documentation has its place, it is secondary to delivering functionality that solves a user's
problem.

Fixed Mindset: "Is the documentation complete?"
Agile Mindset: "Does the software work and deliver value?"

Key Cultural Traits

An Agile mindset fosters a specific set of cultural attributes:
Psychological Safety: An environment where team members feel safe to experiment, ask
questions, and fail without blame.
Continuous Improvement: A relentless focus on getting better. The team regularly
inspects its process and adapts through events like Sprint Retrospectives.
Focus on Value: All work is prioritized based on the value it delivers to the customer, not
on completing a pre-defined list of tasks.
Empowerment and Trust: Leadership trusts the team to make decisions about how to do
their work, fostering a sense of ownership and a

159

Forge
Development

160

Setup Your Forge Developemnt Enviroment
Section 1: Prerequisites
Before we install the Forge CLI (Command Line Interface), you need a few things in place.
Let's make sure your system is ready.

1. An Atlassian Account and Developer Site
You need an Atlassian account to log in and manage your apps. You also need a cloud
development site (Jira or Confluence) where you can install and test your apps.

Action: If you don't have one, sign up for a free Atlassian Cloud developer site. This will
give you a real Jira and Confluence instance to work with. Visit:
https://developer.atlassian.com/signup/

2. Node.js and npm
The Forge CLI is built on Node.js. It's distributed and installed via npm (Node Package
Manager), which comes bundled with Node.js.

Action: Download and install the latest LTS (Long-Term Support) version of Node.js from
the official website: https://nodejs.org/
Verification: Open your terminal or command prompt and run the following commands to
ensure they are installed correctly:

 node -v
 npm -v

 You should see the version numbers printed for both.

3. Docker Desktop (optional)
Forge uses Docker containers to run your app in a secure, isolated environment that mirrors
Atlassian's cloud infrastructure. The forge tunnel command, which is essential for local
development, relies on Docker.

Action: Download, install, and run Docker Desktop for your operating system (Mac or
Windows). Visit: https://www.docker.com/products/docker-desktop/
Important: Make sure Docker Desktop is running in the background before you start your
Forge development session.

4. A Code Editor
While you can use any text editor, a modern code editor like Visual Studio Code will provide
features like syntax highlighting, terminal integration, and extensions that make Forge
development much easier.

Action: Download VS Code from https://code.visualstudio.com/

161

Section 2: Installing and Configuring the Forge CLI
With the prerequisites out of the way, it's time to install the core tool: the Forge Command
Line Interface (CLI).

Step 1: Install the Forge CLI
The CLI is an npm package. To install it globally on your system, open your terminal and run
this command:

npm install -g @forge/cli

Note: The -g flag installs the package globally, making the forge command available anywhere
in your terminal.

Step 2: Authenticate with Your Atlassian Account
Next, you need to connect the Forge CLI to your Atlassian account using an Atlassian API
token.

1. Create the API Token:
Navigate to https://id.atlassian.com/manage/api-tokens in your web browser.
Click Create API token.
Enter a memorable Label to describe your token, for example, forge-cli-dev-token.
Click Create.
Click Copy to clipboard and close the dialog. This is the only time you can view the token,
so paste it somewhere safe temporarily.

2. Log in with the Forge CLI:
Now, go back to your terminal and run the login command:

forge login

Enter the email address for your Atlassian account when prompted.
When prompted for the API token, paste the token you just copied from the Atlassian
site.

Section 3: Creating and Running Your First App
Let's build a simple "Hello World" app to confirm everything is working correctly.

Step 1: Create the App
The forge create command will generate a starter project from a template.

1. In your terminal, navigate to the directory where you want to store your projects.
2.Run the command:

forge create
162

 3. You'll be prompted to:
Enter a name for your app: Let's call it hello-world.
Select a category: Choose UI Kit 2.
Select a template: Choose the jira-global-page template.

The CLI will create a new directory named hello-world with all the necessary files.

Step 2: Navigate into Your App Directory

cd hello-world

Step 3: Start the Development Tunnel (optional)
To see your app running and to enable hot-reloading for code changes, you need to use the forge
tunnel command. Remember to have Docker running for this step.

forge tunnel

This command compiles your code and creates a secure "tunnel" from your local machine to your
Atlassian cloud development environment. Any changes you make to your local files will be
reflected in your Jira site almost instantly.

Step 4: Deploy and Install the App
Your app is running locally, but now you need to deploy its initial version and install it on your
development site.

1. Deploy the app: This packages your code and sends it to the Forge platform.

forge deploy

2. Install the app: This registers the deployed app with your specific Jira or Confluence site.

forge install

3. You will be prompted to:
Select a product: Choose jira.
Enter your site URL: Enter the URL of your development site (e.g., your-site-
name.atlassian.net).

Step 5: See Your App in Action!
Open your Jira development site. In the main navigation sidebar on the left, you should see a new
item with the Atlassian logo labeled "hello-world". Click it, and you will see your first Forge app
running live!

You have successfully set up your environment, created, deployed, and installed your first
Atlassian Forge app. You are now ready to start building.

163

Forge Command Cheat Sheet

Installation & Setup

Command Description

npm install -g @forge/cli Install the Forge CLI

forge login Log in to Forge with your Atlassian account

forge logout Log out of Forge

forge whoami Show the currently logged-in user

forge autocomplete install Configures autocomplete for the Forge CLI

Command Description

forge create Create a new app from a template

orge register
Register an app you didn't create so you can run
commands for it

forge deploy Deploy your app to the cloud

forge install Install your app on a site

forge tunnel Start a tunnel to connect local code with the app
running in the development environment

forge logs View application logs

forge lint Check the source file for common errors

Daily Development Essentials

Environments

Command Description

forge environments Manage app environments

forge environments list View all environments for this app

forge environments create <name> Create a new environment

forge environments delete <name>
Delete an existing development
environment

164

Deployment & Installation

Description Description

forge deploy --environment <name>
Deploy your app to the specify the
environment (see your default environment
by running forge settings list)

forge install --environment <name> Install to a specific environment

forge install --upgrade Upgrade an existing app installation

forge uninstall Remove your app from a site

Development & Debugging

Command Description

forge lint --fix Attempt to automatically fix any issues encountered

Storage & Variables

Command Description

forge storage Manage app environment variables

forge variables list List environment variables for your app

forge variables set <key> <value> Set an environment variable

forge variables unset <key> Remove an environment variable

Help

Command Description

forge help Show help for Forge CLI

forge help <command> Show help for a specific command

165

Atlassian Forge YAML Study Guide
1. Purpose of the manifest.yml

This is the blueprint of your Forge app.
It tells Forge:

What features the app has (modules)
Where the code for those features lives (resources)
What permissions the app needs (permissions)
What environment it runs in (app/runtime)

2. Basic Structure

3. Modules
Define what your app can do in Atlassian
products.
Common types:

jira:issuePanel – adds a panel to Jira
work items view.
jira:customField – adds a custom field
to Jira.
confluence:contentAction – adds an
action button to Confluence pages.

Example:

modules:
 # App features go here

resources:
 # Code file mappings go here

permissions:
 # Scopes, external fetch, and other permissions

app:
 # Runtime and metadata about the app

modules:
 jira:issuePanel:
 - key: my-issue-panel
 function: panelFunction
 title: My Panel
 viewportSize: medium
4. Resources

Connect module keys to your code files.
Key = name in the YAML.
Path = file in your project folder.

Example:
resources:
 - key: panelFunction
 path: src/panel.jsx

5. Permissions
Scopes = what your app can do inside Atlassian.
External fetch = allow calling APIs outside Atlassian.
Must be exactly what you need — extra scopes can get your app rejected.

Example:

6. App Settings
runtime – Node.js version, memory, architecture.
id – Unique app identifier (generated when app is created).

Example:

7. YAML Syntax Tips
Use two spaces for indentation (never tabs).
Lists use - followed by a space.
Keys are case-sensitive.
Strings with special characters (:, #, ?) should be quoted:

permissions:
 scopes:
 - read:jira-work
 - write:jira-work
 external:
 fetch:
 backend:
 - https://api.example.com

app:
 runtime:
 name: nodejs22.x
 memoryMB: 256
 architecture: arm64
 id: ari:cloud:ecosystem::app/your-app-id

167

1. Development Environment
This is your default environment when you create and deploy your app.
You work here by running commands like:

 forge deploy
 forge install

This environment is private to you and lets you test new code quickly.

2. Creating a Staging Environment
Use staging to share your app with testers or a small group before going live.
To create a staging environment, run:

 forge environment create staging
You can then deploy your app to staging with:

 forge deploy --environment staging
And install the app in a test site (or Jira instance) for your team:

 forge install --environment staging

3. Creating a Production Environment
Production is the live version your users will see.
Create it with:

 forge environment create production
Deploy your stable, tested app:

 forge deploy --environment production
Install it for your real users:

 forge install --environment production

Switching Between Environments
When running forge deploy, forge install, or other commands, use --environment <env>
to specify the target.
For example, to deploy to staging:

 forge deploy --environment staging

Why Use Multiple Environments?
Safety: Avoid breaking your live app with unfinished code.
Testing: Try features in staging with real data and workflows.
Rollbacks: If production has issues, you can switch back to an earlier environment or
version.

Understanding Forge Environments

168

UI Kit vs Custom UI
Comparison

UI Kit Custom UI

What it is
Use pre-built Atlassian UI
components provided by
Forge’s UI Kit library

Build your own UI from scratch
using standard web tech
(React, HTML, CSS, JS) inside
an iframe

Development
Faster to build; components
are ready-made and styled
consistently with Atlassian

More flexible; you control
every detail of the interface,
styles, and libraries

Performance
Lightweight; uses native
rendering inside
Jira/Confluence

Can be heavier due to iframe
and full frontend bundle

Communication
UI and backend run closer
together, direct API calls
without iframe

Uses @forge/bridge for
messaging between iframe UI
and backend

Styling
Limited to UI Kit’s theming and
components

Full control; use any CSS or UI
framework

Use cases
Standard forms, dialogs, lists,
simple UI aligned with
Atlassian design

Complex, unique UI needs;
custom visualizations; third-
party libraries

Security
Runs as part of Atlassian UI
with Forge permissions

Runs sandboxed inside iframe

Setup complexity
Easier, no separate build or
static file serving required

More setup (serving static files,
building frontend)

Maintenance
Less frontend maintenance
due to UI Kit updates managed
by Atlassian

You maintain all frontend code
and dependencies

Quick Summary
Custom UI = total control + complexity + isolated iframe environment.
UI Kit = quick start + consistent Atlassian look + simpler integration.

169

UI Kit
What UI Kit is

Purpose: UI Kit is Forge’s built-in set of ready-made UI components that are simple, lightweight,
and render natively in the host product (like Jira or Confluence).
Why it’s special: The UI isn’t HTML/CSS — it’s defined with Forge’s @forge/ui components, and
Forge handles rendering it in Atlassian’s style.
Key benefits:

Fast to build — you don’t write CSS or HTML.
Secure — no custom JavaScript execution, so there’s less risk.
Native look & feel — matches Jira/Confluence automatically.

How your manifest shows it’s UI Kit
modules:
 jira:issuePanel:
 - key: ui-kit-demo-hello-world-issue-panel
 resource: main
 resolver:
 function: resolver
 render: native
 title: UI Kit Demo
 icon: https://developer.atlassian.com/images/icons/issue-panel-icon.svg

render: native → tells Forge this module uses UI Kit.
jira:issuePanel → means the UI will appear in Jira work items as a panel.
title & icon → label and icon shown in the UI.

Marketplace App Submission Checklist

I. Foundational & Manifest (manifest.yml) Setup
[] Create an Atlassian account and register as a Marketplace vendor.
[] In manifest.yml: Define a globally unique app key and name.
[] In manifest.yml: Add your vendor name and a link to your company homepage under
the vendor key.
[] In manifest.yml: Add a compelling description and a summary for the app listing.
[] In manifest.yml: Define necessary scopes (permissions) following the principle of least
privilege.
[] In manifest.yml: Configure app icons with correct paths to your 16x16 and 128x128
PNG assets.
[] For paid apps: Enable licensing by adding licensing: paid to your manifest.yml.
[] Run forge settings set-environment production before the final deployment to ensure
you are not on a development environment.
[] Deploy the app to the production environment using forge deploy -e production.

II. Technical & Security Requirements (Forge Specific)
[] Test all app functionality thoroughly in the production environment.
[] Verify your app operates within Forge platform limits (e.g., invocation limits, storage
quotas, egress permissions).
[] If using external services, configure and test egressPermissions in the manifest to
ensure connectivity.
[] Securely manage secrets and API tokens using Forge's environment variables (forge
variables). Do not hardcode secrets.
[] Review and sanitize all user inputs to prevent injection attacks (relevant for both UI Kit
and Custom UI).
[] If using Custom UI, ensure all third-party libraries are up-to-date and free of known
vulnerabilities.

III. Listing, Documentation & Support
[] Create high-quality screenshots and/or a short video demonstrating your app's
functionality.
[] Prepare a comprehensive user guide explaining how to use your app's features.
[] Provide a clear and working link to your support channel (e.g., support portal, email).
[] Write and host a public Privacy Policy and link to it in your Marketplace listing.
[] Establish a process to handle data subject requests (e.g., for data access or deletion) as
outlined in your Privacy Policy.

IV. Legal & Pre-Submission Final Review
[] Provide an End-User License Agreement (EULA) or opt to use the standard Atlassian
EULA.
[] Review and accept the Atlassian Marketplace Partner Agreement.
[] Ensure your app name, logo, and marketing materials comply with Atlassian's brand
guidelines.
[] Double-check that all support, documentation, and privacy policy links are public and
working correctly.
[] Confirm your app provides clear value and functionality as described in the listing. 171

by Kythera Contreras

172

by Kythera Contreras

173

by Kythera Contreras

174

175

176

177

178

179

