

Whitepaper

How 3D Graphics Lower System Costs for
Automotive User Interfaces

Version:
 1.0

Released:

6-May-2015

Purpose:

This whitepaper discusses some of the primary reasons why developing embedded automotive
content in 3D is more efficient than using 2D to mimic 3D visual effects.

For Support or Questions:

Email: cgiordano@disti.com
Phone: +1-407-206-3390 ext 129

mailto:cgiordano@disti.com

 Page | 1

INTRODUCTION

Choosing a 2D solution constrains the UI Designer into rendering a series of images that represent static

positions between two desired 3D states; in effect the UI Designer renders a frame-by-frame movie to

depict motion of a 3D object. In order to produce the appearance of a smoothly rotating 3D object, the

UI Designer needs to produce more incremental frames for each second of motion. For completely

smooth motion, the UI Designer needs to produce 60 images to represent one second of motion. This

paper shows how using a 3D architecture yields significant savings on embedded memory usage when

compared to using 2D practices to mimic the 3D visual effects.

A BRIEF WORD ON MEMORY

For the purposes of this paper, our discussions will focus on read-only memory, or ROM. ROM is the

data storage component in computers and other electronic devices and differs from random-access

memory, or RAM. RAM is referred to as volatile memory where applications run and is cleared when the

power turns off.

In the automotive industry, the economies of scale dramatically influence design decisions since savings

of a few dollars per unit can quickly translate into millions of dollars saved over the production period of

a vehicle. In the embedded graphics computing arena, using less texture memory in a design means the

resulting embedded system hardware requires less physical memory. This paper not only describes how

using 3D saves on memory, which in turn shows significant cost savings on production units, it also

describes additional benefits brought about by using 3D including reduced development times and
simplified asset management.

 Page | 2

3D SAVES MEMORY

A technique commonly used to mimic interactive 3D rendering is to pre-render the 3D content as a

series of still images. Then in the target system, the pre-rendered images are played back in sequence,

essentially simulating the appearance of real-time 3D rendering. This section compares the storage

costs of natively rendered 3D content and simulated 3D content using pre-rendered still image

sequences.

Case 1: Use 2D Rendered Textures to Represent a 3D Rotating View

- 32-bit 4-channel RGBA (Red, Green, Blue, Alpha) images: The RBG channels define the color

and the transparency channel (Alpha) supports compositing.

- 512x256 display area.

- An animation created to orbit the car in 3 seconds at 60 frames per second yields 180 image

files (3 x 60 = 180).

Figure 1 depicts the first 32 of 180 2D still images required to create the effect of a full 3D orbit of a car

using 2D images:

Figure 1 – Images 1-32 of 180

Shown below is the memory size calculation for the 2D image sequence. The calculations below use the

per image byte size (32 bits = 4 bytes), the image height (H) and width (W), and the total number of

maps required to render the rotation sequence.

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 4 𝑏 𝑥 𝐻𝑝𝑖𝑥𝑒𝑙𝑠 𝑥 𝑊𝑝𝑖𝑥𝑒𝑙𝑠 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑝𝑠

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 4 𝑥 512 𝑥 256 𝑥 180

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 94.4 𝑀𝑏

This yields a total uncompressed memory size calculation for the 2D use case at 512x256 of 94.4 Mb.

Throughout this paper, texture memory calculations are measured as uncompressed since they have the

lowest performance impact at runtime. While using compressed textures will save on storage memory

the images need to be uncompressed at runtime in order to render. The process of uncompressing is

processor intensive and negatively impacts the UI performance regardless of the development method

used.

 Page | 3

This case highlights that using the 2D method for creating a 3D representation yields a large amount of

texture data; 94.4 Mb for 3 seconds of animation. This texture memory size is not optimal for running

on cost effective embedded target systems given that any practical user interface application will

require significantly more than 3 seconds of animation.

This memory size calculation directly correlates to the desired image size. If the UI Designer wishes to

make the car larger on screen, then the 2D images will need to increase in size to maintain a 1-to-1

correlation between the image pixels and the screen display pixels (i.e., avoid over sampling). As a

result, the cost per second of the animation goes up exponentially. Figure 2 shows the memory

consumption for the case of the fixed 3 seconds of animation at various image sizes.

Figure 2 – Data Chart for Memory used by 2D Image Renders at Multiple Resolutions

Case 2: Use 3D Model with UV Texture Maps

- 32-bit 4-channel RGB (Red, Green, Blue, Alpha) images applied as texture maps to the model.

- 512x256 display area (is scalable without re-rendering the images)

- Created camera view to circle around the 3D object at any speed required

94.4

188.7

497.7

0

100

200

300

400

500

600

256 x 512 512 x 512 960 x 720

M
eg

ab
yt

es

Case 1: Texture Memory Used by 2D

2D - Single Instance

 Page | 4

Figure 3 - View of 3D model in GL Studio used for real-time 3D rendering

The memory size of a 3D model comprises of calculating the memory required for the model’s geometry

and its associated texture maps. Total geometry memory is comprised of the vertex buffer size and

index buffer size.

The vertex buffer is a 3D graphical container that holds the point data (position, shading vectors, colors,

etc.) representing the model of the car. The index buffer is the graphical container used to “connect the

dots” of each vertex to form a polygon. Figure 4 depicts an example vertex buffer and index buffer for a

single square. This example assumes the Z-coordinate of the vertices is 0.

Figure 4 – Example of a Vertex Buffer and Index Buffer

The size of each vertex is comprised of its 3D spatial coordinate (XYZ) as a 32-bit floating point number,

the 2D coordinates of the mapped texture image (UV) as an unsigned short, and the directionality of the

vertex normal (NNN) as an unsigned character.

𝑉𝑠𝑖𝑧𝑒 = 𝑋𝑌𝑍 + 𝑈𝑉 + 𝑁𝑁𝑁

𝑉𝑠𝑖𝑧𝑒 = 12𝐹𝐿𝑇32 + 4𝑈𝑆𝐻𝑂𝑅𝑇 + 4𝑈𝐶𝐻𝐴𝑅

𝑉𝑠𝑖𝑧𝑒 = 20 𝑏

 Page | 5

This yields 20 bytes for each vertex in the model. The index size is either 2 or 4 bytes depending on the

number of indices in the model.

𝐼𝑠𝑖𝑧𝑒 = 2 𝑜𝑟 4 𝑏

𝐼𝑓 ⟨𝑁𝑢𝑚𝑏𝑒𝑟 𝐼 < 65000 | 𝐼𝑠𝑖𝑧𝑒 = 2 | 𝐸𝑙𝑠𝑒 𝐼𝑠𝑖𝑧𝑒 = 4⟩

This example uses a worst case assumption of 4 bytes for each index in the model. The calculations

below derive the total memory used by the 3D geometry of the model.

𝐴𝑠𝑠𝑢𝑚𝑒 3𝐷 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 70,000 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝐴𝑠𝑠𝑢𝑚𝑒 3 𝑉𝑒𝑟𝑡𝑖𝑐𝑖𝑒𝑠 𝑝𝑒𝑟 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒

𝐴𝑠𝑠𝑢𝑚𝑒 3 𝐼𝑛𝑑𝑖𝑐𝑖𝑒𝑠 𝑝𝑒𝑟 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒

𝑉𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑥 𝑉𝑠𝑖𝑧𝑒 𝑥 𝑉𝑒𝑟𝑡𝑖𝑐𝑖𝑒𝑠

𝑉𝑏𝑢𝑓𝑓𝑒𝑟 = 70,000 𝑥 20 𝑥 3

𝑉𝑏𝑢𝑓𝑓𝑒𝑟 = 4.2 𝑀𝑏

𝐼𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑥 𝐼𝑠𝑖𝑧𝑒 𝑥 𝐼𝑛𝑑𝑖𝑐𝑖𝑒𝑠

𝐼𝑏𝑢𝑓𝑓𝑒𝑟 = 70,000 𝑥 4 𝑥 3

𝐼𝑏𝑢𝑓𝑓𝑒𝑟 = 0.28 𝑀𝑏

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑏𝑢𝑓𝑓𝑒𝑟 + 𝐼𝑏𝑢𝑓𝑓𝑒𝑟

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑡𝑜𝑡𝑎𝑙 = 4.2 𝑀𝑏 + 0.28 𝑀𝑏

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑡𝑜𝑡𝑎𝑙 = 4.5 𝑀𝑏

Calculations for the texture memory size used by the model are identical to the methods used for the 2D

image size calculation. The calculations below assume image map sizes identical to those used in the 2D

image case (512x256) and that the model will have three maps applied; one for each rendering channel,

normal, diffuse, and specular.

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 4 𝑏 𝑥 𝐻𝑝𝑖𝑥𝑒𝑙𝑠 𝑥 𝑊𝑝𝑖𝑥𝑒𝑙𝑠 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑝𝑠

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 4 𝑥 512 𝑥 256 𝑥 3

𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑡𝑜𝑡𝑎𝑙 = 1.8 𝑀𝑏

This yields a total memory size calculation for the 512x256 use case of 6.1 Mb.

𝑀𝑒𝑚𝑜𝑟𝑦 𝑇𝑜𝑡𝑎𝑙3𝐷 = 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑡𝑜𝑡𝑎𝑙 + 𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑡𝑜𝑡𝑎𝑙
𝑀𝑒𝑚𝑜𝑟𝑦 𝑇𝑜𝑡𝑎𝑙3𝐷 = 4.5 𝑀𝑏 + 1.8 𝑀𝑏
𝑀𝑒𝑚𝑜𝑟𝑦 𝑇𝑜𝑡𝑎𝑙3𝐷 = 6.1 𝑀𝑏

In conducting the analysis on these two cases, using 2D textures to represent 3D content requires

approximately 31.5 Mb of storage per second of animation, or in this case, 94.4Mb for 3 seconds. Using

a single 3D model in the runtime scene yields 6.1 Mb of memory (1.8 Mb of which is texture memory)

with no per-second animation storage cost.

 Page | 6

Figure 5 below compares the 3D memory requirements determined in this case with the 2D memory

requirements calculated in the previous case. In order to compare the two values the vertical axis in the

chart changed to a logarithmic scale so the 3D data values are visible. This is indicative to the order of

magnitude difference in memory utilization between these two cases.

Figure 5 - Data Chart Comparing Memory used by 2D Image Renders and 3D Model at Multiple
Resolutions

THE IMPACT OF ADDING DYNAMIC CONTENT

Extrapolating on the above example, if plans require adding new animations to a 2D rendered set of

textures that represent a 3D view, the UI Designer must render a new set of still images for each new

animation. In the 3D workflow, the HMI designer merely needs to export a set of animation key frames.

Figure 6 depicts the 2D process for adding new animations. Notice that each time the UI Designer

creates a new animation it results in a corresponding set of new images, further adding to the texture

 Page | 7

memory usage and development time. This also adds to the complexity of maintaining an unnecessarily

large set of assets.

Figure 6 - 2D Process to add new animations

Contrasting this, Figure 7 depicts the 3D development process. In this case, the UI Designer adds new

capability to the 3D object by simply adding the capability in the 3D model and exporting the new 3D

behaviors via an updated key frame set for the runtime engine. The UI Designer reuses the same asset

for multiple capabilities without increasing the memory load or needing to manage additional libraries

of assets.

Figure 7 - 3D Process to add new animations

By deferring the rendering until execution the UI Designer no longer needs to update and maintain a

library of intermediate assets. Table 1 summarizes the comparison factors between choosing to use 2D

or 3D to create dynamic content.

 Page | 8

Table 1 – Factor Comparison between 2D and 3D Dynamic Content

Factor 3D 2D

Minimal Change Modification Impact  
Negligible Memory Impact  
Simplified Asset Management  
Simplified Development Process  

DYNAMIC CONTENT REQUIREMENTS

Modern automotive applications increasingly have requirements for dynamic content. Table 2 shows

examples of the kinds of properties a consumer would expect to see depicted on the car at runtime.

Table 2 – Car Properties to Control at Runtime

Property Value
Paint Color RGB

Head Lights On/Off

Daytime Running Lights On/Off

Tail Lights On/Off

Brake Lights On/Off

Turn Signals On/Off

Doors Open/Close

Hood Open/Close

Trunk Open/Close

Tire Pressure RGB

Seatbelt Status RGB

When using 2D methods with pre-rendered video, the UI Designer must render and store variation

separately. Each variation multiplies the memory requirement according to the number of values the

variation needs to represent. For instance, having separate versions of the model with the lights on and

off doubles the storage for each set of lights, if you have 4 paint colors, it is 4 times the storage. The

combinations quickly become a detriment to system memory and add an order of magnitude to the

asset management. Figure 8 depicts 32 of the 180 images, shown previously, updated to include four

different color schemes.

 Page | 9

Figure 8 – Images 1-32 of 180 of Four Color Schemes

When rendering 3D models directly, the application combines and controls the various aspects of the

animation without an impact on the storage requirements.

 Page | 10

Figure 9 shows the memory impact of depicting 10 different properties of dynamic content in a 2D

solution versus a 3D solution. As discussed with Figure 5, in order to compare the data values the

vertical axis in the chart depicts a logarithmic scale so the 3D data values are visible.

Figure 9 – Data Chart Comparing Memory used by 2D Image Renders and 3D Model at Multiple
Resolutions and Multiple Instances

BILL OF MATERIAL IMPACT

Another way to look at the data depicted in Figure 9 is the impact these cases have on the deployed

systems bill of material (BOM). Table 3 shows how the memory implication translates into reality for the

physical memory purchase. For instance, while the 2D – 10 Instances memory demand is 4.98 Gb the

BOM purchase for memory needs to be 8 Gb since memory is only available in 2n increments.

 Page | 11

Table 3 – BOM Memory Requirement

 Resolution

Use Case 256 x 512 512 x 512 960 x 720

3D 8 Mb 8 Mb 16 Mb

2D – Single Instance 128 Mb 256 Mb 512 Mb

2D – 10 Instances 1 Gb 2 Gb 8 Gb

At an estimated $1 per Gb of memory, this translates to an extra $3 per unit for the material cost just to

round off the memory allocation. Compared to the 3D high definition resolution memory requirement

of 16 Mb the extra cost per unit is greater than $7. Over a production run of 2 million units, the 3D use

case yields, at a minimum, a BOM cost savings of $14 million.

CONCLUSION

This paper described how using 3D architecture saves money by reducing system memory requirements

on the deployed system, simplifying the development process, and reducing the number of project

assets to manage. The design decision to utilize 3D easily translates these unit savings into substantial

deployment savings once the automotive industries economy of scale occur across the entire project.

 Page | 12

Notice
ALL INFORMATION PROVIDED IN THIS WHITE PAPER, INCLUDING BUT NOT LIMITED TO COMMENTARY,
OPINION, DiSTI DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.”
DiSTI MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, The DiSTI Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents or
other rights of third parties that may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of the DiSTI Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. The DiSTI Corporation products are authorized for use as critical
components in life support devices or systems only with the use of the GL Studio Safety Critical runtime
libraries and certification kit available from the DiSTI Corporation.

Trademarks
DiSTI, the DiSTI logo, GL Studio, GL Studio SC are trademarks or registered trademarks of the DiSTI
Corporation in the United States and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright © 2015 The DiSTI Corporation. All rights reserved.

	Cover
	Introduction
	A Brief Word on Memory
	3D Saves Memory
	The Impact of Adding Dynamic Content
	Dynamic Content Requirements
	Bill of Material Impact
	Conclusion
	Notice

