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Abstract

Artificial intelligence is moving from experimental pilots to embedded
infrastructure across regulated domains such as audit, finance, and professional
services. As these systems begin to make or influence decisions that carry
strategic, financial, and reputational risk, their reliability can no longer be assured
by static validation alone. This white paper presents a framework for Reliability &
Repair: a structured, repeatable process for detecting, triaging, simulating,
repairing, and verifying failures in complex Al systems. By combining established
reliability-engineering practices with modern Al monitoring techniques, it
demonstrates how organizations can measure reliability growth, align risk with
severity, and transition from passive oversight to continuous improvement.
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1. Introduction: Why Reliability Matters Now

Artificial intelligence is moving from experimental pilots to embedded infrastructure across regulated
domains such as audit, finance, and professional services. As these systems begin to make or influence

decisions that carry strategic, financial and reputational risk, the question is no longer “Does the model
work?” but “When does the system remain reliable and when doesn’t it?”

Traditional assurance methods focus on validation at deployment: benchmark accuracy, policy
compliance, or red-team testing. Yet once deployed, Al systems become dynamic, adaptive, and
interdependent. Their reliability cannot be guaranteed by static testing alone. Failures emerge not just
from model behavior, but from integration points, context drift, and unforeseen user interactions.

In audit and finance workflows, these failures could manifest as mis-classified transactions, incomplete
evidence gathering, or inconsistent reasoning chains, errors that undermine both efficiency and trust.
Reliability, long treated as a hardware or safety-engineering concern, must now extend to agentic and
cognitive systems that learn, interact, and evolve.
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This white paper presents a framework for Reliability & Repair: a structured process for detecting, triaging,
reproducing, repairing, and verifying failures in complex Al systems. Drawing from established reliability
engineering and emerging monitoring practices for large language-model systems, we demonstrate how
reliability growth can be quantified, how risk can be aligned with severity, and how continuous repair
transforms monitoring from a passive dashboard into an active improvement loop.

2. The Problem: Current State of Agent Reliability

Current Al-monitoring approaches treat failure as an endpoint. Dashboards flag anomalies, precision
metrics drop, alerts fire, but the process often stops there. Failures are counted, not cured. Mean
Time to Repair remains long; oversight is diffuse; and remediation actions are rarely captured or
measured for effectiveness.

Three structural gaps dominate today’s reliability landscape:

Risk Misalignment. Failures are tracked by frequency, not by consequence. Minor deviations
and catastrophic breakdowns are reported in the same units, obscuring which failures truly
elevate audit or business risk.

Lack of a Repair Loop. Monitoring pipelines detect and classify but rarely close the loop to
simulation, correction, and verification. Without a feedback path, reliability data accumulates
without yielding reliability growth.

Fragmented Oversight. Human review remains essential, but is often applied uniformly rather
than strategically. Oversight resources are spent on low-impact anomalies while high-severity
incidents slip through delayed or unnoticed.

As a result, organizations have visibility into what went wrong, but not a repeatable process for making it
right. True reliability requires a transition from detection to repair. From static measurement to dynamic
improvement.

It is critical to note that Al-enabled system-level reliability differs fundamentally from Al

model-level or agent-level reliability. Model-level and agent-level reliability typically focus on
performance metrics such as accuracy, in-distribution performance, and uncertainty estimation for
individual models or agents. In contrast, system-level reliability does not evaluate Al models or agents in
isolation, but rather examines their integration within the broader system to assess overall system
performance when Al components fail.

System-level reliability emphasizes operational impact: measuring the severity of system failure
outcomes and the extent to which failures impede the system's ability to perform its intended application
or task. This system-level perspective becomes particularly critical in multi-agent architectures where
multiple Al agents must coordinate and collaborate effectively to achieve system objectives. This work,
and the monitoring framework we've developed, is entirely focused on the latter.
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3. The Framework: Reliability & Repair as the Missing Link

This section provides the foundational concepts of reliability growth, a process for tracking and improving
reliability. It will also discuss its relation to failure severity and risk. Later sections will discuss using
formal reliability processes for complex agentic-Al systems.

3.1 What is Reliability?

In systems engineering Reliability has a specific and longstanding definition’. It is:

Reliability: The ability of a system to
Perform its intended task
At a minimal, acceptable level of quality
Without failure
For a stated amount of [time / distance / cycles / computations]

3.2 Reliability Growth: a Path to Mature and Stable Systems

Reliability analysis and assessment practices are employed across sectors, including the U.S. Department
of Defense (DoD),? software companies, and manufacturers®. Organizations also use them to assess a
product’s achieved and potential reliability. They facilitate identifying failure modes and prioritizing the
most impactful ones. Reliability Growth analysis is one of many reliability analytics and metrics.

By tracking reliability data, failures, and failure modes, an organization can also understand a system’s
development stage, current reliability, and potential reliability. A system’s reliability changes as the
corrective actions for failure modes, design changes, and maintenance or new operational procedures are
implemented. These changes in reliability data over time can create a curve—a reliability growth curve.

A system’s reliability data is often fitted to one of a handful of established reliability growth models. There
are many models for reliability growth, with two prominent models being the Duane and the Crow-AMSAA
models. Observations® by J. T. Duane, often cited as the originator of reliability growth curves, led to an
observation-based or empirical model® where the cumulative Mean Time Between Failure (MTBF, with

! Marvin Rausand and Arnljot Hgyland. System Reliability Theory: Models, Statistical Methods and
Applications. Wiley-Interscience, Hoboken, NJ, 2004.

2 See https://www.dau.edu/acquipedia-article/reliability-growth
https://www.dote.osd.mil/Portals/97/docs/TEMPGuide/Reliability_Growth_Guidance_3.0.pdf?ver=2019-0

8-26-165237-870, and https://nap.nationalacademies.org/read/18987/chapter/2#5.
3 See

4 Duane, J.T,, "Learning Curve Approach To Reliability Monitoring," IEEE Transactions on Aerospace, Vol.
2, pp. 563-566, 1964.
®See

https://help.reliasoft.com/reference/reliability_growth_and._repairable_system_analysis/rg_rsa/duane_mo

del.html
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failure rate = 1/MTBF) has a logarithmic behavior. Another frequently used model is Crow-AMSAAS. While
the Crow-AMSAA model builds upon Duane’s work, it is, however, a statistics-based vs observation-based
model. Additionally, there are variants of the Crow model which incorporate the different ways systems
are tested, repaired, and maintained. The Crow-AMSAA model, which DoD formalized in MIL-HDBK-1897,
is a statistical extension of the earlier empirical Duane model, and both are widely used across
engineering sectors.

Reliability Growth Curves are a common and powerful systems engineering tool for understanding a
system’s maturation throughout its development and operational lifecycle. These curves track a reliability
metric as the system is used over time (see Figure 1). Typically, during early development stages, the
growth curve shows a rapid improvement as major and easily identifiable issues are corrected. As the
system matures, the curve becomes flatter. The few remaining failure modes are understood, but there
are few corrective actions implemented because the remaining ones are difficult or costly. In this phase,
the system’s reliability may or (unfortunately) may not meet its goals or requirements. If the system needs
additional reliability improvement, it may require a major technological change—or a different system
entirely. In this flat part of the reliability growth curve, which indicates a mature, stable system, alerts
based on both organizational requirements- and statistical-based thresholds work effectively.
Additionally, performance optimization is more effective during a system’s mature phase.

Mature, stable system may not meet reliability thresholds. May need

®  Magjor technelogical change for additional improvement

L] Reassessment of operationally needed reliability levels 4
ikl i Stability

®  Mauture that is likely in a ‘stote of statistical control*
®  Near theoretical limit for Reliability
— - —— . e
i 2y
-

e - —

Continved but Slowed Improvement
®  Corrective actions for new, difficult, or costly failures
meodes
®  Starting to see diminishing impact for corrections
®  Focus may shift from fixing failure or preventative
measures vs addressing failure mode
Discovery and Easy Correction
® Immature system that is likely not in a "state of statistical control™
Rapid improvement in MTBF
Initial discovery of likely failure modes
Implement easiest/cheapest corrective actions
Corrections often lead to new failure mode discovery

Mean Time Between Failure (MTBF)

Time

*For reading on statisticol process control see https://osn org/qualiiy-resources fstatisteal-process-contro|

Figure 1: Theoretical Reliability Curve. Phases of a Basic and Notional Reliability Growth Curve.

While MTBF is the most common metric used for monitoring reliability growth, other metrics can be used.
Often, time is not a relevant unit for a system. Distance (mean miles between failures) and events (mean
events between failures) are also common. Additionally, sometimes the failure rate (failure rate =
1/MTBF) is tracked instead of MTBF.

® Developed at the U.S. Army Materiel Systems Analysis Activity.
7 MIL HDBK 189.13 February 1981. Department of Defense. Handbook Reliability Growth Management.
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3.3 Severity: Some Failures Matter More

When tracking reliability growth, you generally do not use all failures to calculate MTBF. This is because
many failures do not impact a system'’s ability to perform its intended task at a minimum level of quality
(Section 3.1). Typically, only the more severe failures are used for calculating reliability®. Thus establishing
failure severity levels and definitions is a key part of monitoring and improving reliability.

Context-relevant and use-specific failure severity levels are fundamental to meaningful

reliability growth tracking because they bridge the gap between abstract technical metrics and
organizationally-relevant operational impact. Traditional reliability analysis often employs generic severity
classifications that fail to account for how identical failure modes can manifest vastly different
consequences across different operational contexts and user environments. For example, a 5-minute
processing time might represent a minor inconvenience in academic research, but could constitute a
critical failure for a medical diagnostic system. By developing severity frameworks that reflect actual
business impact, organizations can more accurately model reliability growth trajectories and prioritize
corrective actions.

A failure’s severity level can be defined in multiple ways. Common approaches include assessing the
harshness of a failure’s consequences on entities (people, organizations, places, etc.) or determining how
significantly the system’s mission or tasks were affected. Regardless of the approach (or approaches)
chosen, the severity scoring criteria need to be clear, detailed, and documented.

For the military, MIL-STD-882E° defines severity as the magnitude (i.e. harshness) of potential
consequences of a mishap (i.e. failure). Additionally, the document provides definitions for four severity
levels (negligible, marginal, critical, and catastrophic). The definitions in MIL-STD-882E are limited, but
they have a history of being tailored' and could be adapted to consider social implications. Table 1
shows examples of scoring criteria for different severity categories. Note that the criteria can vary with
the type of entity being impacted.

8 For example, your car’s burnt out dome light is a minor failure that does not impact its reliability, but a
broken axis does.
® MIL-STD-882E, Department of Defense Standard Practice: System Safety, 11 May 2012,

https://safety.army.mil/Portals/0/Documents/ON-DUTY/SYSTEMSAFETY/Standard/MIL-STD-882E-chang
e-1.pdf
"0 https://apps.dtic.mil/sti/pdfs/ADA619377.pdf

5 Reins Al Technical White Paper v1.0 | October 2025 | reinsai.com


https://apps.dtic.mil/sti/pdfs/ADA619377.pdf
https://safety.army.mil/Portals/0/Documents/ON-DUTY/SYSTEMSAFETY/Standard/MIL-STD-882E-change-1.pdf
https://safety.army.mil/Portals/0/Documents/ON-DUTY/SYSTEMSAFETY/Standard/MIL-STD-882E-change-1.pdf

Description

Catastrophic

Severity
Category

Individual Health
Focused

Death or permanent
total disability

Environment
Focused

Irreversible
significant
environmental
impact

Failure Result Criteria Examples

Financial Loss
Focused

Monetary loss (or
equivalent property
damage) equal to or
exceeding $10M

occupational illness
not resulting in a
lost workday

environmental
impact

Critical Il Permanent partial Reversible Monetary loss (or
disability, injuries, or | significant equivalent property
occupational iliness | environmental damage) equal to or
that may result in impact exceeding $1M but
the hospitalization less than$10M
of at least three
personnel

Marginal 1] Injury or Reversible Monetary loss (or
occupational illness | moderate equivalent property
resulting in one or environmental damage) equal to or
more lost work impact exceeding $100K but
day(s) less than $1M

Negligible v Injury or Minimal Monetary loss (or

equivalent property
damage) less than
$100K

Severity criteria from MIL-STD-882E

Table 1: Harm Severity. Example of Scoring Criteria for Severity Categories Based on Entity Impact.

Severity that focuses on operations captures the degree to which a failure impacts the user’s ability to
complete a mission or task. Table 2 has examples of operations-based failure severity. For systems that
are expected to have continuous operations, classification as severe failures may be related to the
amount of downtime or repair effort.’ '> Severe mission based failures may also be those that result in
inaccurate results or poor system performance.

2 FEMA has identified different function levels for its operations: Primary Mission Essential Functions,
Mission Essential Function, and Essential Supporting Activities. For FEMA, a failure’s severity level could
be determined by which of these function levels was impacted.

https://www.fema.gov/sites/default/files/2020-07/Federal_Continuity_Directive-2_June132017.pdf
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Category

1 Engine failure prevents Image generators produce A tire blows out and needs
safe flight. child sexual abuse material | to be replaced.

(CSAM).

2 Some radar antenna Image generators cannot The internal GPS
elements are not consistently remove types navigation system has an
working. The radar is of objects (e.g., dogs, old map and needs
operable, but its airplanes, cars, etc.) when updating. The system
performance is requested through a text usually works well, but
degraded. prompt. more recent maps would

prevent wrong or missed
turns.

3 An overhead interior light | Created images sometimes | A small dent in the
needs replacing, but have hands with 6 fingers. passenger door.
operations are not
impacted.

Table 2: Example of Scoring Criteria for Severity Categories Based on Mission/Task Impact.

34 Relationship Between Risk, Severity, and Reliability

Risk, severity, and reliability are interconnected. Risk is the probability of a specific failure (sometimes
called a hazard for a failure) multiplied by the severity of a failure. Reliability provides information about
how frequent any failure of above a selective severity level (usually focusing on critical or catastrophic
failures) occurs. Thus both risk and reliability contain some information about failure likelihood and
severity. However, risk tends to consider specific failures individually, assigning separate risk values to
each failure type or failure mode. Reliability is more focused on system operations as a whole and how
often it will have failures of unwanted severity levels. Figure 2 provides a visual representation of the
relationships. While risk score is commonly at the failure level and reliability at the system level, there are
approaches to aggregating and disaggregating (respectively) these metrics.
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Level of Risk = Probability(Hazard) x Severity(Hazard)

| Reliability typically
| focuses on the

= ] occurrence of
] more severe
Each & failures
hazard hgs . 2« I
a risk score

N

Probability

Figure 2: Phases of a Basic and Notional Reliability Growth Curve

4. The Solution: From Failures to Repair Packets to Measurable
Improvement

Reliability in agentic systems cannot be achieved by detection alone. Dashboards, alerts, and static
monitoring can identify that failures occur, but they do not prescribe what to change or how to improve.
To reduce risk in high-stakes domains like audit and finance, we need a structured loop that turns failures

into repair packets: concrete, testable improvements that increase system reliability over time.

This section outlines a five-part process, Monitor, Triage, Simulate, Repair, and Verify, that extends
beyond traditional Quality Control (see Figure 3).
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-

Capture triangulated
evidence of system
behavior (quality,

suitability, efficiency).

P Measure Classify
; improvement failures, assess :

: verify using reliability severity and

metrics (MTTR, —_ risk, prioritize

FER, Failure S corrective
Frequency). Reliability action.
& Repair
Package Make failures
improvements into reproducible with
“repair packets” with synthetic data for
test criteria. diagnosis and later

verification.

Repair Simulate

Figure 3: The typical improvement loop finds new potential within agentic systems as LLMs provide opportunities to observe and
automate key aspects of complex behavior that were previously too costly or difficult to implement.

Monitoring generates triangulated evidence of failures across traces, outputs, and interactions.
Triaging converts detection into prescription by clustering incidents, calibrating severity and risk,
and prioritizing what to correct first.

Simulating recreates failure conditions with synthetic case signatures and scenario specs so
issues are reproducible, representative, and safe to test without relying on client data.

Repairing packages each prioritized issue into an actionable improvement unit (a repair packet),
containing the scenario, hypothesis, targeted adaptation, acceptance tests, and representative
synthetic data.

Verifying runs before and after tests on a simulation bench and in controlled canary
environments to quantify impact using reliability metrics and calibrated human-oversight
outcomes.

Together, these steps create a repeatable loop that allows agentic monitoring systems not just to detect

failures, but to improve through them, so that we can shorten Mean Time To Repair, reduce critical
incidents, and align reliability with business risk.
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41 Monitor

Reliability begins with monitoring. Without continuous, structured observation of agent behavior, there is
no foundation for improvement, and no evidence for mitigating risk. Monitoring is not just the first step in
the loop, it grounds every other step in the process toward creating reliable systems.

Often agentic systems are immature, they are unstable and prone to frequent failure with a large variety of
root-causes or failure modes. Dashboards for immature systems have limited utility. Dashboards are
more valuable for monitoring operational systems where visibility can highlight issues and facilitate rapid
mitigation. However, in unreliable systems with varied failure patterns, dashboards often become
counterproductive, generating continuous alerts without providing clear paths to resolution. Additionally,
when failure rates are high, the dashboard essentially becomes a real-time failure log rather than a
proactive tool.

Because agentic systems can be unreliable and more akin to complex systems than traditional software,
dashboards and single metrics are insufficient. Failures must be captured through triangulated evidence:
traces of agent behavior, human guidance and interventions, and final outputs. Together, these streams
expose not only whether a failure occurred, but help us automatically triage where, why, and with what
consequence (discussed in the next section).

Figure 4 diagrams our typical monitoring suite. The suite takes observations from the human-agentic
interactions and deliverables and runs automatic evaluators (either rule-based, statistical, LLM-based, or
combined) to determine the overall system performance. Performance for our purposes is bucketed into
the following categories:

Suitability
Assesses whether the agentic system is delivering helpful, relevant guidance to users.
Typical evaluators include
Interaction assessments
Human intervention assessments (positive and negative)
Memory failures
Fallback responses
Engagement drop-off
Quality
Focuses on the accuracy and acceptability of Al outputs
Typical evaluators include
Error checks
Hallucination checks
Information verification
Output accuracy
Output completeness
Output relevancy
Efficiency
Compares overall task and review timing to determine whether the complex system is
providing value across the overall stream.
Typical evaluators include
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Task timing measures
Latency measures
Cost measures

traces evaluators monitors

A

rules

interactions el

conversa intervent /
tions ions

stats suitability .
OUTpUtS * min

Agent Human

output final LLM Judges .
efficiency I

Figure 4: With agentic telemetry and targeted LLM judges, we achieve triangulated evidence of failures and successes through
quality, suitability, and efficiency, not just single thresholds.

Monitoring systems designed with these objectives highlight variability and severe failure rather than
mean performance. Systems that perform well on average but fail catastrophically in edge cases pose the
highest operational risk. In our early deployments, high variance in instruction adherence and deliverable
accuracy was far more damaging to trust than mean performance scores indicated. Monitoring makes
these extremes visible so they can be acted upon.

A final critical design element for our monitoring systems is that they be active, not archival. Every
captured signal flows into triage, simulation, and repair pipelines, ensuring that production data becomes

the basis for structured reliability growth. In this approach, monitoring is not a dashboard, but the
backbone for improvement, operational management, and risk mitigation.

4.2 Triage

Triaging converts detection into prescription by clustering incidents, calibrating severity and risk, and
prioritizing what to correct first. Effective triage draws upon established reliability engineering practices,
particularly concepts from Failure Mode and Effects Analysis (FMEA)™ ™ '5, to ensure systematic and

3 |EC 60812:2018, Failure modes and effects analysis (FMEA and FMECA), 10 August, 2018.

' Procedures for Performing a Failure Mode, Effects and Criticality Analysis. A. U.S. Department of Defense.
1980. MIL-HDBK-1629A.
https://web.archive.org/web/20110722222459/https://assist.daps.dla.mil/quicksearch/basic_profile.cfm
2ident_number=37027
'S Stamatis, DH (1995) Failure Mode and Effect Analysis: FMEA from Theory to Execution. ASQC Quality
Press, Milwaukee, WI.
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rigorous failure assessment. A well implemented triage enables teams to focus on the most critical
issues first and allocate resources effectively.

Our Reliability and Repair system'’s triage process consists of four primary phases (see Figure 5):

monitors auto-triage risk calculation prioritization
L 1 Evaluator Scores
Ll Rule/Palicy Hits
: '.: Ly Fallure Toxonomy
itabili l k
AU e Teol/Runtime
Errars
] | User Interventions
efficiency I

Figure 5: Triangulated evidence from system monitors feeds into automated processes for triage, risk classification, and
prioritization. Triage clusters, risk ranks, humans confirm.

1. Failure Classification Failures are categorized by type and clustered into failure classes that require
attention. Classification enables pattern recognition across similar failures and helps identify whether
failures are isolated incidents or symptoms of systemic issues.

2. Risk Classification Classified failures undergo risk assessment, which calibrates risk levels based on
multiple factors which may include:

Severity: The consequence or impact of the failure on system operations, users, and
organizational objectives
Probability: The likelihood that the failure will occur or recur

Scope/Exposure (optional 3™ axis)': The breadth of impact, including operational scope
across different sectors or contexts, the range of system components affected, or the duration of
the failure's effects

Organizational Impact: Broader consequences such as regulatory compliance issues,
reputational risk, and financial costs

This multi-dimensional risk classification draws from FMEA methodology, which provides a systematic
framework for assessing failure risk across multiple factors. While traditional FMEA focuses on severity,
occurrence, and detection, this triage approach expands the risk assessment to capture the broader
operational and organizational context. Regardless of the specific approach, the goal is to have a
systematic, repeatable method that supports objective prioritization.

'® All risk cubes have “Probability” and "Severity” axes, although slightly different names (e.qg., “Likelihood”
and “Consequence”) may be used. When just these two axes are used, the term risk matrix instead of risk
cube is usually used. If an optional 3™ axis is used, it is then always called a risk cube. The quality on the
third axis varies depending upon the sector or application.
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3. Failure Prioritization Risk-classified failures are ranked according to their urgency and importance.
Prioritization balances multiple considerations:

Risk levels determined in the previous phase
Available resources and technical expertise
Dependencies between failures and potential cascading effects

Failure prioritization identifies which failures require immediate attention and which can be addressed
later. The process acts as a filter, ensuring that the most important failures advance to resource-intensive
investigation phases.

4. Investigation and Response Determination Teams analyze the prioritized failures, identify root
causes, and determine appropriate response types. This phase mirrors FMEA's corrective action
development, where understanding the root cause enables targeted interventions. In our Reliability and
Repair system, the response types include:

Corrective Actions: Fundamental improvements that address root causes, enhance system
reliability, and prevent future failures

Workarounds: Process or operational changes that maintain system functionality without
addressing underlying technical issues

Patches: Temporary technical fixes that mitigate immediate problems while more
comprehensive solutions are developed. Typically, patches restore system operations but have
minimal impact on reliability.

Response determination considers not only the technical nature of the failure but also implementation
feasibility, resource requirements, and alignment with organizational priorities. The investigation phase
may reveal that a single root cause underlies multiple failure classes, enabling more efficient and
effective interventions.

This comprehensive triage approach ensures failures are systematically assessed, prioritized based on
risk, and matched with responses appropriate to their nature and severity. Through FMEA-based
multi-factor risk assessment and structured prioritization, triage converts detection findings into
prioritized responses. These responses guide effective system repair and reliability improvement.

4.3 Simulate

Once failures are detected and triaged, the next challenge is making them reproducible. Reproducibility is
critical because it allows us to:

Verify corrective actions
Ensure that the proposed correction actually resolves the issue without introducing new
problems.

Enable root cause analysis
By recreating the failure conditions, engineers can inspect logs, inputs, and system
states to isolate the underlying cause.
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Facilitate consistent evaluation
Reproducible failures can be re-run across versions or environments to test regression
and resilience.

Support knowledge transfer
Capturing reproducible examples creates training data and documentation for future
operators, improving organizational memory.

Improve trust and governance
When stakeholders can independently reproduce failures and confirm corrections, it
strengthens confidence in the system’s reliability process.

Real-world data is often protected, inconsistent, or too narrow to serve as a reliable testbed. To repair
effectively, we need to recreate failure conditions in controlled environments. This is where simulation
becomes a critical part of the process. The addition of generative Al allows this once costly and difficult
process to be not only feasible, but observable and intuitive.

We start by extracting a case signature (the pattern of a failure) paired with a scenario specification
(describing the context in which it occurred) (Figure 6). From this foundation we generate synthetic
documents with data drawn from fictional but realistic companies. These synthetic assets are not copies
of client data, but tailored recreations designed to mirror the structure, complexity, and stressors that
triggered the original failure. The simulations also allow us to generate innumerable variants of the failure
to help expand the use case and hone the potential repairs needed.

case signature + scenario spec synthetic generation simulation bench validation

- Aggregate heatmap: category x company

ond [ l\’M‘i\EY's; X

ITALIAN RESTAURANT il
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Figure 6: Synthetic data recreates failure conditions, not client data. Realism and fitness-for-use are validated through simulated
agents and synthetic benches.

The cases and synthetic data are validated against a simulation bench: a controlled environment where
agents (either client or our own replicas) can be run repeatedly under the same conditions. The bench
ensures not only that the failures are reproducible, testable, and comparable across iterations, but also
whether the synthetic cases are realistic enough to the real-world tasks.

Using simulations has three key advantages over traditional approaches that attempt to deidentify or
reuse the original failure data:
Safety: Simulations eliminate the need to expose or recycle sensitive client data
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Repeatability: Simulations transform one-off incidents into standardized test cases that can be
re-run with every system update

Fitness for use: Simulations allow us to validate whether a repair actually resolves the failure
under representative conditions

By embedding simulation into the repair loop, failures become evidence-backed scenarios that drive
measurable improvement. This recreation step transforms raw monitoring signals into the
building blocks of repair packets.

44 Repair

Repair turns a prioritized failure into a testable, durable improvement. Each change is documented and
verified so reliability gains are cumulative, trackable, auditable, and resistant to regression.

A repair packet (a framework repair activity) allows for the systematization and automation of repair
processes. Each high-priority issue should have a repair packet, a concise unit of corrective action. A
repair packet includes:

The failure description and scenario signature

A root-cause hypothesis

The proposed adaptation or system adjustment
Acceptance criteria and evaluation tests that define “done”
Any required human validation

Over time, these packets build a knowledge base of system repairs (what failed, why, how we fixed it, and
how we proved it), making improvements cumulative and traceable. By collecting failures, failure
signatures, failure modes, root-cause analysis, and mitigations, knowledge can be transferred to repair
and reliability processes for other systems.

In situations where failure signatures are stable and well understood, parts of the loop can run
automatically under explicit safety bounds. For example, switching to a fallback retrieval strategy when
evidence-grounding score confidence falls below the defined control-limit, or auto-escalating to human
review when risk exceeds a threshold. These automations use the same acceptance criteria as manual
fixes and leave an audit-ready trail so actions can be reviewed and, if needed, rolled back. Self-healing”
speeds response without bypassing governance; it augments, rather than replaces, the repair-packet
process.

Repair converts evidence into measurable reliability growth: scoped changes that are risk-aligned,
auditable, and regression-protected, setting up Verify to close the loop.
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4.5 Verify

Repair without verification is guesswork. To demonstrate true reliability growth, every change must be
tested, measured, and published. Verification is the stage where improvement becomes evidence for the
next cycle of adaptations.

Each repair packet is run against a simulation bench and, where safe, controlled canaries in production.
We measure before/after performance across a defined set of reliability metrics:

Mean Time To Repair (MTTR)
How quickly failures are identified, reproduced, and resolved.
This should go down as the process becomes standardized.
Fix Effectiveness Rate (FER)
Percentage of repairs that successfully eliminate the targeted failure mode
Calculation: (Number of corrective actions that resolved the failure mode / Total
corrective actions implemented) x 100%
Tracks if the fix actually worked as intended.
Failure Frequency
How often severe failures occur in production.
We expect this to decrease within versions (although it can increase between significant
version changes).
Calibrated Human Oversight
Whether the right failures are escalated to the right humans at the right time.
We expect this to increase with operational maturity based on the monitoring data.

The output of the verification process is a manifest:

Manifest
What was tested
What was improved
What risks remain

Once created, the manifest is published and fed into dashboards to create an audit trail for system
maturation. This is essential for regulated domains, providing not just technical validation, but defensible
documentation that the system is improving in a structured, measurable way.

Together, the verification process and the manifest make reliability improvements auditable and usable.
They ensure every repair is not only tested, but recorded, communicated, and tied back to business and
audit risk. This establishes agentic system progress not as promises, but as published
evidence of reliability growth.
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5. Reliability & Repair for Operational Recommendations

Reliability & Repair outcomes are not just technical artifacts. They directly inform how organizations
should design oversight. Reporting turns system metrics into operational guidance, showing where
humans must remain in the loop and where automation can safely take over.

5.1 From Metrics to Oversight

The published manifest (see Section 4.5) provides the basis for oversight design. From it, we derive:

Reliability Growth Curves, which show whether the system is maturing or plateauing. These
curves help leaders decide when automation can be trusted with greater autonomy.

Control Charts, which expose when error rates fall outside of statistically valid thresholds.
These provide triggers for human review or escalation.

Oversight Manifests, which document which classes of failures have been eliminated, which
remain rare but possible, and which still require routine human attention.

5.1 From Over-Supervision to Right-Sized Design

By aligning oversight to reliability evidence, organizations avoid two extremes: “over-supervision” that
slows operations and breeds mistrust of automation, and “under-supervision” that lets severe risks
escape unchecked. The goal is right-sized human oversight, supported by transparent evidence that
shows where intervention adds value and where it does not.

Lessons from safety-critical industries reinforce this approach. In military decision-making, aerospace,
and nuclear operations, systems are designed so that humans intervene at critical junctions, while
automation manages routine execution. This follows a few key principles:

Right place, right time. Oversights must be targeted, not universal. Humans should remain
in the loop for high-severity, high-impact failures, but not for minor anomalies that are
well-controlled.

Calibrated by severity and impact. Oversight should scale with risk: catastrophic failures
demand proactive human review; marginal anomalies may only warrant retrospective sampling.

Reliability & Repair does not dictate the specific protocols for oversight, but it does provide the

foundational evidence that enables organizations to design them. With manifest data,
growth curves, and control charts in hand, teams can establish oversight practices that are both effective
and efficient.
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6. Conclusion & Call to Action

The Reliability & Repair framework transforms Al assurance from reactive governance to continuous
improvement. When failures are monitored, triaged, simulated, repaired, and verified in structured loops,
systems not only recover faster but also become demonstrably safer and more predictable over time.

The metrics that matter: Mean Time to Repair, Fix Effectiveness Rate, Failure Frequency,

and Calibrated Human Oversight form the quantitative backbone of that growth. Together they
provide defensible evidence that complex agentic systems can mature just as physical and software
systems have before them: through measured reliability improvement.

For technical teams, this framework offers a bridge between reliability engineering and modern Al
operations. For governance and risk stakeholders, it offers a method to align oversight with evidence
rather than intuition. The challenge ahead is not simply to monitor intelligent systems, but to design them

to learn from failure safely.

Reliability and repair make that learning process observable, auditable, and ultimately trustworthy: the
foundation upon which safe scale and resilient automation will depend.
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7. Definitions

71 Risk

In the context of agentic and Al-enabled systems, risk represents the potential consequence of failure: the

combined effect of how likely a failure is to occur and how severe its impact will be on the system'’s
intended mission or organizational objectives.

Formally, it can be expressed as:
Risk = Probability of Failure x Severity of Consequence

However, in complex, adaptive systems, this simple equation should be interpreted through a system-level
lens. Risk is not confined to individual model errors or isolated agent behaviors; it also arises from the
interactions among agents, users, and environments that amplify or mitigate those failures.
Additionally, a low-probability event in one subsystem may become high-risk when it cascades across
dependent components, has a severe impact upon system operations, or erodes human trust.

From a reliability-growth perspective, risk serves two key purposes:

Calibration of Priorities. By quantifying both likelihood and severity, teams can distinguish
between failures that are operationally negligible and those that are critical to safety, audit
integrity, or business continuity.

Measurement of Progress. As reliability improves and failure frequencies decrease,
residual risk should decline proportionally, especially for high-severity categories.

In audit and assurance applications, risk-aligned reliability means that metrics of system performance
(Mean Time to Repair, Fix Effectiveness Rate, Failure Frequency) are interpreted not in isolation, but in
terms of how effectively the system prevents or contains failures that could compromise assurance
quality, compliance, or public trust.

7.2 Reliability: Theory Versus Reality

In practice, reliability growth curves rarely look like the one in Figure 1, but often look like the red line in
Figure 7. Theoretical reliability growth curves are smooth because they assume that failure modes are
continuously corrected. In reality, corrective actions are often done in spurts, with many being
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implemented at once, like an OS update that repairs multiple bugs and improvements in a single
iteration.™

Systems often do not meet their desired level of reliability. When this happens the reliability growth curve
fails to have sufficient growth and never crosses the reliability threshold or desired reliability level. This
may happen for a variety of reasons, including

1. A systemis still immature and needs more failure mode corrections

2. Incomplete Failure Mode and Effects Analysis (FMEA) leading to unidentified failure modes

3. A system is mature, but additional improvements would require a fundamental technology or

structural change

4. There are too many single points of failure
The reliability threshold was poorly established, unrealistic, or misaligned with operational needs
6. Integration with users or other systems are introducing failures that are not contained within the

system and need to be addressed at the system-of-system level

o

Desired Reliabili _Level

=== Theoretical growth curve with
continuous corrections

mean time between failure

Growth curve with fix/test phases

time

Figure 7: Growth Curve with Correction Phases and Poor Performance.

7.3 Failure Mode and Effects Analysis (FMEA)

Failure Mode and Effects Analysis (FMEA) is a systematic reliability engineering methodology widely
employed across industries, including aerospace, automotive, medical devices, and increasingly in
software and Al system development. FMEA provides a structured approach for identifying potential
failure modes within a system or process, analyzing their effects on system performance, and assessing
the risk associated with each failure mode. The analysis typically involves cross-functional teams that

'8 Note behavior where reliability improves in discrete steps can be seen in complex military weapon
systems too. This is because weapon system development often has a “test-fix-test™ structure with
distinct test and corrective action phases.
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systematically examine each component or process step to determine how it might fail, the
consequences of that failure, and the likelihood of occurrence and detection.

Each failure mode is typically scored using three aspects of a failure, severity, frequency, and detectability
(probability that the event would not be detected before the user was aware of it), which are combined
into a Risk Priority Number (RPN) to guide corrective action prioritization. For complex agentic Al
systems, FMEA becomes particularly valuable as it can help identify failure modes that emerge from
agent interactions, user interactions, or unexpected behaviors that might not be apparent when examining
individual agents in isolation. The systematic nature of FMEA aligns well with the iterative development
and continuous learning characteristics of Al systems, providing a framework for capturing and
addressing failure modes as they are discovered during system operation

21 Reins Al Technical White Paper v1.0 | October 2025 | reinsai.com



About Reins Al

Marisa Ferrara Boston, PhD
Managing Partner, Reins Al

Heather Frase, PhD
Evaluation Lead, Reins Al

-

(
Effi Georgala, PhD

Reins Al assesses Generative Al applications to verify and guide them toward
efficiency, quality, and suitability standard compliance. Our services include
quality assessments, verification designs, and improvement guidance, with
expertise in rigorous market validation, product design, and quantitative
evaluations for building products that make meaningful impacts in the work of
human experts.

Reins Al was founded in 2023 by Marisa Ferrara Boston. Marisa is an expert in
designing and evaluating technology that augments the most human aspects of
our work: collaboration, organization, and the transmission of knowledge. With
successes in industries spanning financial audit, customer service,
crowdsourcing, R&D, and healthcare, she understands how years of
productivity-oriented augmentation have revolutionized the speed of business at
the cost of maintaining and enhancing organizational knowledge. She has held
roles in big tech and consulting, where she was a hands-on scientist, builder, and
manager. She holds a PhD in Cognitive Science (double major, Computer Science
and Linguistics) from Cornell University, where she focused on applying
information-theoretic measures to human cognitive models.

Heather Frase, PhD is the CEO of Veraitech and Senior Advisor for Testing &
Evaluation of Al at Virginia Tech’s National Security Institute. Her diverse career
spans roles in defense, intelligence, policy, and financial crime. Her current work
focuses on developing and supporting the evaluation of Al systems, improving
reliability, and aligning performance with real-world use. She also serves on the
OECD’s Network of Experts on Al and on the board of the Responsible Al
Collaborative, which researches and documents Al incidents.

Effi Georgala, PhD is an impact-focused Al leader who designs and delivers
reliable, human-centered systems at the intersection of research and production.
She holds a PhD in Linguistics & Cognitive Science from Cornell and brings 10+
years of experience at Microsoft and Nuance, where she led end-to-end Al
initiatives across enterprise and healthcare - from early feasibility through
validation, and iteration. Effi specializes in the reliability and repair of Al systems,
turning monitoring into reproducible fixes and measurable reliability gains.

Agent Reliability Lead, Reins Al

22

Reins Al Technical White Paper v1.0 | October 2025 | reinsai.com


https://www.reinsai.com/
https://www.reinsai.com/
https://www.reinsai.com/

	 
	Reliability and Repair for Agentic Systems 
	Authors 
	Abstract 
	 
	 
	1. Introduction: Why Reliability Matters Now 

	Artificial intelligence is moving from experimental pilots to embedded infrastructure across regulated domains such as audit, finance, and professional services. As these systems begin to make or influence decisions that carry strategic, financial and reputational risk, the question is no longer “Does the model work?” but “When does the system remain reliable and when doesn’t it?” 
	 
	Traditional assurance methods focus on validation at deployment: benchmark accuracy, policy compliance, or red-team testing. Yet once deployed, AI systems become dynamic, adaptive, and interdependent. Their reliability cannot be guaranteed by static testing alone. Failures emerge not just from model behavior, but from integration points, context drift, and unforeseen user interactions. 
	 
	In audit and finance workflows, these failures could manifest as mis-classified transactions, incomplete evidence gathering, or inconsistent reasoning chains, errors that undermine both efficiency and trust. Reliability, long treated as a hardware or safety-engineering concern, must now extend to agentic and cognitive systems that learn, interact, and evolve. 
	 
	This white paper presents a framework for Reliability & Repair: a structured process for detecting, triaging, reproducing, repairing, and verifying failures in complex AI systems. Drawing from established reliability engineering and emerging monitoring practices for large language-model systems, we demonstrate how reliability growth can be quantified, how risk can be aligned with severity, and how continuous repair transforms monitoring from a passive dashboard into an active improvement loop. 
	 
	2. The Problem: Current State of Agent Reliability 
	3. The Framework: Reliability & Repair as the Missing Link 
	3.1 What is Reliability? 
	3.2 Reliability Growth: a Path to Mature and Stable Systems 
	3.3 Severity: Some Failures Matter More 
	3.4 Relationship Between Risk, Severity, and Reliability 

	4. The Solution: From Failures to Repair Packets to Measurable Improvement 
	4.1 Monitor 
	4.2 Triage 
	4.3 Simulate 
	4.4 Repair 
	4.5 Verify 

	5. Reliability & Repair for Operational Recommendations 
	5.1 From Metrics to Oversight 
	5.1 From Over-Supervision to Right-Sized Design 

	6.  Conclusion & Call to Action 
	7. Definitions 
	7.1 Risk 
	7.2 Reliability: Theory Versus Reality 
	7.3 Failure Mode and Effects Analysis (FMEA) 

	 
	 
	About Reins AI 


