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Abstract 
Artificial intelligence is moving from experimental pilots to embedded 
infrastructure across regulated domains such as audit, finance, and professional 
services. As these systems begin to make or influence decisions that carry 
strategic, financial, and reputational risk, their reliability can no longer be assured 
by static validation alone. This white paper presents a framework for Reliability & 
Repair: a structured, repeatable process for detecting, triaging, simulating, 
repairing, and verifying failures in complex AI systems. By combining established 
reliability-engineering practices with modern AI monitoring techniques, it 
demonstrates how organizations can measure reliability growth, align risk with 
severity, and transition from passive oversight to continuous improvement. 
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1. Introduction: Why Reliability Matters Now 
Artificial intelligence is moving from experimental pilots to embedded infrastructure across regulated 
domains such as audit, finance, and professional services. As these systems begin to make or influence 
decisions that carry strategic, financial and reputational risk, the question is no longer “Does the model 
work?” but “When does the system remain reliable and when doesn’t it?” 
 
Traditional assurance methods focus on validation at deployment: benchmark accuracy, policy 
compliance, or red-team testing. Yet once deployed, AI systems become dynamic, adaptive, and 
interdependent. Their reliability cannot be guaranteed by static testing alone. Failures emerge not just 
from model behavior, but from integration points, context drift, and unforeseen user interactions. 
 
In audit and finance workflows, these failures could manifest as mis-classified transactions, incomplete 
evidence gathering, or inconsistent reasoning chains, errors that undermine both efficiency and trust. 
Reliability, long treated as a hardware or safety-engineering concern, must now extend to agentic and 
cognitive systems that learn, interact, and evolve. 
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This white paper presents a framework for Reliability & Repair: a structured process for detecting, triaging, 
reproducing, repairing, and verifying failures in complex AI systems. Drawing from established reliability 
engineering and emerging monitoring practices for large language-model systems, we demonstrate how 
reliability growth can be quantified, how risk can be aligned with severity, and how continuous repair 
transforms monitoring from a passive dashboard into an active improvement loop. 

 

2. The Problem: Current State of Agent Reliability 

Current AI-monitoring approaches treat failure as an endpoint. Dashboards flag anomalies, precision 
metrics drop, alerts fire, but the process often stops there. Failures are counted, not cured. Mean 
Time to Repair remains long; oversight is diffuse; and remediation actions are rarely captured or 
measured for effectiveness. 

Three structural gaps dominate today’s reliability landscape: 

1.​ Risk Misalignment. Failures are tracked by frequency, not by consequence. Minor deviations 
and catastrophic breakdowns are reported in the same units, obscuring which failures truly 
elevate audit or business risk. 

2.​ Lack of a Repair Loop. Monitoring pipelines detect and classify but rarely close the loop to 
simulation, correction, and verification. Without a feedback path, reliability data accumulates 
without yielding reliability growth. 

3.​ Fragmented Oversight. Human review remains essential, but is often applied uniformly rather 
than strategically. Oversight resources are spent on low-impact anomalies while high-severity 
incidents slip through delayed or unnoticed. 

As a result, organizations have visibility into what went wrong, but not a repeatable process for making it 
right. True reliability requires a transition from detection to repair. From static measurement to dynamic 
improvement. 

It is critical to note that AI-enabled system-level reliability differs fundamentally from AI 
model-level or agent-level reliability. Model-level and agent-level reliability typically focus on 
performance metrics such as accuracy, in-distribution performance, and uncertainty estimation for 
individual models or agents. In contrast, system-level reliability does not evaluate AI models or agents in 
isolation, but rather examines their integration within the broader system to assess overall system 
performance when AI components fail. 
 
System-level reliability emphasizes operational impact: measuring the severity of system failure 
outcomes and the extent to which failures impede the system's ability to perform its intended application 
or task. This system-level perspective becomes particularly critical in multi-agent architectures where 
multiple AI agents must coordinate and collaborate effectively to achieve system objectives.  This work, 
and the monitoring framework we’ve developed, is entirely focused on the latter. 
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3. The Framework: Reliability & Repair as the Missing Link 
This section provides the foundational concepts of reliability growth, a process for tracking and improving 
reliability. It will also discuss its relation to failure severity and risk. Later sections will discuss using 
formal reliability processes for complex agentic-AI systems.  

3.1 What is Reliability? 
In systems engineering Reliability has a specific and longstanding definition1. It is:  
 
Reliability: The ability of a system to  

●​ Perform its intended task 
●​ At a minimal, acceptable level of quality 
●​ Without failure 
●​ For a stated amount of [time / distance / cycles / computations] 

 

3.2 Reliability Growth: a Path to Mature and Stable Systems 
Reliability analysis and assessment practices are employed across sectors, including the U.S. Department 
of Defense (DoD),2 software companies, and manufacturers3.  Organizations also use them to assess a 
product’s achieved and potential reliability. They facilitate identifying failure modes and prioritizing the 
most impactful ones. Reliability Growth analysis is one of many reliability analytics and metrics.   
 
By tracking reliability data, failures, and failure modes, an organization can also understand a system’s 
development stage, current reliability, and potential reliability. A system’s reliability changes as the 
corrective actions for failure modes, design changes, and maintenance or new operational procedures are 
implemented. These changes in reliability data over time can create a curve–a reliability growth curve.  
 
A system’s reliability data is often fitted to one of a handful of established reliability growth models. There 
are many models for reliability growth, with two prominent models being the Duane and the Crow-AMSAA 
models. Observations4 by J. T. Duane, often cited as the originator of reliability growth curves, led to an 
observation-based or empirical model5 where the cumulative Mean Time Between Failure (MTBF, with 

5 See 
https://help.reliasoft.com/reference/reliability_growth_and_repairable_system_analysis/rg_rsa/duane_mo
del.html 

4  Duane, J.T., "Learning Curve Approach To Reliability Monitoring," IEEE Transactions on Aerospace, Vol. 
2, pp. 563-566, 1964. 

3 See 
https://www.ge.com/digital/documentation/meridium/V36160/Help/Master/Subsystems/Reliability/Reli
ability.htm#What_is_a_Reliability_Growth_Analysis_.htm  

2 See https://www.dau.edu/acquipedia-article/reliability-growth 
https://www.dote.osd.mil/Portals/97/docs/TEMPGuide/Reliability_Growth_Guidance_3.0.pdf?ver=2019-0
8-26-165237-870, and https://nap.nationalacademies.org/read/18987/chapter/2#5. 

1 Marvin Rausand and Arnljot Høyland. System Reliability Theory: Models, Statistical Methods and 
Applications. Wiley-Interscience, Hoboken, NJ, 2004. 
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failure rate = 1/MTBF) has a logarithmic behavior. Another frequently used model is Crow-AMSAA6. While 
the Crow-AMSAA model builds upon Duane’s work, it is, however, a statistics-based vs observation-based 
model.  Additionally, there are variants of the Crow model which incorporate the different ways systems 
are tested, repaired, and maintained. The Crow-AMSAA model, which DoD formalized in MIL-HDBK-1897, 
is a statistical extension of the earlier empirical Duane model, and both are widely used across 
engineering sectors. 

Reliability Growth Curves are a common and powerful systems engineering tool for understanding a 
system’s maturation throughout its development and operational lifecycle. These curves track a reliability 
metric as the system is used over time (see Figure 1). Typically, during early development stages, the 
growth curve shows a rapid improvement as major and easily identifiable issues are corrected. As the 
system matures, the curve becomes flatter. The few remaining failure modes are understood, but there 
are few corrective actions implemented because the remaining ones are difficult or costly. In this phase, 
the system’s reliability may or (unfortunately) may not meet its goals or requirements. If the system needs 
additional reliability improvement, it may require a major technological change–or a different system 
entirely.  In this flat part of the reliability growth curve, which indicates a mature, stable system, alerts 
based on both organizational requirements- and statistical-based thresholds work effectively. 
Additionally, performance optimization is more effective during a system’s mature phase. 

 
 Figure 1:  Theoretical Reliability Curve. Phases of a Basic and Notional Reliability Growth Curve. 
 
While MTBF is the most common metric used for monitoring reliability growth, other metrics can be used. 
Often, time is not a relevant unit for a system. Distance (mean miles between failures) and events (mean 
events between failures) are also common. Additionally, sometimes the failure rate (failure rate = 
1/MTBF) is tracked instead of MTBF. 

7 MIL-HDBK-189. 13 February 1981. Department of Defense. Handbook. Reliability Growth Management. 
https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=53928  

6  Developed at the U.S. Army Materiel Systems Analysis Activity. 
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3.3 Severity: Some Failures Matter More 
When tracking reliability growth, you generally do not use all failures to calculate MTBF. This is because 
many failures do not impact a system’s ability to perform its intended task at a minimum level of quality 
(Section 3.1). Typically, only the more severe failures are used for calculating reliability8. Thus establishing 
failure severity levels and definitions is a key part of monitoring and improving reliability. 
 
Context-relevant and use-specific failure severity levels are fundamental to meaningful 
reliability growth tracking because they bridge the gap between abstract technical metrics and 
organizationally-relevant operational impact. Traditional reliability analysis often employs generic severity 
classifications that fail to account for how identical failure modes can manifest vastly different 
consequences across different operational contexts and user environments. For example, a 5-minute 
processing time might represent a minor inconvenience in academic research, but could constitute a 
critical failure for a medical diagnostic system. By developing severity frameworks that reflect actual 
business impact, organizations can more accurately model reliability growth trajectories and prioritize 
corrective actions. 
 
A failure’s severity level can be defined in multiple ways. Common approaches include assessing the 
harshness of a failure’s consequences on entities (people, organizations, places, etc.) or determining how 
significantly the system’s mission or tasks were affected. Regardless of the approach (or approaches) 
chosen, the severity scoring criteria need to be clear, detailed, and documented.  
 
For the military, MIL-STD-882E9 defines severity as the magnitude (i.e. harshness) of potential 
consequences of a mishap (i.e. failure). Additionally,  the document provides definitions for four severity 
levels (negligible, marginal, critical, and catastrophic). The definitions in MIL-STD-882E are limited, but 
they have a history of being tailored10 and could be adapted to consider social implications. Table 1 
shows examples of scoring criteria for different severity categories. Note that the criteria can vary with 
the type of entity being impacted.  
 

 

10 https://apps.dtic.mil/sti/pdfs/ADA619377.pdf  

9 MIL-STD-882E, Department of Defense Standard Practice: System Safety, 11 May 2012, 
https://safety.army.mil/Portals/0/Documents/ON-DUTY/SYSTEMSAFETY/Standard/MIL-STD-882E-chang
e-1.pdf  

8 For example, your car’s burnt out dome light is a minor failure that does not impact its reliability, but a 
broken axis does. 
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Description Severity 
Category 

Failure Result Criteria Examples 

Individual Health 
Focused 

Environment 
Focused 

Financial Loss 
Focused 

Catastrophic I Death or permanent 
total disability 

Irreversible 
significant 
environmental 
impact 

Monetary loss (or 
equivalent property 
damage) equal to or 
exceeding $10M 

Critical II Permanent partial 
disability, injuries, or 
occupational illness 
that may result in 
the hospitalization 
of at least three 
personnel 

Reversible 
significant 
environmental 
impact 

Monetary loss (or 
equivalent property 
damage) equal to or 
exceeding $1M but 
less than$10M 

Marginal III Injury or 
occupational illness 
resulting in one or 
more lost work 
day(s) 

Reversible 
moderate 
environmental 
impact 

Monetary loss (or 
equivalent property 
damage) equal to or 
exceeding $100K but 
less than $1M 

Negligible IV Injury or 
occupational illness 
not resulting in a 
lost workday 

Minimal 
environmental 
impact 

Monetary loss (or 
equivalent property 
damage) less than 
$100K 

Severity criteria from MIL-STD-882E 
Table 1: Harm Severity. Example of Scoring Criteria for Severity Categories Based on Entity Impact. 
 
Severity that focuses on operations captures the degree to which a failure impacts the user’s ability to 
complete a mission or task. Table 2 has examples of operations-based failure severity. For systems that 
are expected to have continuous operations, classification as severe failures may be related to the 
amount of downtime or repair effort.11 12  Severe mission based failures may also be those that result in 
inaccurate results or poor system performance. 
 
 

12 FEMA has identified different function levels for its operations: Primary MIssion Essential Functions, 
Mission Essential Function, and Essential Supporting Activities. For FEMA, a failure’s severity level could 
be determined by which of these function levels was impacted. 
https://www.fema.gov/sites/default/files/2020-07/Federal_Continuity_Directive-2_June132017.pdf  

11 
https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/draft-failure-definitions-and-scoring-cri
teria.docx   

6​ ​ ​ ​ ​ ​ ​ Reins AI Technical White Paper v1.0 | October 2025 | reinsai.com 

https://www.fema.gov/sites/default/files/2020-07/Federal_Continuity_Directive-2_June132017.pdf
https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/draft-failure-definitions-and-scoring-criteria.docx
https://nij.ojp.gov/sites/g/files/xyckuh171/files/media/document/draft-failure-definitions-and-scoring-criteria.docx


 
 

Severity 
Category 

Failure Result Criteria Examples 

Airborne Radar Continuously Operating AI Personal Vehicle 

1 Engine failure prevents 
safe flight. 

Image generators produce 
child sexual abuse material 
(CSAM). 

A tire blows out and needs 
to be replaced. 

2 Some radar antenna 
elements are not 
working. The radar is 
operable, but its 
performance is 
degraded. 

Image generators cannot 
consistently remove types 
of objects (e.g., dogs, 
airplanes, cars, etc.) when 
requested through a text 
prompt.  

The internal GPS 
navigation system has an 
old map and needs 
updating. The system 
usually works well, but 
more recent maps would 
prevent wrong or missed 
turns. 

3 An overhead interior light 
needs replacing, but 
operations are not 
impacted. 

Created images sometimes 
have hands with 6 fingers. 

A small dent in the 
passenger door. 

Table 2:  Example of Scoring Criteria for Severity Categories Based on Mission/Task Impact. 

 

3.4 Relationship Between Risk, Severity, and Reliability 
Risk, severity, and reliability are interconnected.  Risk is the probability of a specific failure (sometimes 
called a hazard for a failure) multiplied by the severity of a failure. Reliability provides information about 
how frequent any failure of above a selective severity level (usually focusing on critical or catastrophic 
failures) occurs. Thus both risk and reliability contain some information about failure likelihood and 
severity. However, risk tends to consider specific failures individually, assigning separate risk values to 
each failure type or failure mode. Reliability is more focused on system operations as a whole and how 
often it will have failures of unwanted severity levels. Figure 2 provides a visual representation of the 
relationships. While risk score is commonly at the failure level and reliability at the system level, there are 
approaches to aggregating and disaggregating (respectively) these metrics. 
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Figure 2:  Phases of a Basic and Notional Reliability Growth Curve 
 

4. The Solution: From Failures to Repair Packets to Measurable 
Improvement 
Reliability in agentic systems cannot be achieved by detection alone.  Dashboards, alerts, and static 
monitoring can identify that failures occur, but they do not prescribe what to change or how to improve.  
To reduce risk in high-stakes domains like audit and finance, we need a structured loop that turns failures 
into repair packets: concrete, testable improvements that increase system reliability over time. 
 
This section outlines a five-part process, Monitor, Triage, Simulate, Repair, and Verify, that extends 
beyond traditional Quality Control (see Figure 3). 
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Figure 3: The typical improvement loop finds new potential within agentic systems as LLMs provide opportunities to observe and 
automate key aspects of complex behavior that were previously too costly or difficult to implement.  
 

●​ Monitoring generates triangulated evidence of failures across traces, outputs, and interactions.  
●​ Triaging converts detection into prescription by clustering incidents, calibrating severity and risk, 

and prioritizing what to correct first. 
●​ Simulating recreates failure conditions with synthetic case signatures and scenario specs so 

issues are reproducible, representative, and safe to test without relying on client data. 
●​ Repairing packages each prioritized issue into an actionable improvement unit (a repair packet), 

containing the scenario, hypothesis, targeted adaptation, acceptance tests, and representative 
synthetic data. 

●​ Verifying runs before and after tests on a simulation bench and in controlled canary 
environments to quantify impact using reliability metrics and calibrated human-oversight 
outcomes. 

 
Together, these steps create a repeatable loop that allows agentic monitoring systems not just to detect 
failures, but to improve through them, so that we can shorten Mean Time To Repair, reduce critical 
incidents, and align reliability with business risk. 
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4.1 Monitor 
Reliability begins with monitoring.  Without continuous, structured observation of agent behavior, there is 
no foundation for improvement, and no evidence for mitigating risk.  Monitoring is not just the first step in 
the loop, it grounds every other step in the process toward creating reliable systems. 
 
Often agentic systems are immature, they are unstable and prone to frequent failure with a large variety of 
root-causes or failure modes. Dashboards for immature systems have limited utility. Dashboards are 
more valuable for monitoring operational systems where visibility can highlight issues and facilitate rapid 
mitigation. However, in unreliable systems with varied failure patterns, dashboards often become 
counterproductive, generating continuous alerts without providing clear paths to resolution. Additionally, 
when failure rates are high, the dashboard essentially becomes a real-time failure log rather than a 
proactive tool. 
 
Because agentic systems can be unreliable and more akin to complex systems than traditional software, 
dashboards and single metrics are insufficient. Failures must be captured through triangulated evidence: 
traces of agent behavior, human guidance and interventions, and final outputs. Together, these streams 
expose not only whether a failure occurred, but help us automatically triage where, why, and with what 
consequence (discussed in the next section).   
 
Figure 4 diagrams our typical monitoring suite. The suite takes observations from the human-agentic 
interactions and deliverables and runs automatic evaluators (either rule-based, statistical, LLM-based, or 
combined) to determine the overall system performance. Performance for our purposes is bucketed into 
the following categories: 
 

●​ Suitability  
○​ Assesses whether the agentic system is delivering helpful, relevant guidance to users. 
○​ Typical evaluators include 

■​ Interaction assessments 
■​ Human intervention assessments (positive and negative) 
■​ Memory failures 
■​ Fallback responses 
■​ Engagement drop-off  

●​ Quality 
○​ Focuses on the accuracy and acceptability of AI outputs 
○​ Typical evaluators include 

■​ Error checks 
■​ Hallucination checks 
■​ Information verification 
■​ Output accuracy 
■​ Output completeness 
■​ Output relevancy 

●​ Efficiency  
○​ Compares overall task and review timing to determine whether the complex system is 

providing value across the overall stream. 
○​ Typical evaluators include 
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■​ Task timing measures 
■​ Latency measures 
■​ Cost measures 

 

 
Figure 4: With agentic telemetry and targeted LLM judges, we achieve triangulated evidence of failures and successes through 
quality, suitability, and efficiency, not just single thresholds.  
 
 
Monitoring systems designed with these objectives highlight variability and severe failure rather than 
mean performance. Systems that perform well on average but fail catastrophically in edge cases pose the 
highest operational risk. In our early deployments, high variance in instruction adherence and deliverable 
accuracy was far more damaging to trust than mean performance scores indicated.  Monitoring makes 
these extremes visible so they can be acted upon. 
 
A final critical design element for our monitoring systems is that they be active, not archival. Every 
captured signal flows into triage, simulation, and repair pipelines, ensuring that production data becomes 
the basis for structured reliability growth. In this approach, monitoring is not a dashboard, but the 
backbone for improvement, operational management, and risk mitigation. 

4.2 Triage 

Triaging converts detection into prescription by clustering incidents, calibrating severity and risk, and 
prioritizing what to correct first. Effective triage draws upon established reliability engineering practices, 
particularly concepts from Failure Mode and Effects Analysis (FMEA)13 14 15, to ensure systematic and 

15 Stamatis, DH (1995) Failure Mode and Effect Analysis: FMEA from Theory to Execution. ASQC Quality 
Press, Milwaukee, WI. 

14  Procedures for Performing a Failure Mode, Effects and Criticality Analysis. A. U.S. Department of Defense. 
1980. MIL–HDBK–1629A. 
https://web.archive.org/web/20110722222459/https://assist.daps.dla.mil/quicksearch/basic_profile.cfm
?ident_number=37027  

13 IEC 60812:2018, Failure modes and effects analysis (FMEA and FMECA), 10 August, 2018. 
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rigorous failure assessment. A well implemented triage enables teams to focus on the most critical 
issues first and allocate resources effectively. 

Our Reliability and Repair system’s triage process consists of four primary phases (see Figure 5): 

 
Figure 5: Triangulated evidence from system monitors feeds into automated processes for triage, risk classification, and 
prioritization.  Triage clusters, risk ranks, humans confirm. 

1. Failure Classification Failures are categorized by type and clustered into failure classes that require 
attention. Classification enables pattern recognition across similar failures and helps identify whether 
failures are isolated incidents or symptoms of systemic issues.  

2. Risk Classification Classified failures undergo risk assessment, which calibrates risk levels based on 
multiple factors which may include: 

●​ Severity: The consequence or impact of the failure on system operations, users, and 
organizational objectives 

●​ Probability: The likelihood that the failure will occur or recur 
●​ Scope/Exposure (optional 3rd axis)16: The breadth of impact, including operational scope 

across different sectors or contexts, the range of system components affected, or the duration of 
the failure's effects 

●​ Organizational Impact: Broader consequences such as regulatory compliance issues, 
reputational risk, and financial costs 

This multi-dimensional risk classification draws from FMEA methodology, which provides a systematic 
framework for assessing failure risk across multiple factors. While traditional FMEA focuses on severity, 
occurrence, and detection, this triage approach expands the risk assessment to capture the broader 
operational and organizational context. Regardless of the specific approach, the goal is to have a  
systematic, repeatable method that supports objective prioritization. 

16 All risk cubes have “Probability” and "Severity” axes, although slightly different names (e.g., “Likelihood” 
and “Consequence”) may be used. When just these two axes are used, the term risk matrix instead of risk 
cube is usually used. If an optional 3rd axis is used, it is then always called a risk cube. The quality on the 
third axis varies depending upon the sector or application. 
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3. Failure Prioritization Risk-classified failures are ranked according to their urgency and importance. 
Prioritization balances multiple considerations: 

●​ Risk levels determined in the previous phase 
●​ Available resources and technical expertise 
●​ Dependencies between failures and potential cascading effects 

Failure prioritization identifies which failures require immediate attention and which can be addressed 
later. The process acts as a filter, ensuring that the most important failures advance to resource-intensive 
investigation phases. 

4. Investigation and Response Determination Teams analyze the prioritized failures, identify root 
causes, and determine appropriate response types. This phase mirrors FMEA's corrective action 
development, where understanding the root cause enables targeted interventions. In our Reliability and 
Repair system, the response types include: 

●​ Corrective Actions: Fundamental improvements that address root causes, enhance system 
reliability, and prevent future failures 

●​ Workarounds: Process or operational changes that maintain system functionality without 
addressing underlying technical issues 

●​ Patches: Temporary technical fixes that mitigate immediate problems while more 
comprehensive solutions are developed. Typically, patches restore system operations but have 
minimal impact on reliability. 

Response determination considers not only the technical nature of the failure but also implementation 
feasibility, resource requirements, and alignment with organizational priorities. The investigation phase 
may reveal that a single root cause underlies multiple failure classes, enabling more efficient and 
effective interventions. 

This comprehensive triage approach ensures failures are systematically assessed, prioritized based on 
risk, and matched with responses appropriate to their nature and severity. Through FMEA-based 
multi-factor risk assessment and structured prioritization, triage converts detection findings into 
prioritized responses. These responses guide effective system repair and reliability improvement. 

4.3 Simulate 
Once failures are detected and triaged, the next challenge is making them reproducible.  Reproducibility is 
critical because it allows us to: 
 

●​ Verify corrective actions 
○​ Ensure that the proposed correction actually resolves the issue without introducing new 

problems. 
●​ Enable root cause analysis 

○​  By recreating the failure conditions, engineers can inspect logs, inputs, and system 
states to isolate the underlying cause. 
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●​ Facilitate consistent evaluation 

○​ Reproducible failures can be re-run across versions or environments to test regression 
and resilience. 

●​ Support knowledge transfer 
○​ Capturing reproducible examples creates training data and documentation for future 

operators, improving organizational memory. 
●​ Improve trust and governance 

○​ When stakeholders can independently reproduce failures and confirm corrections, it 
strengthens confidence in the system’s reliability process. 

​
​
Real-world data is often protected, inconsistent, or too narrow to serve as a reliable testbed. To repair 
effectively, we need to recreate failure conditions in controlled environments. This is where simulation 
becomes a critical part of the process. The addition of generative AI allows this once costly and difficult 
process to be not only feasible, but observable and intuitive. 
 
We start by extracting a case signature (the pattern of a failure) paired with a scenario specification 
(describing the context in which it occurred) (Figure 6). From this foundation we generate synthetic 
documents with data drawn from fictional but realistic companies. These synthetic assets are not copies 
of client data, but tailored recreations designed to mirror the structure, complexity, and stressors that 
triggered the original failure. The simulations also allow us to generate innumerable variants of the failure 
to help expand the use case and hone the potential repairs needed. 
 

 
Figure 6: Synthetic data recreates failure conditions, not client data. Realism and fitness-for-use are validated through simulated 
agents and synthetic benches. 
 
The cases and synthetic data are validated against a simulation bench: a controlled environment where 
agents (either client or our own replicas) can be run repeatedly under the same conditions. The bench 
ensures not only that the failures are reproducible, testable, and comparable across iterations, but also 
whether the synthetic cases are realistic enough to the real-world tasks. 
 
Using simulations has three key advantages over traditional approaches that attempt to deidentify or 
reuse the original failure data: 

●​ Safety: Simulations eliminate the need to expose or recycle sensitive client data 
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●​ Repeatability: Simulations transform one-off incidents into standardized test cases that can be 

re-run with every system update 
●​ Fitness for use: Simulations allow us to validate whether a repair actually resolves the failure 

under representative conditions 
 
By embedding simulation into the repair loop, failures become evidence-backed scenarios that drive 
measurable improvement. This recreation step transforms raw monitoring signals into the 
building blocks of repair packets. 

4.4 Repair 

Repair turns a prioritized failure into a testable, durable improvement. Each change is documented and 
verified so reliability gains are cumulative, trackable, auditable, and resistant to regression. 

A repair packet (a framework repair activity) allows for the systematization and automation of repair 
processes.  Each high-priority issue should have a repair packet, a concise unit of corrective action. A 
repair packet includes: 

●​ The failure description and scenario signature 
●​ A root-cause hypothesis 
●​ The proposed adaptation or system adjustment 
●​  Acceptance criteria and evaluation tests that define “done” 
●​  Any required human validation 

​
Over time, these packets build a knowledge base of system repairs (what failed, why, how we fixed it, and 
how we proved it), making improvements cumulative and traceable. By collecting failures, failure 
signatures, failure modes, root-cause analysis, and mitigations, knowledge can be transferred to repair 
and reliability processes for other systems.​
 
In situations where failure signatures are stable and well understood, parts of the loop can run 
automatically under explicit safety bounds. For example, switching to a fallback retrieval strategy when 
evidence-grounding score confidence falls below the defined control-limit, or auto-escalating to human 
review when risk exceeds a threshold. These automations use the same acceptance criteria as manual 
fixes and leave an audit-ready trail so actions can be reviewed and, if needed, rolled back. Self-healing17 
speeds response without bypassing governance; it augments, rather than replaces, the repair-packet 
process. 

Repair converts evidence into measurable reliability growth: scoped changes that are risk-aligned, 
auditable, and regression-protected, setting up Verify to close the loop. 

17 
https://aithority.com/machine-learning/self-healing-ai-systems-how-autonomous-ai-agents-detect-preven
t-and-fix-operational-failures/#:~:text=paramount.%20Self,and%20improve%20overall%20system%20effici
ency 
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4.5 Verify 
Repair without verification is guesswork. To demonstrate true reliability growth, every change must be 
tested, measured, and published.  Verification is the stage where improvement becomes evidence for the 
next cycle of adaptations. 
 
Each repair packet is run against a simulation bench and, where safe, controlled canaries in production.  
We measure before/after performance across a defined set of reliability metrics: 
 

●​ Mean Time To Repair (MTTR) 
○​ How quickly failures are identified, reproduced, and resolved. 
○​ This should go down as the process becomes standardized. 

●​ Fix Effectiveness Rate (FER) 
○​ Percentage of repairs that successfully eliminate the targeted failure mode 
○​ Calculation: (Number of corrective actions that resolved the failure mode / Total 

corrective actions implemented) × 100% 
○​ Tracks if the fix actually worked as intended. 

●​ Failure Frequency 
○​ How often severe failures occur in production. 
○​ We expect this to decrease within versions (although it can increase between significant 

version changes). 
●​ Calibrated Human Oversight 

○​ Whether the right failures are escalated to the right humans at the right time. 
○​ We expect this to increase with operational maturity based on the monitoring data. 

 
The output of the verification process is a manifest: 
 

●​ Manifest 
○​ What was tested 
○​ What was improved 
○​ What risks remain 

 
Once created, the manifest is published and fed into dashboards to create an audit trail for system 
maturation. This is essential for regulated domains, providing not just technical validation, but defensible 
documentation that the system is improving in a structured, measurable way. 
 
Together, the verification process and the manifest make reliability improvements auditable and usable.  
They ensure every repair is not only tested, but recorded, communicated, and tied back to business and 
audit risk. This establishes agentic system progress not as promises, but as published 
evidence of reliability growth.   
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5. Reliability & Repair for Operational Recommendations 
 
Reliability & Repair outcomes are not just technical artifacts.  They directly inform how organizations 
should design oversight. Reporting turns system metrics into operational guidance, showing where 
humans must remain in the loop and where automation can safely take over. 

5.1 From Metrics to Oversight 
The published manifest (see Section 4.5) provides the basis for oversight design. From it, we derive: 
 

●​ Reliability Growth Curves, which show whether the system is maturing or plateauing. These 
curves help leaders decide when automation can be trusted with greater autonomy. 

●​ Control Charts, which expose when error rates fall outside of statistically valid thresholds.  
These provide triggers for human review or escalation. 

●​ Oversight Manifests, which document which classes of failures have been eliminated, which 
remain rare but possible, and which still require routine human attention. 

 
 

5.1 From Over-Supervision to Right-Sized Design 
By aligning oversight to reliability evidence, organizations avoid two extremes: “over-supervision” that 
slows operations and breeds mistrust of automation, and “under-supervision” that lets severe risks 
escape unchecked. The goal is right-sized human oversight, supported by transparent evidence that 
shows where intervention adds value and where it does not. 
 
Lessons from safety-critical industries reinforce this approach. In military decision-making, aerospace, 
and nuclear operations, systems are designed so that humans intervene at critical junctions, while 
automation manages routine execution. This follows a few key principles: 
 

●​ Right place, right time. Oversights must be targeted, not universal.  Humans should remain 
in the loop for high-severity, high-impact failures, but not for minor anomalies that are 
well-controlled. 

●​ Calibrated by severity and impact. Oversight should scale with risk: catastrophic failures 
demand proactive human review; marginal anomalies may only warrant retrospective sampling. 

 
Reliability & Repair does not dictate the specific protocols for oversight, but it does provide the 
foundational evidence that enables organizations to design them. With manifest data, 
growth curves, and control charts in hand, teams can establish oversight practices that are both effective 
and efficient. 
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6.  Conclusion & Call to Action 

The Reliability & Repair framework transforms AI assurance from reactive governance to continuous 
improvement. When failures are monitored, triaged, simulated, repaired, and verified in structured loops, 
systems not only recover faster but also become demonstrably safer and more predictable over time. 

The metrics that matter: Mean Time to Repair, Fix Effectiveness Rate, Failure Frequency, 
and Calibrated Human Oversight form the quantitative backbone of that growth. Together they 
provide defensible evidence that complex agentic systems can mature just as physical and software 
systems have before them: through measured reliability improvement. 

For technical teams, this framework offers a bridge between reliability engineering and modern AI 
operations. For governance and risk stakeholders , it offers a method to align oversight with evidence 
rather than intuition. The challenge ahead is not simply to monitor intelligent systems, but to design them 
to learn from failure safely. 

Reliability and repair make that learning process observable, auditable, and ultimately trustworthy: the 
foundation upon which safe scale and resilient automation will depend. 
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7. Definitions 

7.1 Risk 

In the context of agentic and AI-enabled systems, risk represents the potential consequence of failure: the 

combined effect of how likely a failure is to occur and how severe its impact will be on the system’s 
intended mission or organizational objectives. 

Formally, it can be expressed as: 

Risk = Probability of Failure × Severity of Consequence 

However, in complex, adaptive systems, this simple equation should be interpreted through a system-level 
lens. Risk is not confined to individual model errors or isolated agent behaviors; it also arises from the 
interactions among agents, users, and environments that amplify or mitigate those failures. 
Additionally, a low-probability event in one subsystem may become high-risk when it cascades across 
dependent components, has a severe impact upon system operations, or erodes human trust. 

From a reliability-growth perspective, risk serves two key purposes: 

1.​ Calibration of Priorities. By quantifying both likelihood and severity, teams can distinguish 
between failures that are operationally negligible and those that are critical to safety, audit 
integrity, or business continuity.​
 

2.​ Measurement of Progress. As reliability improves and failure frequencies decrease, 
residual risk should decline proportionally, especially for high-severity categories.​
 

In audit and assurance applications, risk-aligned reliability means that metrics of system performance 
(Mean Time to Repair, Fix Effectiveness Rate, Failure Frequency) are interpreted not in isolation, but in 
terms of how effectively the system prevents or contains failures that could compromise assurance 
quality, compliance, or public trust. 

 

7.2 Reliability: Theory Versus Reality 
In practice, reliability growth curves rarely look like the one in Figure 1, but often look like the red line in 
Figure 7. Theoretical reliability growth curves are smooth because they assume that failure modes are 
continuously corrected. In reality, corrective actions are often done in spurts, with many being 
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implemented at once, like an OS update that repairs multiple bugs and improvements in a single 
iteration.18   
 
Systems often do not meet their desired level of reliability. When this happens the reliability growth curve 
fails to have sufficient growth and never crosses the reliability threshold or desired reliability level. This 
may happen for a variety of reasons, including 

1.​ A system is still immature and needs more failure mode corrections 
2.​ Incomplete Failure Mode and Effects Analysis (FMEA) leading to unidentified failure modes 
3.​ A system is mature, but additional improvements would require a fundamental technology or 

structural change 
4.​ There are too many single points of failure  
5.​ The reliability threshold was poorly established, unrealistic, or misaligned with operational needs 
6.​ Integration with users or other systems are introducing failures that are not contained within the 

system and need to be addressed at the system-of-system level 
 
 

 
Figure 7: Growth Curve with Correction Phases and Poor Performance. 

 

7.3 Failure Mode and Effects Analysis (FMEA) 
Failure Mode and Effects Analysis (FMEA) is a systematic reliability engineering methodology widely 
employed across industries, including aerospace, automotive, medical devices, and increasingly in 
software and AI system development. FMEA provides a structured approach for identifying potential 
failure modes within a system or process, analyzing their effects on system performance, and assessing 
the risk associated with each failure mode. The analysis typically involves cross-functional teams that 

18 Note behavior where reliability improves in discrete steps can be seen in complex military weapon 
systems too. This is because weapon system development often has a ““test-fix-test”” structure with 
distinct test and corrective action phases. 
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systematically examine each component or process step to determine how it might fail, the 
consequences of that failure, and the likelihood of occurrence and detection.  

Each failure mode is typically scored using three aspects of a failure, severity, frequency, and detectability 
(probability that the event would not be detected before the user was aware of it), which are combined 
into a Risk Priority Number (RPN) to guide corrective action prioritization. For complex agentic AI 
systems, FMEA becomes particularly valuable as it can help identify failure modes that emerge from 
agent interactions, user interactions, or unexpected behaviors that might not be apparent when examining 
individual agents in isolation. The systematic nature of FMEA aligns well with the iterative development 
and continuous learning characteristics of AI systems, providing a framework for capturing and 
addressing failure modes as they are discovered during system operation  
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About Reins AI 

Reins AI assesses Generative AI applications to verify and guide them toward 
efficiency, quality, and suitability standard compliance.  Our services include 
quality assessments, verification designs, and improvement guidance, with 
expertise in rigorous market validation, product design, and quantitative 
evaluations for building products that make meaningful impacts in the work of 
human experts. 
 
Reins AI was founded in 2023 by Marisa Ferrara Boston.  Marisa is an expert in 
designing and evaluating technology that augments the most human aspects of 
our work: collaboration, organization, and the transmission of knowledge. With 
successes in industries spanning financial audit, customer service, 
crowdsourcing, R&D, and healthcare, she understands how years of 
productivity-oriented augmentation have revolutionized the speed of business at 
the cost of maintaining and enhancing organizational knowledge. She has held 
roles in big tech and consulting, where she was a hands-on scientist, builder, and 
manager. She holds a PhD in Cognitive Science (double major, Computer Science 
and Linguistics) from Cornell University, where she focused on applying 
information-theoretic measures to human cognitive models.  
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Effi Georgala, PhD is an impact-focused AI leader who designs and delivers 
reliable, human-centered systems at the intersection of research and production. 
She holds a PhD in Linguistics & Cognitive Science from Cornell and brings 10+ 
years of experience at Microsoft and Nuance, where she led end-to-end AI 
initiatives across enterprise and healthcare – from early feasibility through 
validation, and iteration. Effi specializes in the reliability and repair of AI systems, 
turning monitoring into reproducible fixes and measurable reliability gains. 
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