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Abstract

Hash-based feature learning is a widely-used data min-
ing approach for dimensionality reduction and for build-
ing linear models that are comparable in performance
to their nonlinear counterpart. Unfortunately, such an
approach is inapplicable to many real-world data sets
because they are often riddled with missing values. Sub-
stantial data preprocessing is therefore needed to im-
pute the missing values before the hash-based features
can be derived. Biases can be introduced during this
preprocessing because it is performed independently of
the subsequent modeling task, which can result in the
models constructed from the imputed hash-based fea-
tures being suboptimal. To overcome this limitation, we
present a novel framework called H-FLIP that simulta-
neously estimates the missing values while constructing
a set of nonlinear hash-based features from the incom-
plete data. The effectiveness of the framework is demon-
strated through experiments using both synthetic and
real-world data sets.

1 Introduction

Real world data sets are often noisy, making it difficult
to develop accurate prediction models from the data.
In addition, the data are often high-dimensional and
may contain redundant or correlated features, as well
as missing values, which makes it crucial to derive a
good set of features to represent the data. This has
led to considerable interest in developing feature selec-
tion [1] and feature learning [2] methods to overcome the
limitations of using the original features of the data.

Hashing is a popular feature learning technique for
transforming high dimensional data into an alternative
representation that preserves the similarities between
instances in the original data [3]. There are two main
advantages of using hashing for feature learning. First,
it provides an effective dimensionality reduction tech-
nique, especially for applications such as large-scale im-
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age and multimedia retrieval problems [4]. Second, the
similarity-preserving property of the hash functions en-
ables the hash-based features to be used as an approxi-
mation to the features defined in the Reproducing Ker-
nel Hilbert Space (RKHS). This allows us to construct
linear models on the hash-based features with compa-
rable accuracy as their nonlinear counterpart, but with
substantial reduction in runtime complexity [5].

Hash-based feature learning methods can be gen-
erally classified into two categories, depending on how
the features are created [3]. The first category corre-
sponds to data-independent methods, which create the
features by applying randomly generated hash functions
to the data. This includes the min-hash [6], random
hyperplane-based hashing [7], and shift-invariant kernel
hashing [8] methods. One potential limitation of using
data-independent methods is that the number of hash-
based features needed to provide a good representation
of the data can be very large since the hash functions are
generated randomly. Thus, data-driven methods have
been developed as an alternative to such methods as
they can fit the salient properties of the data using a
small set of hash functions. Methods that belong to
this second category include spectral hashing [9] and
minimal loss hashing [10].

Existing hash-based feature learning methods as-
sume that the input data are complete. Any missing
values present in the data must be imputed before the
hash functions can be derived. Because the imputation
is typically performed during preprocessing, the hash-
based features created after the preprocessing may not
be optimal for the subsequent modeling task. As an
illustration, consider the example shown in Figure 1.
Suppose P denotes a data point that has a missing value
for its predictor variable (the x-axis), but the value of
its response variable (the y-axis) is known. After apply-
ing mean imputation, the data point P is shifted to its
estimated point P’, which is much larger than its true
value. This process introduces a bias into the data set,
resulting in a new regression model (represented by a
solid line in the diagram) that deviates from its true
model (represented by a dashed line). At first glance,
the bias may seem quite small. However, it may become
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Figure 1: Effect of mean value imputation on regression.

an issue with more missing values in the data set. If P
is imputed in a way that takes into account the effect of
the imputation on the response variable, the regression
model would be less affected by biases due to the impu-
tation. This is the key motivation behind our proposed
framework called H-FLIP, which combines missing value
imputation with hash-based feature learning in a way
that preserves the relationship between the hash-based
features and the response variables of the data.

Many existing hash-based feature learning methods
are designed for discrete-valued data, such as those
encountered in image classification problems [4]. In
this paper, we investigate the application of hash-based
feature learning for regression problems, in which the
hash-based features are continuous rather than binary.
In addition, most of the existing methods create the
hash-based features as a linear combination of the
original features. These methods are ineffective for
more complex prediction tasks, where the relationship
between the response and predictor variables is often
non-linear. Previous work has shown that the inner
product of random Fourier features provides a good
approximation to the shift-invariant kernels used for
building nonlinear models [5]. However, a relatively
large number of such features is needed to provide a
succinct representation of the data since the Fourier
features are generated randomly. To overcome this
limitation, we train a set of hash functions to fit the
response variable using random Fourier features. This
enables our framework to model nonlinear relationships
with a small set of supervised hash functions. Our
framework can thus be regarded as a hybrid method
that embeds a data-independent approach, i.e., random
Fourier features, into a supervised learning setting.

In summary, the main contributions of this paper
are as follows:

• We developed a supervised feature learning frame-
work for regression problems using nonlinear, ran-
dom Fourier features as its basis functions.

• We extended this framework to handle incomplete
data by enabling the missing value imputation and
hash-based feature learning to be performed jointly.

• We demonstrated the efficacy of our approach
through extensive experiments using both synthetic
and real-world data sets. Our empirical results
suggested that the framework is more effective than
the approach of imputing the missing values before
applying feature learning in 7 out of 9 real-world
data sets evaluated in this study.

2 Related Work

Feature learning [11] is the task of extracting an alter-
native feature representation of a given data set. Classi-
cal methods such as principal component analysis were
developed to create features that preserve variability
in the original data. These methods are mostly un-
supervised, and thus, provide no guarantee about the
effectiveness of their extracted features for prediction
problems. More recently, methods such as deep learn-
ing [12, 13] have been proposed to extract hierarchical
features from data. Although such methods have been
successfully applied to applications such as image clas-
sification [12], they are expensive to train and require
considerable human effort to design the right architec-
ture for a given prediction problem.

Hashing is another feature learning technique that
has attracted considerable attention in recent years.
The goal of hash-based feature learning is to transform
the data into easily computable features that preserve
the underlying properties of the data. For example, the
Min-hash method [6] was designed to create features
that preserve the Jaccard similarity between instances.
Hash-based methods have also been developed for other
similarity measures [7, 9, 10]. However, they were
mostly designed to represent complete data with binary
hash codes unlike the framework proposed in this paper.

3 Preliminaries

This section reviews some of the fundamental concepts
underlying the framework proposed in this paper.

3.1 Support Vector Regression (SVR) Support
vector regression is a widely-used method to solve large
scale prediction problems. The goal of SVR is to
learn a linear function f that fits the training set
D = {xi, yi}Ni=1by solving the following constrained
optimization problem:

min
w,b

1

2
‖ w ‖2 +C

∑
i

(ξi + ξ∗i )

s.t. −ε− ξ∗i ≤ yi −wTxi − b ≤ ε+ ξi,
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Table 1: Comparison among the various regression
methods for modeling lake water quality in terms of
their mean square prediction error (MSE).

Method\Response variable TP TN Chla Secchi

Multiple linear regression 1.39 2.39 1.31 0.85
Ridge regression 0.78 0.72 0.71 0.59
Lasso regression 0.79 0.74 0.72 0.58

Linear SVR 0.78 0.71 0.71 0.58
Nonlinear SVR (RBF) 0.76 0.69 0.71 0.56

where ξi and ξ∗i are the slack variables that can be used
to relax the error bounds on the training instances while
C controls the trade-off between minimizing the training
error and the magnitude of w.

The linear SVR formulation can be extended to a
nonlinear setting by projecting the original features x
to a higher dimensional feature space, Φ(x), such that
the inner product between instances in the new, pro-
jected space is equivalent to computing their similarity
in the original space using a nonlinear kernel function.
For example, the Gaussian radial basis function (RBF),

k(xi,xj) = exp[−‖xi−xj‖2
2σ2 ] is a popular choice for non-

linear SVR. The implicit mapping to a high-dimensional
feature space facilitated by the kernel function enables
SVR to capture non-linear dependencies in the data.

To illustrate the advantages of using SVR, we have
compared its performance to other regression methods
on four lake water quality data sets obtained from the
LAGOS database [14]. Details about the data sets can
be found in Section 5. Table 1 shows the mean square
error (MSE) obtained using 10-fold cross validation.
Due to the noise present in the data, methods such
as multiple linear regression may overfit the training
data resulting in its high error rate. The performance
of linear SVR is either comparable to or better than
the results obtained using lasso and ridge regression.
However, the best results are obtained using nonlinear
SVR with Gaussian RBF kernel.

3.2 Random Fourier Features (RFF) Despite its
superior performance in terms of modeling complex re-
lationships in data, the nonlinear SVR method scales
poorly with increasing data set size. This is because the
method requires considerable computational resources
to compute and store the kernel matrices. To overcome
this limitation, Rahimi and Recht [5] proposed a map-
ping function known as random Fourier feature:

(3.1) φ(x) =
√

2/p cos(Rx + t)

where R ∈ <p×d is a random matrix drawn from a
standard normal distribution while t ∈ <p is a random
vector drawn from a uniform distribution between [0,

(a) Accuracy (b) Run time

Figure 2: Average runtime and accuracy comparison for
linear SVR with raw features, nonlinear SVR with raw
features, and linear SVR with RFF.

2π]. Previous research has shown that the RFF provides
an unbiased estimate of the RBF kernel in the original
feature space [5]. Thus, instead of applying nonlinear
SVR with an RBF kernel, comparable performance can
be achieved by training a linear SVR on the RFF.

To illustrate this, Figure 2 compares the aver-
age runtime and accuracy for the following three ap-
proaches: (i) linear SVR trained on the original features,
(ii) nonlinear SVR trained on the original features, and
(iii) linear SVR trained on the random Fourier features.
The experiment was performed on the lake water quality
data set with total phosphorous (TP) as the response
variable. For linear SVR with RFF, we vary the number
of random Fourier features from 1 to 5000, each repeated
10 times. The average MSE and runtime using 10-fold
cross validation are shown in Figure 2. The results sug-
gest that the MSE of SVR decreases with increasing
number of RFF, approaching the results of nonlinear
SVR. Although its runtime increases with larger number
of features, it is still significantly lower than the runtime
for nonlinear SVR. This result shows the advantage of
using RFF as hash-based features for training a linear
SVR with comparable accuracy as nonlinear SVR. Nev-
ertheless, the number of hash-based features needed is
still large (in the order of several thousands) to produce
an error rate that is comparable to nonlinear SVR.

3.3 Matrix Completion Matrix completion is an
approach for recovering missing values by assuming that
the original data is a low rank matrix. Let A ∈ <N×d
be the original data matrix with incomplete entries and
P : RN×d → Rp be a linear map that identifies indexes
of the non-missing entries in the matrix. The matrix
completion approach is often cast into the following
optimization problem [15, 16]:

(3.2) min
X

1

2
‖ P(X)− P(A) ‖22 +µ ‖ X ‖∗
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Figure 3: Comparing linear and nonlinear SVR with
mean imputation (MI) and matrix completion (MC).

where ‖ · ‖∗ denote the trace-norm of a matrix, which
is the sum of its singular values. Intuitively, the pre-
ceding objective function seeks to learn a “complete”
matrix X of minimal rank that is consistent with the
non-missing entries of the original data A. The reg-
ularization parameter µ controls the trade-off between
maintaining the consistency of the non-missing entries
and minimizing the rank of the recovered matrix.

To demonstrate the effectiveness of this method, we
performed an experiment on the lake water quality data
set using total chlorophyll-a (chla) as the response vari-
able. We introduced missing values randomly into the
data set, varying the percentage of missing values from
20% to 80%. We then applied both mean imputation
and matrix completion to the altered data followed by
linear and nonlinear SVR. The results shown in Figure
3 suggested that matrix completion enabled the missing
values to be recovered at a higher precision compared to
the mean imputation method. These results hold true
for all percentages of missing values introduced and for
both linear and nonlinear SVR.

4 Proposed Framework

This section describes the detailed formulation of our
proposed hash-based feature learning framework. The
unique characteristics of our framework are as follows:

1. It uses a set of sparse random Fourier features as its
basis function for creating the hash-based features.
The RFF enables the framework to capture nonlinear
relationships in the data.

2. It applies supervised learning to identify the best
combination of RFF that fits the response variable.
Our framework is thus a hybrid method that com-
bines data-independent with data-driven methods.

3. It uses trace-norm regularization to deal with missing

values present in the data. Our framework would
simultaneously estimate the missing values while
learning the hash-based features.

The resulting framework is called H-FLIP, which
stands for Hash-based Feature Learning for
IncomPlete data. Although RFF has been used
to approximate shift-invariant kernels [5], it has not
been used for supervised feature learning. Thus, we
first present our supervised hash-based feature learning
framework in Section 4.1. The framework is extended
to incomplete data in Section 4.2.

4.1 Supervised hash-based feature learning us-
ing RFF Consider a data set D = {xi, yi}Ni=1, where
each xi ∈ <d denote a set of values for the predictor
variables, yi is the corresponding value for the response
variable, and N is the number of observations. Our goal
is to learn a set of hash functions H = {hk}Kk=1 where
each function hk : <d → < transforms the original data
in d-dimensional feature space to a 1-dimensional fea-
ture space. Instead of using conventional linear hash
functions, we employ RFF as our basis function in order
to capture nonlinear relationships in the data. Formally,
the kth hash function is defined as

(4.3) hk(xi) = wT
k φk(xi),

where each basis function φk(·) : <d → <p corresponds
to a p-dimensional RFF defined in Equation (3.1). The
parameters of the hash functions are trained to fit the
training data D using a supervised learning algorithm.

Transforming the original data D to K RFF re-
quires O(NKdp) operations, which is expensive when
the number of features in the original (d) and projected
(p) feature space are large. To reduce the computations,
instead of using all d features, each hash function φk is
generated by randomly selecting a subset of the d fea-
tures and applying the nonlinear transformation given
in Equation (3.1) to the selected features. The creation
of sparse RFF is illustrated by the following example.

Example 1. Let {x1, x2, x3, x4} be the set of predictor
variables associated with the data instance x. Consider
the following RFF, φ(x) = cos(Rx + t), where

R =

 0.3 −0.5 0 0
−0.1 0.7 0 0
0.2 0.6 0 0

 , t =

 1.2
2.8
0.66

 .
This is a sparse RFF as it depends on x1 and x2 only.

The sparse RFF forms the basis function of our su-
pervised hash-based features defined in Equation (4.3).
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The weights of the hash functions are estimated by op-
timizing the following objective function:

J(W) =
1

2

K∑
k=1

N∑
i=1

(hk(xi)− yi)2 + λ

K∑
k=1

‖ wk ‖22

=
1

2

K∑
k=1

∥∥∥∥Φk(X)wk − y

∥∥∥∥2
2

+ λ ‖W ‖2F ,(4.4)

where W ∈ <p×K = [w1 w2 · · ·wK ] denote the weight
matrix associated with the supervised hash functions
and Φk(X) ∈ <N×p is the RFF representation of the
input data matrix. As the K hash functions can be
decoupled from one another in the formulation given in
Equation (4.4), the parameter vector wk of each hash
function can be solved independently as follows.

(4.5) wk = arg min
v

1

2
‖ Φk(X)v − y ‖22 +λ ‖ v ‖22

The closed form solution for wk is given by:

wk =

[
Φk(X)TΦk(X) + λI

]−1
Φk(X)Ty

where I denotes the identity matrix.

4.2 Hash-based feature learning for incomplete
data (H-FLIP) We now extend the previous formula-
tion to data with missing values. Let A be the incom-
plete data matrix and X be the imputed data matrix.
Furthermore, let X = [Xl; Xu], where Xl is the set of
training instances whose response variable values are
known and Xu is the set of test instances whose re-
sponse variable values are unknown.

H-FLIP is designed to simultaneously learn the im-
puted matrix X and the weight matrix W of the sparse
RFF by minimizing the following objective function:

(4.6) min
W,X

F (X,W) = F1(X) + αF2(Xl,W)

where

F1(X) =
1

2
‖ P(X)− P(A) ‖2F +µ ‖ X ‖∗

F2(X,W) =
1

2

K∑
k=1

‖ Φk(Xl)wk − y) ‖22 +λ ‖W ‖2F ,

F1 measures the error in missing value imputation while
F2 measures the prediction error of using the hash func-
tion to fit the response variable y. The regularization
parameter α controls the trade-off between minimizing
both factors. A trace-norm regularization is applied to
ensure that the recovered matrix X has a low rank.
As the missing value imputation must be performed on

Algorithm 1 H-FLIP Framework

Input: A,y,
Output:X,W
Initialize X(0) by solving Equation (3.2).
Generate random matrices {Rk} and T.
Create RFF: Φk(Xl) =

√
2/p cos(XlR

T
k + T)

Update W using Equation (4.9).
while stopping condition is not met do

Initialize γ(1) = γ(0) = 1 and X(1) = X(0).
for k = 1 to maxIter do

Y(k) ← X(k) + γ(k−1)−1
γ(k)

[
X(k) −X(k−1)

]
Z(k) ← Y(k) − 1

τ(k)∇f(Y(k))

[U,Σ,VT ]← SVD (Z(k)))
X(k+1) ← UDµ/τ(k)(Σ)VT

Compute τk using line search.

γ(k+1) ← 1+
√

1+4(γ(k))2

2
end for
X(0) ← X(k+1).
Update W using Equation (4.9)

end while
return X,W

the entire data set, F1 involves instances from both the
training and test sets while F2 involves only instances
from the training set.

An alternating minimization scheme is employed to
solve the objective function given in Equation (4.6). A
pseudocode of the H-FLIP framework is shown in Algo-
rithm 1. The framework alternates between optimizing
for X and W, until the stopping criteria is satisfied.
The optimization steps are outlined below.

4.2.1 Updating X When W is fixed, the objective
function can be simplified as follows:

F (X) =
1

2
‖ P(X)− P(A) ‖2F

+
α

2

K∑
k=1

‖ Φk(Xl)wk − y ‖22 +µ ‖ X ‖∗(4.7)

Since the trace-norm regularization is a non-smooth
function, we separate the objective function into a sum
of two functions, F (X) = f(X) + g(X), where

f(X) =
1

2
‖ P(X)− P(A) ‖2F +

α

2

K∑
k=1

‖ Φkwk − y ‖22

g(X) = µ ‖ X ‖∗

We apply the accelerated proximal gradient descent
method [15] to solve for X. Let X(k) denote the most
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recent estimate after k iterations. The following two
steps are performed to update the estimate.

1. Apply accelerated gradient descent method to the
smooth part of the objective function.

Y(k) = X(k) +
γ(k−1) − 1

γ(k)

[
X(k) −X(k−1)

]
Z(k) = Y(k) − 1

τ (k)
∇f(Y(k))

The above equation reduces to the update formula
for standard gradient descent when ∀k : γk = 1.

2. Apply singular value shrinkage operator to Z(k). Let
Z(k) = UΣVT , where Σ = diag(σi) is a diagonal
matrix containing the singular values of Z(k) while
U and V are matrices containing its left and right
singular vectors. We update X as follows:

X(k+1) = UDµ/τ(k)(Σ)VT(4.8)

where Dν(Σ) is a diagonal matrix whose i-th element
is max(0, σi − ν). This is equivalent to applying a
threshold µ/τ (k) to each singular value of Z(k).

The step size of the gradient descent is determined
dynamically using a line search algorithm [15]. The
matrix X is updated until one of the following stopping
conditions is satisfied: (1) the maximum number of
iterations is reached, (2) ‖X(k)−X(k−1)‖F /‖X(k)‖ < ε,
or (3) the objective function given in Equation (4.7) no
longer decreases significantly.

4.2.2 Updating W When X is fixed, we update W
by minimizing the following objective function:

min
W

1

2

K∑
k=1

‖ Φk(Xl)wk − y) ‖22 +λ ‖W ‖F

This is equivalent to solving the objective function for
supervised hash-based feature learning as presented in
Section 4.1. W can be updated using only instances
that belong to the training set in the following way:

(4.9) wk = (Φk(Xl)
TΦk(Xl) + λI)−1Φk(Xl)

Ty

4.3 Predictive modeling on hash based features
Once the hash-based features are learned, we can train
a linear regression model such as SVR on the data. If
there are no missing values in the test data, we can
simply extract their random Fourier features and apply
the supervised hash functions given in Equation (4.3)
to generate the hash-based features. The linear SVR
model can then be applied to predict the values of the
test data.

Table 2: Summary of data sets.

Response variable TP TN Chla Secchi

# instances (lakes) 3694 1961 4834 4684
# features 356 356 356 356

Mean 37.5 821.2 20.9 2.6

Std deviation 68.2 729.6 36.9 1.86

(a) Lake water quality data

Data Housing Wine Parkinson News Concrete

# instances 506 4898 5875 5000 1030
# features 14 12 26 61 9

(b) UCI machine learning data

If the test data is incomplete, their missing values
are simultaneously imputed along with the training data
during the training phase of H-FLIP. This allows us
to apply linear SVR to the random Fourier features
extracted from the imputed test data. Nevertheless,
one potential limitation of our framework is that it has
to be re-trained whenever new data with missing values
become available. An incremental version of H-FLIP is
thus needed to overcome this limitation but this will be
a subject for future research.

5 Experimental Evaluation

This section describes the experiments conducted to
evaluate the performance of our proposed framework.

5.1 Data Sets We have performed experiments us-
ing both synthetic and real-world data sets.

5.1.1 Synthetic data We created a rank-20 data
matrix X containing 5000 instances (rows) and 100
predictor variables (columns) in the following way: X =
PQ + 0.1E, where P ∈ <5000×20, Q ∈ <20×100, and
E ∈ <5000×100. The entries of the matrices P, Q
and E are generated randomly from a standard normal
distribution. Let xi denote the i-th predictor variable.
The value of the response variable y is computed as
follows: y = x1x2 + x10x11 + x12 + N (0, 0.1). All the
columns in X and the vector y are standardized to have
zero mean and unit variance.

5.1.2 Lake water quality data We used several
lake water quality data sets from LAGOS [14], which is a
geo-spatial database that contains landscape characteri-
zation features and lake water quality data measured at
multiple scales covering 17 states in the United States.
We used four lake water quality variables—total phos-
phorus (TP), total nitrogen (TN), total chlorophyll-a
(chla) and Secchi depth (Secchi)—as response variables,
creating 4 distinct data sets for our experiments. Our
goal was to predict the response variables for each lake
based on a set of predictor variables (features) that
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included land cover, land use, and climate variables.
Since there are multiple lake water quality measure-
ments taken at different times for each lake, we com-
puted a single value for each lake by taking the mean of
all measurements during the summer months after 2010.
The statistics for each data set are shown in Table 2.

5.1.3 Benchmark data from UCI Machine
Learning Repository The benchmark datasets used
include housing [17], wine [18], Parkinson [19], online
news [20], and concrete strength [21] (see Table 2).

5.2 Experimental Setup We performed our exper-
iments on a Dell PowerEdge R620 server with 2.7GHz
Dual Intel Xeon processor. The proposed framework
and other baseline methods were written in Matlab.

5.2.1 Baseline Methods. First, we compare
our proposed supervised hash-based feature learning
method for complete data against the following three
baseline algorithms: (1) linear SVR trained on the raw
features, (2) nonlinear SVR trained on the raw features,
(3) linear SVR trained on the random Fourier features.

Second, we compare H-FLIP, which is an extension
of our supervised hash-based framework to deal with
incomplete data, against the following three methods:

• MC+Raw : Missing values are imputed during pre-
processing using matrix completion. A linear SVR is
then trained on the imputed data.

• MC+PCA: Missing values are imputed during pre-
processing using matrix completion. We then apply
principal component analysis (PCA) to extract fea-
tures from the imputed data. A linear SVR is then
trained to fit the PCA-reduced data.

• MC+RFF This is similar to the previous two ap-
proaches except we use random Fourier features as
feature learning on the imputed data. A linear SVR
is then trained on the unsupervised RFF.

For a fair comparison, we extract an equal number of
features for all the methods, unless specified otherwise.
Specifically, the number of PCA components, unsuper-
vised RFF, and supervised hash-based features are set
to 50. For H-FLIP, we first project the data to 200 sparse
RFF before reducing it to the 50-dimensional hash-
based features using our supervised learning framework.
The regularization parameter λ in H-FLIP is determined
using cross validation, while the parameter α in Equa-
tion (4.6) is set to 0.01. We apply SVR to the features
generated by the baseline and proposed methods. The
hyper-parameters of SVR are chosen using nested cross
validation [22], in which an inner 3-fold cross validation
is performed for hyper-parameter tuning and an outer 5-
fold cross validation is performed for model assessment.

Figure 4: Average MSE for linear SVR with raw
features, nonlinear SVR with raw features, linear SVR
with RFF features, and linear SVR with supervised
hash-based features on complete synthetic data.

5.2.2 Evaluation Metrics. We consider both the
imputation error as well as the prediction accuracy of
the induced SVR models. To assess the error in missing
value imputation, let Ac be the true complete data
matrix and X be the estimated (imputed) matrix. The
imputation error is computed as follows:

Imputation error = ‖P(X)− P(Ac)‖22/‖P(Ac)‖22.

We also evaluate the performance of the SVR models
in terms of their mean square prediction error, MSE =
1
N

∑N
i=1(ŷi − yi)

2, where ŷi is the predicted response
value for the i-th data instance and yi is its true value.

5.3 Experimental Results This section summa-
rizes the results of our experimental evaluation.

5.3.1 Results for Synthetic Data We compared
the proposed framework against linear SVR on raw fea-
tures, nonlinear SVR (with RBF kernel) on raw fea-
tures, and linear SVR on unsupervised RFF features.
As expected, Figure 4 shows that linear SVR on the
raw features is worse than other methods as it fails to
capture the nonlinear relationships in the data. In addi-
tion, the accuracy of linear SVR on both RFF and our
supervised hash-based features improves as the number
of features increases. More importantly, they are com-
parable to the accuracy of nonlinear SVR. This sup-
ports the rationale for using RFF to capture nonlin-
ear dependencies in the data. Finally, comparing RFF
against the proposed supervised hash-based features, we
observe that the supervised approach does not require
as many features to achieve high accuracy compared
to unsupervised RFF. This justifies the case for using
supervised hash-based feature learning for nonlinear re-
gression problems.
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Table 3: Imputation error for synthetic data

Percent of missing value 10% 20% 30%

Mean imputation (MI) 1.0002 1.0002 1.0003
Matrix completion (MC) 0.0271 0.0276 0.0280

H-FLIP 0.0273 0.0280 0.0290

Table 4: MSE of linear SVR on synthetic data

% missing 10% 20% 30% #features

MC+Raw 0.9680 0.9683 0.9679 100
MC+PCA 0.9681 0.9683 0.9683 50

MC+RFF 0.8960 0.8887 0.8997 50

H-FLIP 0.4596 0.4610 0.4626 50

Next, we add missing values randomly into the
synthetic data and compare the imputation error of
H-FLIP against methods that apply mean imputation
and matrix completion during preprocessing. The
results in Table 3 suggest that mean imputation has the
highest imputation error while matrix completion has
the lowest error. The imputation error of H-FLIP is very
close to the imputation error for matrix completion,
which is not surprising as H-FLIP is designed not only to
recover the incomplete data, but also to fit the response
variable as accurately as possible. The imputation
errors of both matrix completion and H-FLIP also do not
change significantly as we vary the percent of missing
values from 10% to 30%, which shows the robustness of
our proposed framework.

We also compare the MSE values of the regression
models. The results in Table 4 suggest that the MSE for
raw features and PCA-induced features are worse than
unsupervised RFF. H-FLIP outperforms all the baseline
methods because it learns the appropriate nonlinear
features and imputes the missing values without adding
significant bias that could degrade the performance of
the regression model.

5.3.2 Results for Lake Water Quality Data
First, we report the results of applying the various meth-
ods to the complete lake water quality data with no
missing values using Secchi as response variable. Figure
5 shows that the MSE for linear SVR on the supervised
hash-based features is slightly better than linear SVR
on the raw features. More importantly, the supervised
hash-based features can achieve a low MSE with fewer
number of features compared to unsupervised RFF.

We repeat the experiments by adding 20% missing
values to the predictor variables and compare the MSE
for H-FLIP against the baseline methods. The results
shown in Table 5 suggest that MC+RFF with only 50
features performs the worst, which is consistent with
our previous observation that a large number of RFF

Figure 5: Comparing average MSE of linear SVR on the
complete Secchi data.

Table 5: MSE of linear SVR for lake water quality data

TP TN Chla Secchi #features

MC+Raw 0.78 0.73 0.72 0.60 356

MC+PCA 0.81 0.75 0.74 0.63 50
MC+RFF 0.84 0.82 0.81 0.70 50
MC+RFF 0.79 0.74 0.72 0.60 300

H-FLIP 0.79 0.70 0.71 0.58 50

Table 6: MSE of linear SVR for UCI data with 20%
missing values.

Method Housing Wine Parkinson News Concrete

MC+Raw 0.35 0.76 0.80 0.92 0.50
MC+PCA 0.36 0.83 0.97 0.94 0.67

MC+RFF 0.38 0.76 0.85 0.94 0.42
H-FLIP 0.32 0.69 0.74 0.92 0.36

is needed to effectively represent the data. As we
increase the number of RFF from 50 to 300, the MSE
improves significantly, comparable to the results for
MC+Raw. Nevertheless, H-FLIP with 50 hash-based
features outperforms all other methods in 3 of the 4
data sets. In fact, the MSE of linear SVR with H-FLIP

on the incomplete data is comparable to the results for
nonlinear SVR on the complete data (see Table 1).

5.3.3 Results for UCI Benchmark Data The re-
sults in Table 6 show that H-FLIP outperforms the base-
line methods in 4 of the 5 data sets. The improvement
in H-FLIP is more significant here compared to the lake
data as there are more nonlinear relationships in these
data sets. Nonlinear SVR has a lower MSE than linear
SVR by more than 0.10 in 3 of the 5 UCI benchmark
data but in none of the lake data (see Table 1).

Copyright © by SIAM
Unauthorized reproduction of this article is prohibited

685

D
ow

nl
oa

de
d 

02
/0

3/
25

 to
 1

08
.4

9.
18

7.
21

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



(a) RFF basis functions (b) Hash-based features

Figure 6: MSE of H-FLIP when varying the number of
basis functions and supervised hash-based features

5.4 Sensitivity Analysis Using total nitrogen (TN)
as response variable, we investigate how sensitive the
H-FLIP results are when varying the number of hash
functions (K) and the length of each sparse RFF (p).
We first vary the number of hash functions from 5 to 300
while fixing the length of each sparse RFF to be 200.
The results shown in Figure 6a suggest that the test
MSE is not sensitive to the number of hash functions.
Next, we vary the length of the sparse RFF from 10
to 300 while fixing the number of hash functions to be
50. The results given in Figure 6b suggest that the test
error of H-FLIP is not that sensitive to the increasing
length of the RFF compared to its training error.

6 Conclusion

This paper presents H-FLIP, a hash-based feature learn-
ing framework for incomplete data. The framework is
designed to train a small set of hash functions using
random Fourier features to effectively model nonlinear
relationships in the data while simultaneously imputing
all the missing values in the data.
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