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Abstract

The United States (U.S.) has faced major environmental changes in recent decades,

including agricultural intensification and urban expansion, as well as changes in

atmospheric deposition and climate—all of which may influence eutrophication of

freshwaters. However, it is unclear whether or how water quality in lakes across

diverse ecological settings has responded to environmental change. We quantified

water quality trends in 2913 lakes using nutrient and chlorophyll (Chl) observations

from the Lake Multi-Scaled Geospatial and Temporal Database of the Northeast

U.S. (LAGOS-NE), a collection of preexisting lake data mostly from state agencies.

LAGOS-NE was used to quantify whether lake water quality has changed from

1990 to 2013, and whether lake-specific or regional geophysical factors were

related to the observed changes. We modeled change through time using hierarchi-

cal linear models for total nitrogen (TN), total phosphorus (TP), stoichiometry (TN:

TP), and Chl. Both the slopes (percent change per year) and intercepts (value in

1990) were allowed to vary by lake and region. Across all lakes, TN declined at a

rate of 1.1% year�1, while TP, TN:TP, and Chl did not change. A minority (7%–16%)

of individual lakes had changing nutrients, stoichiometry, or Chl. Of those lakes that

changed, we found differences in the geospatial variables that were most related to

the observed change in the response variables. For example, TN and TN:TP trends

were related to region-level drivers associated with atmospheric deposition of N; TP

trends were related to both lake and region-level drivers associated with climate

and land use; and Chl trends were found in regions with high air temperature at the

beginning of the study period. We conclude that despite large environmental

change and management efforts over recent decades, water quality of lakes in the

Midwest and Northeast U.S. has not overwhelmingly degraded or improved.

K E YWORD S

eutrophication, hierarchical linear models, lakes, multiscaled drivers, nutrients, random forest,

stoichiometry, water quality

1 | INTRODUCTION

Despite continuing efforts to reduce surface water nutrient inputs,

environmental changes that influence, and most likely exacerbate,

lake eutrophication are occurring simultaneously across multiple spa-

tial scales. At the watershed scale, nutrient delivery to surface

waters may be enhanced by ongoing land use changes that include

urban expansion (Alig, Kline, & Lichtenstein, 2004), agricultural
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intensification (Lin, 2015; Matson, Parton, Power, & Swift, 1997;

Rudel et al., 2009), and grassland conversion to biofuel crops (Wright

& Wimberly, 2013). At broad scales, climate change is warming lakes

(O’Reilly et al., 2015), and the increasing frequency of extreme pre-

cipitation events in many regions is likely transporting more nutrients

to surface waters (Allan & Soden, 2008; Dalo�glu, Cho, & Scavia,

2012). Though atmospheric nitrate deposition has declined in the

United States, ammonia deposition is increasing, particularly in the

agricultural Midwest (Du, de Vries, Galloway, Hu, & Fang, 2014).

These environmental changes are not evenly distributed in time or

space, but all are expected to exacerbate eutrophication conditions

in surface waters.

Attempts to reduce nonpoint pollution to surface waters include

both local agricultural management strategies and broad-scale policy

changes, and there is limited understanding if these efforts translate

to changes in water quality across regional to continental extents.

Local agricultural management strategies are typically implemented

at the scale of individual properties or watersheds (Shortle, Ribaudo,

Horan, & Blandford, 2012; Wardropper, Chang, & Rissman, 2015),

and case studies of these conservation strategies (e.g., no-till, ripar-

ian buffer establishment) have shown reduced nutrient loading to

freshwaters (Her, Chaubey, Frankenberger, & Smith, 2016; Lowrance

& Sheridan, 2005). Best management practices (BMPs) are highly

variable in effectiveness, and there is evidence that these local con-

servation efforts do not improve water quality at broader spatial

extents (Sharpley, Kleinman, Jordan, Bergstr€om, & Allen, 2009;

Tomer & Locke, 2011). In contrast to these local-scale management

actions that are typically implemented in piecemeal fashion, broad-

scale policies have the potential to influence water quality in a larger

number of systems. For example, amendments to the Clean Air Act

in 1990 to curb acid rain have reduced atmospheric nitrogen (N)

deposition in the Northeast U.S. (Lehmann, Bowersox, & Larson,

2005), where modest reductions in surface water nitrate have been

documented (Driscoll, Driscoll, Roy, & Mitchell, 2003). Given the

substantial costs of efforts to manage water quality, e.g., the U.S.

Department of Agriculture (USDA) spends $3.5 billion annually to

incentivize agricultural conservation (Tomer & Locke, 2011), it is

imperative to understand broad-scale changes in water quality and

how they relate to management actions at different spatial scales.

How nutrient processing and retention within an individual lake

are affected by these multiscaled mitigation efforts and ongoing envi-

ronmental threats is a function of its specific morphology and hydrol-

ogy (Edmondson, 1961; Vollenweider, 1975). To add to this

complexity, N and phosphorus (P) have distinct biogeochemical cycles

that may result in divergent responses to management actions (Ger-

son, Driscoll, & Roy, 2016; Stow, Cha, Johnson, Confesor, & Richards,

2015). Lake productivity can be N and/or P limited, which can alter

the lake-specific response to changing nutrients (Elser et al., 2007).

Further, in addition to absolute concentrations, relative concentra-

tions (i.e., N:P ratios) may influence productivity or likelihood of

harmful cyanobacterial blooms (Paerl et al., 2016). Lake and nutrient-

specific processes that interact with environmental change further

complicate our ability to quantify long-term trends in water quality.

Consistent with the expectation of complex responses to environ-

mental change, several recent large-scale studies demonstrate the

occurrence of contrasting water quality trends within and across

regions and water quality parameters. For example, both increasing

and decreasing water clarity has been documented within regions of

the Midwest and Northeast U.S., but the majority of lakes exhibit no

change (Canfield et al., 2016; Lottig et al., 2014; Olmanson, Bauer, &

Brezonik, 2008; Peckham & Lillesand, 2006; Rose, Greb, Diebel, &

Turner, 2017). Similarly, N concentrations among lakes in acid sensi-

tive regions of Europe and North America have alternatively

increased, decreased, or not significantly changed over the past three

decades in response to reductions in N deposition (Garmo et al.,

2014) and at the same time N has increased significantly in some of

the world’s largest lakes due to management efforts focused solely

on P reduction (Finlay, Small, & Sterner, 2013). Conversely, P may

accumulate faster than N in human-dominated lakes (Yan et al.,

2016), and a recent nationwide survey of streams and lakes in the

United States suggested that between 2007 and 2012, P increased

while N did not change (Stoddard et al., 2016), though the mecha-

nism driving this shift is not clear. Many of these multilake studies

have limited temporal (e.g., 2007–2012 in Stoddard et al., 2016), spa-

tial (e.g., state-specific trends in Olmanson et al., 2008), or system

type (e.g., large lakes in Finlay et al., 2013) coverage, highlighting the

need to assess change across the diversity of landscapes and lakes

that match the scale of emerging environmental challenges.

We overcame many of the above data limitations through the

use of the spatially and temporally extensive database for thousands

of lakes in 17 Midwest and Northeast U.S. states, known as the Lake

Multi-Scaled Geospatial and Temporal Database of the Northeast

U.S. (LAGOS-NE). We evaluated changes in total nitrogen (TN), total

phosphorus (TP), stoichiometry (N:P), and chlorophyll (Chl) over a

24-year period for 2913 lakes. We ask: (i) Have lake nutrient con-

centrations, stoichiometry, and Chl changed since 1990? (ii) What

lake-specific and regional factors are related to water quality trends?

(iii) Are Chl trends related to changes in N, P, or N:P?

To guide our analysis and interpretation, we generated a set of

predictions about the spatial scale and direction of change in water

quality parameters. The presence of ongoing environmental stressors

and limited success of nonpoint management to date lead to the

prediction of more increasing than decreasing trends in nutrient and

chlorophyll concentrations. However, we also anticipated that water

quality trends are not uniform in their direction or spatial scale of

occurrence, reflective of differences in direction and scale of influ-

ence of drivers, interactions among these drivers, and the distinct

biogeochemistry of N and P. For example, reductions in N deposition

resulting from the Clean Air Act occur at broad spatial scales. We

therefore expected declines in N for those regions where precipita-

tion has been a major source of this nutrient to lakes, but not for

regions with other sources of N to lakes (e.g., runoff in agricultural

regions). Similarly, climate is changing at regional and subcontinental

scales, so we predict that regions with increased precipitation and

ample supplies of in situ nutrients (i.e., agricultural landscapes) will

show regional-scale increases in lake nutrients. However, because
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management practices are variable and applied locally, and because

P has low mobility relative to N, we expect high variability in P

trends across all spatial scales. Finally, because both N and P can

limit primary production in lakes, and because these two nutrients

are often positively correlated (Downing & McCauley, 1992), we

expect Chl trends to be positively correlated to nutrient trends.

2 | MATERIALS AND METHODS

All lake, landscape and climate data came from LAGOS-NE, a collec-

tion of lake ecosystems with supporting contextual information for a

17-state region of the United States including Minnesota, Wisconsin,

Iowa, Missouri, Illinois, Indiana, Michigan, Ohio, Pennsylvania, New

York, New Jersey, Connecticut, Massachusetts, Rhode Island, Ver-

mont, New Hampshire, and Maine (Soranno et al., 2015). Nutrient,

chlorophyll, and lake depth data came from LAGOS-NELIMNO (Version

1.054.1), a database that integrated field-based measurements of

nutrients and physical properties from 54 government and university

organizations on a subset of lakes across the study extent. Atmo-

spheric deposition, climate, land use, and hydrologic data came from

LAGOS-NEGEO (Version 1.03). LAGOS-NEGEO is a collection of spa-

tially referenced measurements that provides contextual information

for all lakes >4 ha in the study extent. Some lakes (<6% for each

response) with nutrient or Chl data were <4 ha (Table 1) and were

included in the trend analysis, but were not included in subsequent

analyses that required contextual information. Because LAGOS-NE

includes a census of all lakes >4 ha in the study extent (see additional

file 9 in Soranno et al., 2015 for a description of lake inventory), we

were able to assess how the ecological context of lakes with chem-

istry data (hereafter, “sample lakes”) compared to the population of

lakes in the region (hereafter, “census”). Additionally, because a major

focus in creating LAGOS-NE was in compiling and integrating meta-

data for each dataset, we overcame a common problem that is found

with simply downloading data from a government repository (e.g., the

U.S. Environmental Protection Agency’s STOrage and RETrieval Data

Warehouse)—namely that as much as 50% of the data values can

lack sufficient metadata to use the data effectively (Sprague, Oelsner,

& Argue, 2017). A detailed description of how LAGOS-NE was built,

including details on data sources and methods of metric derivation,

can be found in Soranno et al. (2015).

2.1 | Nutrient data

We were interested in post-1990 water quality because improve-

ments following the Clean Water Act were likely to have occurred

prior to 1990, and any changes after 1990 are more likely to be a

response to ongoing land use, climate, and atmospheric deposition

changes. Long-term change in water quality was evaluated using TN,

TP, and Chl concentrations. In instances where total Kjeldahl nitro-

gen (TKN) was reported, TN was calculated as the sum of TKN,

nitrate, and nitrite (Smart, Reid, & Jones, 1981). Changes in lake stoi-

chiometry (TN:TP) were also evaluated using concurrent measure-

ments of TN and TP. All values were summer (June 15 through

September 15) epilimnetic measurements. Annual summer average

was used when more than one measurement was made per lake per

year. Nutrient and Chl values are reported in micromoles and micro-

grams per liter, respectively, and were loge transformed prior to anal-

ysis to accommodate the assumptions of normality and

homoscedasticity of the linear model. For each response variable, we

used the following criteria for a lake to be included in the trend anal-

ysis. Lakes were included if they had one or more observations in

each period of 1990–2000 and 2001–2011. A small proportion of

lakes had data through 2013; these data were included in the analy-

sis, but were not used to determine if a lake was or was not

included. Additionally, the two or more observations from each lake

time series had to span a minimum of 5 years. That is, a lake with

observations from 2000 to 2001 would not be included, whereas a

lake with observations from 2000 to 2005 would be included.

2.2 | Lake context data

We evaluated potential trend drivers using contextual land use/land

cover (LULC), climate, hydrology, deposition, and geomorphological

data from LAGOS-NEGEO (Table S1). Drivers were quantified at the

lake and region levels. Lake-level drivers included LULC, topography,

TABLE 1 Characteristics of lakes used in the total nitrogen (TN), total phosphorus (TP), TN:TP, and chlorophyll (Chl) models

Summary TN (lM/L) TP (lM/L) TN:TP (M) Chl (lg/L) Census (≥4 ha)

n lakes (n lakes ≥4 ha) 833 (788) 2,096 (2,037) 742 (701) 2,239 (2177) 51,107

n regions 50 58 44 62 66

Summer value 54 (20, 157) 0.5 (0.2, 2.3) 51 (25, 133) 6 (2, 46) NA

Years/lake 5 (3, 15) 9 (3, 20) 5 (2, 16) 9 (3, 17) NA

Lake area (ha) 44 (7, 546) 64 (10, 577) 39 (6, 469) 80 (11, 689) 10 (5, 75)

Max lake depth (m) 9 (4, 21) 10 (4, 22) 9 (4, 21) 10 (4, 24) 6 (3, 10)a

% Agriculture in watershed 48 (0, 81) 8 (0,72) 50 (1, 81) 16 (0, 75) 5 (0, 72)

% Urban in watershed 2 (0, 16) 1 (0, 10) 2 (0, 14) 1 (0, 18) 0 (0, 14)

Median values are reported, with corresponding 10th and 90th percentiles in parenthesis. When possible, summary statistics are provided for all lakes

≥4 ha in the study extent (“census”). Some lakes in the trend analysis were <4 ha, however, the random forest analysis was limited to lakes ≥4 ha.
aCensus lake depth values based on predicted maximum depth (Oliver et al., 2016b).
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and connectivity data derived at the watershed scale, as well as lake

area and maximum depth. Region-level drivers included LULC,

topography, connectivity, hydrology, climate, and atmospheric depo-

sition data. The regional classification we used (4 digit hydrologic

unit code or HUC 4, hereafter “region”) came from the U.S. Geologi-

cal Survey National Hydrography Dataset, which consists of nested

river watersheds (Seaber, Kapinos, & Knapp, 1987) that effectively

capture spatial structure in water quality data (Cheruvelil, Soranno,

Bremigan, Wagner, & Martin, 2008). In our 17-state study extent,

there are 65 HUC 4 regions with an average size of ~26,500 km2.

Where temporal driver data were available (atmospheric deposition

and climate drivers), absolute values at the beginning (1990) and end

(2010 for atmospheric deposition, 2011 for climate) of the time

extent, as well as change through time, were included. Change

through time was estimated using linear regression to assess mono-

tonic changes in environmental drivers.

2.3 | Statistical analysis

We examined nutrient trends using hierarchical linear models (HLM;

Gelman & Hill, 2007). We anticipated that local (e.g., lake depth) and

regional (e.g., atmospheric deposition) drivers would create hierarchi-

cal structure in the data where observations within a lake would be

more similar than observations across lakes, and lakes within regions

would be more similar than lakes across regions. These two sources

of variation (within and across lakes and regions) were accounted for

in the HLMs by allowing the relationship between sample year and

response (hereafter, “trend”) to vary by lake and region (hereafter,

lake-specific and region-specific trends or collectively “random

effects”). Additionally, the model estimates a fixed effect that repre-

sents the average trend across all lakes in the analysis (hereafter,

population-average trend). The mixed model approach uses partial

pooling (Gelman & Hill, 2007), which is well-suited for the nutrient

data that is not equally distributed across lakes and regions. For

example, trend estimates for lakes or regions with low sample size

or with a limited range of years sampled (and thus high uncertainty)

will be shrunk toward the mean of trends in the region or across all

lakes (e.g., population-average), respectively. Shrinkage toward the

means also allows for analysis of the level 2 and level 3 trend esti-

mates (e.g., number of lakes with significant trends) without correct-

ing for multiple comparisons because HLMs already have less

extreme (more conservative) estimates relative to traditional linear

regression (Gelman, Hill, & Yajima, 2012).

The hierarchical nature of the data was formally assessed using

unconditional 3-level models, where the first level, or observation

level of the model is:

Yijk ¼ p0jk þ eijk (1)

where Yijk is the loge transformed response in year i in lake j in

region k, p0jk is the mean response value of lake j in region k, and eijk

is the residual error term, which was assumed to be normally dis-

tributed with a mean of 0 and variance r2. The second level, or lake

level of the model is:

p0jk ¼ b00k þ u0jk (2)

where b00k is the mean response in region k and u0jk is the random

lake effect, or the deviation of the lake mean from the region mean.

We assumed the random lake effect was normally distributed with a

mean of 0 and variance rp. The third level, or region level of the

model is:

b00k ¼ c000 þ u00k (3)

where c000 is the grand mean of the response and u00k is the ran-

dom region effect, or the deviation of the region mean from the

grand mean. We assumed the random region effect was normally

distributed with a mean of 0 and variance rb. We calculated the

intraclass correlation coefficient (ICC) to estimate the proportion of

the total variation resolved at each level of the model (Raudenbush

& Bryk, 2002).

To address the hierarchical nature of the dataset when assessing

change through time, Equations (1)–(3) were expanded to include a

random time (random slope) effect,

Yijk ¼ b0jk þ b1jkTijk þ eijk; with eijk �Nð0;r2Þ (4)

where b0jk is the response value in 1990 for lake j in region k (i.e.,

random intercept), Tijk is the predictor year since 1990, and b1jk is

effect of the time for lake j in region k (i.e., random slopes). The sec-

ond level of the model then becomes

b0jk ¼ b00k þ u0jk ; with u0jk �Nð0;r2
0jkÞ

b1jk ¼ b10k þ u1jk ; with u1jk �Nð0;r2
1jkÞ

(5)

where b00k and b10k are the mean intercepts and slopes in region k,

respectively, and u0jk and u1jk is the deviation of the intercepts and

slopes of lake j from the mean intercepts and slopes in region k,

respectively. The third level of the model is

b00k ¼ b000 þ u00k; with u00k �Nð0;r2
00kÞ

b10k ¼ b100 þ u10k; with u10k �Nð0;r2
10kÞ

(6)

where b000 and b100 are the population-average (i.e., fixed) intercepts

and slopes, respectively, and u00k and u00k are the region k deviations

of the intercepts and slopes from the population-average means,

respectively. Because the response variable was loge transformed,

the slopes were interpreted as percent change in the response vari-

able per year. All statistical analysis were performed in R (R Core

Team, 2015; see Appendices S1 and S2), and the linear mixed models

were fitted using the lmer function in the package lme4 (Bates,

Maechler, Bolker, & Walker, 2015). We estimated means and confi-

dence intervals for the fixed effects (population-average slopes and

intercepts) and all random effects (lake and region-specific slopes and

intercepts) with 1000 simulations using the FEsim and REsim func-

tions in the merTools package (Knowles & Frederick, 2016).

To assess what types of lakes improved or degraded in water

quality and to infer the drivers of change, we first categorized lakes

as increasing, decreasing or not changing for each response based
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on whether the associated 90% confidence interval of the lake-spe-

cific trend overlapped with zero. We then used random forest (Brei-

man, 2001) analyses to predict the trend classification using lake and

region-level predictors. Random forest is a regression tree analysis

that creates a “forest” out of multiple “trees”. For each tree in the

forest, two-thirds of the data are used to create a tree, where a sub-

set of the predictor variables is randomly permutated. The holdout

third of the data (“out of bag”) is used to test the performance of

that tree. For each predictor variable, the difference in performance

between trees with and without randomly permutated observations

is used to determine the importance of the variable in predicting the

response (“variable importance”). The overall performance of the for-

est is calculated using the out-of-bag classification error across all

trees. Because the number of lakes was not balanced across the

three response categories (increasing, decreasing, or no change), the

sample size drawn for each response category was set to the mini-

mum number of lakes in any category.

To assess how well lake-level vs. region-level drivers explained

the variability in long-term change across lakes, we created three

random forest models for each response using (i) lake-level predic-

tors, (ii) region-level predictors and (iii) all predictors, and compared

the out-of-bag (OOB) classification error rate. To interpret how indi-

vidual drivers were related to long-term change, the “all predictors”

models were pared down using a variable selection technique in the

VSURF package (Genuer, Poggi, & Tuleau-Malot, 2016), where vari-

ables were removed through the “prediction” step. The reduced set

of variables was then used in a final random forest model to evalu-

ate top predictors according to mean decrease in accuracy. All ran-

dom forest models were created using the randomForest package

(Liaw & Wiener, 2002). Code used to generate all analyses and fig-

ures is included in the supplement (Appendices S1–S3), which

sources the published nutrient and geophysical data used in this

study (Oliver et al., 2016a). The code used for data processing, as

well as the latest versions of the code included in the supplement,

can be accessed on Github (https://github.com/limnoliver/CSI-Nutrie

nt-Time-Series).

3 | RESULTS

The lakes included in one or more of the trend analyses (n = 2,913)

represented 6% of the census lakes >4 ha in our study extent. The

Chl and TP analyses had the most abundant data in terms of the

number of lakes, number of observations per lake, and spatial cover-

age (Table 1). The lakes in our analyses were larger, deeper and had

more human-impacted watersheds compared to the census lakes

(Table 1, Fig. S1).

A large proportion of the variance in the observed nutrient and

Chl values could be accounted for by clustering observations by lake

and region. In other words, observations from the same lake or

region were correlated. The percent of the total variance in the

response that occurred at the lake scale ranged between 37% for

TN and 47% for Chl. Between 15% (TN:TP) and 50% (TP) of variabil-

ity in the response occurred at the region scale (Table S2).

3.1 | Change from 1990 to 2013

TN was the only response with a population-average slope (a trend

across all lakes) in which the confidence interval did not include

zero. Across all lakes, TN declined at a rate of 1.1% year�1 from

1990 to 2011 (Table 2). At the individual lake scale, 7%–16% of

lakes were changing in any one of the responses, and the direction

and magnitude of change varied across responses (Table 2; Fig-

ure 1). For example, 108 of 833 lakes in the TN analysis had long-

term discernible trends, 94 of which were decreasing. TP change in

individual lakes was more balanced, with 7% and 9% of lakes in

the analysis increasing and decreasing, respectively. Only 8% of

lakes had changing TN:TP. The lack of TN:TP change was also

reflected in the relationship between TN and TP change for those

lakes that were included in both nutrient analyses (Figure 2). Lake-

specific TN and TP change was positively correlated, with only 14

of 757 lakes with TN and TP significantly changing in opposite

directions. Twice as many lakes were increasing (10%) than

decreasing (5%) in Chl.

TABLE 2 Estimated parameters from the 3-level mixed models, where concentration in 1990 (intercepts) and percent change per year
(slopes) were allowed to vary by lake and region

Parameter Description TN TP TN:TP Chl

Population-

average

Intercept 4.2 (4.0–4.3) �0.2 (�0.4 to 0.0) 4.0 (3.9–4.1) 2.0 (1.8–2.2)

Time �1.1 (�1.5 to �0.7) �0.2 (�0.5 to 0.1) �0.2 (�0.6 to 0.1) 0.3 (�0.2 to 0.8)

Lake Intercept variance 0.27 0.42 0.22 0.84

Time variance 0.01 0.02 0.03 0.06

% Of lake-specific slopes <0, >0 11, 2 9, 7 5, 2 5, 10

Region Intercept variance 0.43 0.56 0.11 0.68

Time variance 0.02 0.01 0.01 0.04

% Of region-specific slopes <0, >0 34, 0 19, 12 11, 0 11, 18

Residual Variance 0.11 0.12 0.20 0.28

Values in parenthesis are 90% confidence intervals estimated by 1,000 posterior simulations.
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F IGURE 1 Region (left panel) and lake-specific (right panel) rates of change for total nitrogen (TN), total phosphorus (TP), TN:TP or Chl
estimated by the mixed model. Rates of change are only shown for regions or lakes with trend estimates with 90% confidence intervals that
did not overlap with zero. Gray regions or lakes are locations that did not have significant trends, and regions with no nutrient or chlorophyll
data are white with gray hatching
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Of the 2913 individual lakes that had observations of one or

more of the response variables, 22% had significant trends in one or

more responses. Of the 643 lakes that had observations of all four

response variables, 51% had significant trends in one or more

responses. The range in magnitude of change in individual lakes was

similar for TN (�4.1% to 2.5% year�1) and TN:TP (�3.8% to 4.0-

% year�1), and was greater for TP (�10.3% to 5.3% year�1) and Chl

(�8.7% to 12.9% year�1).

Roughly 30% of regions were changing in TN, TP, or Chl, on

average, while only 11% of regions had changing TN:TP (Table 2).

For TN and TN:TP, the direction and geographic extent of change in

regions matched that of lakes. A mid-latitude band from Iowa to

Maine contained all regions that were changing for TN, all of which

were declining (Figure 1). Regions with TP changes were less con-

tiguous; regions in Iowa, Michigan, and Maine were mostly decreas-

ing while regions with increasing TP were scattered between

Missouri, Illinois, Minnesota, and New York. Many regions had lakes

that were both increasing and decreasing in TP. There was a large

band of regions with increasing Chl from Missouri to Ohio, while the

regions with decreasing Chl were mostly limited to areas of Pennsyl-

vania, New York, and Michigan.

3.2 | Drivers of change

In general, characteristics of the underlying data were not correlated

with estimated rates of change in the lake (Fig. S2), with a few

exceptions. Lakes with high TN (>140 lM) were almost exclusively

not changing or decreasing in TN, and lakes with decreasing TN had

more recent observations. TN:TP change was positively related to

the mean TN:TP value. Generally, the estimated rate of change was

more variable for lakes with fewer years of observation.

Chl trends were positively correlated to TN and TP trends (Fig-

ure 3). However, of the 661 lakes with TN, TP, and Chl records, Chl

increased significantly in 133 lakes where there was no change in

either TN or TP (Figure 3c). Both positive and negative trends in Chl

were observed across the gradient in mean TN and TP (Fig. S3).

Region-level variables were better predictors of TN and Chl

change than lake-level variables (Table 3). Regional predictors alone

correctly classified TN change in 82% of lakes. In the TN:TP model,

on the other hand, region-level predictors misclassified 71% of lakes.

Lake-level predictors performed similarly across responses, with

OOB error rates ranging from 32% for TP and 42% for TN. With all

predictors, TN had the lowest OOB error rate (17%), while 49% of

lakes were misclassified in the TN:TP model.

The variables most important in predicting each response largely

reflected the performance of the lake vs. regional random forest

models. Notably, region-level variables comprised all top four predic-

tors of TN change, and most lakes that were declining in TN were in

regions with high atmospheric N deposition in 1990 (Table 3; Fig-

ure 4a). TP and TN:TP, on the other hand, were best predicted by a

combination of lake and region-level predictors, many of which were

related to climate and N deposition changes, as well as agricultural

land use (Table 3). The best predictor of TP change was change in

precipitation over the study extent, where lakes with both positive

and negative trends had less precipitation change compared to lakes

that were not changing (Figure 4b). Regional temperature and base-

flow index were the only predictors of Chl after variable selection

(Table 3); lakes that were increasing in Chl were more likely to be in

regions with high temperature in 1990 compared to lakes that were

decreasing or not changing (Figure 4d).

4 | DISCUSSION

As expected, we found both increasing and decreasing nutrient and

Chl trends in lakes in the Midwest and Northeast U.S., and there

were differences in trends across our four measures of water quality.

For example, TN has been declining on average since 1990, and neg-

ative TN trends were observed throughout the study extent. In con-

trast, both positive and negative TP and Chl trends were observed

within and across regions. Though we could not connect specific

mechanisms to water quality trends, these results suggest that N in

lakes is responding similarly to controls that operate at broad spatial

scales (i.e., atmospheric N deposition), and that local lake characteris-

tics are not a primary control on TN. Alternatively, trends in TP and

Chl were related to factors at multiple spatial scales. However, for a

large majority of individual lakes (~78%) we did not observe a

change in nutrients, stoichiometry or chlorophyll since 1990. We

therefore conclude that despite the human-impacted and changing

F IGURE 2 The relationship between estimated total nitrogen
(TN) and total phosphorus (TP) trends for lakes with records of both
nutrients (n = 757 lakes). The yellow horizontal line represents zero
change in TN, the green vertical line represents zero change in TP,
and the black line represents the 1:1 ratio of TN and TP change.
Symbols are filled with color if the 90% confidence interval of the
estimated rate of change from the mixed model was different from
zero
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world in which these lakes are embedded, lake water quality, with

respect to nutrient and Chl concentrations, has neither overwhelm-

ingly degraded nor improved in recent decades.

The small proportion of lakes with increasing nutrients and/or Chl

observed in this study, combined with the average decline in TN, may

be interpreted optimistically to some. Mitigation efforts since 1990

could have reduced nutrient inputs to lakes; many regions in this

study had declining atmospheric N deposition (data not shown; Leh-

mann et al., 2005), and from 1990 to 2006, the U.S. Environmental

Protection Agency increased grants to states for nonpoint pollution

management by 500% (Hardy & Koontz, 2008). Stable water quality

over recent decades is supported by some broad-scale water clarity

studies (e.g., Canfield et al., 2016; Lottig et al., 2014), and contrary to

our expectations, nutrients were declining in some parts of the agri-

cultural Midwest. Despite increased precipitation and temperature in

the region that are expected to have negative impacts on water qual-

ity (Trolle, Hamilton, Pilditch, Duggan, & Jeppesen, 2011), nutrient

control efforts may be “holding the line” (Moss et al., 2011).

On the other hand, twice as many lakes increased vs. decreased

in Chl, which may be a more integrated signal of multiple stressors

and worsening water quality. The low number of lakes with

improved water quality, combined with evidence of continental

increases in P in oligotrophic systems (Stoddard et al., 2016), and

increases in sediment transport from agricultural watersheds with

conservation programs (Heathcote, Filstrup, & Downing, 2013), sug-

gests that the billions of dollars spent on management has not

decreased nutrient concentrations in most lakes.

4.1 | Challenges in detecting change

We cannot completely rule out the possibility that a larger propor-

tion of lakes are changing in N, P, and Chl, but were not detected in

this study for several reasons. First, we may not have been able to

detect trends in the lakes for which we have limited data. Water

quality parameters are highly variable at the seasonal and annual

scale due to a complex suite of physical, chemical, and biological

processes that control lake nutrients, which could mask long-term

trends (Reckhow & Stow, 1990). In fact, a time series analysis in

reservoirs estimated that 13, 17, and >20 years of data for TN, TP,

and Chl, respectively, would be required to detect a doubling of

nutrient concentrations in 20 years (equivalent to 5% year�1; Knowl-

ton & Jones, 2006). Even in the subset of lakes that met those crite-

ria in our study (16% of TN lakes, 21% of TP lakes, and 5% of Chl

lakes), only 11%–17% of lakes were changing. Additionally, our

mixed model approach weights individual lake trend estimates

toward the estimates from those lakes and regions with more infor-

mation, which should improve our ability to detect change in lakes

with less information. We used average summer concentrations to
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F IGURE 3 The relationship between lake-specific trends in Chl
and nutrients for lakes with long-term records of both (a) Chl and
total nitrogen (TN) (n = 730 lakes), (b) Chl and total phosphorus (TP)
(middle; n = 1,435 lakes), and (c) Chl, TN and TP (bottom; n = 643
lakes). The vertical and horizontal lines in each panel represent zero
change in the response variable on the x and y axis, respectively.
The 45 degree line represents the 1:1 change ratio. In the contour
plot (c), Chl change is represented by the color ramp. Numbers in
the legend represent the proportion (a and b) or number (c) of lakes
in each symbol category or quadrant
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limit the effects of variability in lake stratification and environmental

conditions, but in turn, may miss other important seasonal changes.

Finally, we used linear models as a surrogate to capture net changes

with time; however, more complex temporal patterns may exist and

detecting them would require alternative analytical methods (Wag-

ner, Irwin, Bence, & Hayes, 2013). The variability in water quality

TABLE 3 The out-of-bag (OOB) classification error rate of random forest models using lake-level, region-level, or all predictors

Response variable Lake predictors Region predictors All predictors Top predictors

TN 42 18 17 Regional TN deposition 1990

Regional % isolated lakes

Regional runoff

Regional avg. lake size

TP 32 43 34 Regional precipitation change

WS % crops

Regional baseflow

Regional TN deposition 2010

Regional precipitation 1990

TN:TP 41 71 49 Regional deposition change

Maximum depth

WS % pasture

WS headwater stream density

Chl 36 29 28 Regional temperature 1990

Regional baseflow

The error rate indicates the proportion of lakes the model could not correctly classify as increasing, decreasing, or not changing in the given response

variable, and random classification would produce an error rate of 67%. The “all predictors” models column is the OOB error rate from the reduced

model that underwent variable selection. Lake predictors included variables measured at the watershed (WS) scale, and region predictors included vari-

ables measured at the HUC 4 scale. The top five variables according to the mean decrease in accuracy are reported, unless fewer variables were left

after variable selection. Each lake was classified as increasing, decreasing, or not changing based on the 90% confidence interval of the estimated

change value from the mixed model.
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(d)F IGURE 4 Violin plots showing the
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nitrogen (TN), (b) total phosphorus (TP),
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created by using the 90% confidence
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each lake from the mixed model [Colour
figure can be viewed at
wileyonlinelibrary.com]
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characteristics, using average summer concentrations, and linear

methods may underestimate the number of lakes that are changing.

However, the lack of change even for lakes with robust records,

combined with the mixed model approach that uses partial pooling,

supports the conclusion that most lakes have experienced minimal

water quality change in recent decades.

There is a possibility that the lakes used in this analysis may not

reflect long-term dynamics of nutrients across the entire population

of lakes in our study extent. States often study lakes for specific rea-

sons rather than conducting random sampling, and sample lakes are

larger and have more human-modified watersheds relative to the

proportion of lakes across the landscape (Wagner et al., 2008). We

are confident that we captured the dynamics of urban and agricul-

tural systems, as lakes in our study generally reflected the distribu-

tion and range of these land use types across the census lakes

(Table 1, Fig. S1). Minimally disturbed and oligotrophic lakes may be

increasing in P according to a recent assessment of nutrient trends

from randomly chosen lakes across the United States, and atmo-

spheric deposition was suggested as a potential cause of this change

(Stoddard et al., 2016). Atmospheric deposition of N and P repre-

sents a larger fraction of total nutrient budgets in pristine water-

sheds, and so our analysis may miss important environmental

changes that are not detectable in high-nutrient systems. Despite

undersampling high forest cover systems (Fig. S1), our dataset con-

tained 428 lakes with watersheds that met the land use portion of

Stoddard et al.’s (2016) “minimally disturbed” definition (<5% agricul-

ture, <1.5% urban, <2 km km�2 road density), and lake nutrient con-

centrations were not related to trends (Fig. S1). Our dataset is also

biased by lake size where small lakes are underrepresented, though

the sample lakes spanned the entire size gradient. Small lakes have

different chemistry (Hanson, Carpenter, Cardille, Coe, & Winslow,

2007), physical processes (Read et al., 2012), and responses to cli-

mate change (Winslow, Read, Hansen, & Hanson, 2015) compared

to large lakes, and we may not have captured long-term changes in

these distinct and abundant systems.

4.2 | Drivers of change

Despite the lack of trends in a majority of lakes, for those 23% of

lakes that are changing in nutrients, stoichiometry or Chl, changes

can be large (from �10% to 13% year�1). It is important to identify

which lakes are susceptible to change, and what might be the cause

of that change. Our random forest analysis attempted to identify the

characteristics of the lakes that are changing, which may help infer

which lake and context characteristics are associated with sites that

are improving or degrading in water quality.

Two lines of evidence suggest that lakes in our study region are

responding to atmospheric deposition changes that have occurred as

a consequence of the Clean Air Act. Regions with negative lake TN

trends also had high deposition in 1990 (Table 3, Figure 4a) and

regions with high deposition in 1990 had the largest decreases in

atmospheric deposition (data not shown). Additionally, lakes with

negative TN:TP trends tended to be in regions with the largest

deposition declines (Figure 4c). While it is not universal, the link

between declines in N deposition and declines in surface water N

concentrations has been made for lakes in the Adirondacks Moun-

tains in New York since 1990 (Driscoll et al., 2003), and over the

past decade in New England lakes (Strock, Nelson, Kahl, Saros, &

McDowell, 2014). Notably, lakes with the largest declines in TN

were those with observations that skewed toward the second half

of our study (post 2000), consistent with the delayed surface water

responses to reductions in N deposition reported by Strock et al.

(2014).

Though atmospheric deposition was the top predictor of the ran-

dom forest analysis, it seems that changes in atmospheric deposition

cannot be the only driver of widespread TN declines in lakes. In some

regions, surface water nitrate concentrations have not responded

strongly to declines in deposition (Garmo et al., 2014; Skjelkv�ale et al.,

2005), and nitrate leaching from N-saturated watersheds can increase

even under constant N deposition (Curtis, Evans, Helliwell, & Mon-

teith, 2005). Calcium additions to artificially induce acid rain recovery

converted an experimental watershed from an N sink to source, sug-

gesting future ecosystem responses to declines in atmospheric depo-

sition may include N increases in surface waters (Rosi-Marshall,

Bernhardt, Buso, Driscoll, & Likens, 2016). Additionally, N declines

were observed in agricultural regions with extremely high TN concen-

trations (e.g., Iowa), where positive ammonium deposition trends have

offset negative nitrate deposition trends (Li et al., 2016; Stoddard

et al., 2003), and N deposition likely comprises a small fraction of the

total N budget for each lake. Results from the random forest analysis

suggest that TN changes might also be affected by regional land use,

hydrology and connectivity and warrant further study.

In contrast to TN, our results show that factors related to climate

change and land use may be altering TP concentrations in the small

percentage of lakes that displayed TP trends. Using static (e.g., land

use) rather than more relevant temporally dynamic (e.g., land use

practices) predictors, combined with the overall lack of predictive

ability of the TP random forest models, makes it difficult to discern

the drivers of TP trends in this region. There is evidence that

increases in precipitation increase P loading to lakes (Lathrop, Car-

penter, Stow, Soranno, & Panuska, 1998). But on average, lakes with

positive TP trends in our study had lower precipitation changes than

lakes that were decreasing or not changing in TP. Annual total pre-

cipitation was used in our study, which may mask stronger seasonal

changes in precipitation that disproportionately affect P delivery to

lakes, such as winter and spring precipitation (Tiessen et al., 2010).

Additionally, P transport to some lakes is tightly linked to extreme

precipitation events rather than annual precipitation (Carpenter,

Booth, Kucharik, & Lathrop, 2015), which was not captured in our

study. Likewise, observed increases in TP in lakes and streams in the

United States between two time points could not be linked to pre-

cipitation differences between the two years (Stoddard et al., 2016).

Our study shows that across the Midwest and Northeast U.S.,

the drivers of long-term change are different for TN and TP, and

that the drivers are occurring at different spatial scales. The differ-

ences in lake-specific vs. regional controls of TN and TP match our
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biogeochemical understanding of the two nutrients. Nitrogen is

transported to lakes mostly in dissolved form and can be transported

long distances in the atmosphere and groundwater. Alternatively, P

readily sorbs to particles and is more related to local surface water

transport. Phosphorus is stored in soil organic matter and sediment,

and there is often a lag between P loading to a watershed and

responses in surface waters, and trends in each lake may reflect the

specific land use histories and management of individual watersheds

(Powers et al. 2016), which is difficult to quantify at this spatial

scale. Differences in the spatial patterns, magnitude, and direction of

trends observed in this study may in part be a reflection of differing

biogeochemical cycles of N and P, which in this case, has led to dif-

fering responses to environmental change.

4.3 | Ecological relevance of change: relationship
between nutrient and Chl trends

Reducing algal production is often the lake management endpoint,

and decreasing P and/or N can reduce primary production in surface

waters (Conley et al., 2009; Paerl et al., 2016; Schindler, 2012).

Though TN and TP trends were both positively correlated to Chl

trends, the contour plot (Figure 3c) shows vertical bands, suggesting

Chl responded primarily to changes in TP. The magnitude of change

in nutrients and Chl can also be used to infer if trends are ecologi-

cally meaningful. For example, lakes in Iowa with declining TN

(n = 36 of 96) had a median trend of 3.1% year�1 from data that

spanned 19 years, with a median shift in TN from 193 to ~80 lM/L.

Lakes with TP declines in Iowa (n = 45 of 97) had a median shift

from 3.6 to 2.1 lM/L. According to trophic state classifications, these

reductions are large enough to move lakes from eutrophic to meso-

trophic system (Dodds, Jones, & Welch, 1998). The reductions in

nutrients apparently did not promote a similar shift in algal biomass,

where only eight of 96 lakes in Iowa had negative trends in Chl. This

example of a lack of Chl response to nutrients, as well as results

from the random forest analysis, suggests that other emerging envi-

ronmental changes are influencing trophic state in lakes.

A positive relationship between temperature, algal growth, and

harmful algal blooms is well documented (O’Neil, Davis, Burford, &

Gobler, 2012), and lakes with increasing Chl were located in the

warmest regions at the start of the study period (1990). Though

these regions did not have the largest increases in temperature (data

not shown), warmer temperatures can enhance the photosynthetic

response to nutrient enrichment (Wyatt et al., 2015), and the expo-

nential metabolic response to temperature can create differential

responses to climate change across gradients in mean lake tempera-

ture (Kraemer et al., 2016). Chl trends may therefore be an integra-

tive response to nutrient and climate changes, and according to Chl

trends presented here, roughly 10% of lakes and 18% of regions

across our study extent have degraded in water quality since 1990.

As low points in the landscape, lakes integrate environmental

changes in their watersheds, and therefore act as sentinels of

change. In the United States, 64% of lake acres are estimated to be

impaired and cannot support the designated use, and states list

ongoing human pressures in the form of atmospheric deposition and

agricultural activities as top sources of impairment (U.S. EPA, 2009).

Climate change is likely to exacerbate eutrophication of surface

waters (Moss et al., 2011). Even when nutrient sources are partially

or completely removed, recovery of lakes after nutrient reductions is

highly variable and can take years to decades (McCrackin, Jones,

Jones, & Moreno-Mateos, 2017), highlighting the importance of

long-term efforts that monitor water quality. In the Midwest and

Northeast United States, lakes are facing drivers acting to both

improve and degrade water quality, and as such, have remained rela-

tively unchanged in the last 20 years in regards to nutrients and

chlorophyll. Our study highlights the potential for N, P, and Chl to

have differing responses to broad-scale environmental change. Iden-

tifying directional, mechanistic responses of biogeochemical cycles to

the various aspects of climate change is a priority for understanding

how water quality will change in a warmer, more extreme world.
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