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Abstract

Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an
urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water
quality data, but also information about the ecological context of individual water bodies across broad spatial extents.
Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing
the environmental controls of water quality requires compilation of many data sets across broad regions and across
time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states.
LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes
3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic,
climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the
lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains
approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900000 measures of Secchi
depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit
agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive
databases of its type because it includes both in situ measurements and ecological context data. Because ecological context
can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the
foundation for other studies of freshwaters at broad spatial and ecological scales.

Keywords: lake eutrophication; nutrients; water quality; lake trophic state; ecological context; LAGOS-NE; open science; lake
database

Data Description

A major concern for water quality in freshwaters globally is cul-
tural eutrophication, or excess nutrient inputs from human ac-
tivities that lead to increased plant and algal growth. In many
parts of the world, runoff from land, or nonpoint-source pol-
lution, has replaced discharges of sewage, or point-source pol-
lution, as the primary driver of lake and reservoir eutrophica-
tion [1]. In lakes and reservoirs, eutrophication is expected to
become more widespread in the coming decades as the human
population increases and climate and land use change commen-
surately, placing increasing pressures on freshwaters [2–4], al-
though there is also recognition that eutrophication or its re-
sponse to management actions does not progress in the same
way in all lakes (e.g., [5–7]). Most research to understand lake
nutrients and their effects on algae, plants, and aquatic food
webs has been conducted in individual or small groups of lakes
by studying the complex within-lake mechanisms that control
responses to nutrients (e.g., [8, 9]). Such relationships and inter-
actions have also been found to be influenced by the ecological
context of lakes (i.e., the land use, geologic, climatic, and hy-
drologic setting of lakes), which varies by lake and region and
is multi-scaled. In fact, it is not always clear whether local or
regional ecological context matters more for predicting lake eu-
trophication (e.g., [10–12]). Therefore, determining the current
extent of lake eutrophication and predicting how eutrophica-
tion will respond to future global change requires water qual-
ity data (e.g., nutrients, water clarity, and chlorophyll concen-

trations) andmeasures of lake ecological context across regions,
the continent, and the globe (e.g., 13–15).

In practice, measures of water quality are often collected
from a relatively small number of lakes within individual re-
gions. In the United States, large investments have been made
in water quality monitoring by federal, state, local, and tribal
governments; and many, but not all, of the data sets have been
placed in government data repositories such as the USGS Na-
tional Water Information System (NWIS) and the USEPA Stor-
age and Retrieval (STORET) database. Unfortunately, these data
repositories do not currently allow us to study lake water qual-
ity at broad scales. Despite the large number of water quality
records in these systems, a recent analysis of stream nutrient
data obtained from NWIS, STORET, and more than 400 other or-
ganizations determined that more than half of the data records
lacked the most critical metadata necessary to make the data
usable (e.g., chemical form, parameter name, units) [16], and we
would expect a similar result with lake data because they are
typically treated similarly to stream nutrient data. In addition,
STORET and NWIS do not include any measures of lake ecolog-
ical context. Therefore, to study the controls of eutrophication
specifically, and water quality in general, requires development
of a comprehensive database for lake water quality that is inte-
grated with measures of lake ecological context and sufficient
metadata for robust analysis.

We created a database called LAGOS-NE, the “lake multi-
scaled geospatial and temporal database” for thousands of in-
land lakes in 17 of themost lake-rich states in the upperMidwest
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Figure 1: Map of the study extent of LAGOS-NE. Map includes 17 states in the upper Midwest and Northeastern United States outlined in white and 51101 lakes
≥4 ha shown as blue polygons. Some lakes extend beyond state borders and are included in the database if it was possible to delineate their watersheds. Watershed
boundaries rather than state boundaries were used for all analyses of lakes, streams, and wetlands. The map is modified from Soranno et al. [17].

and Northeastern United States (Fig. 1). We avoided the problem
of lack of metadata for the water quality data by contacting the
original data providers for water quality data, asking for meta-
data, and only including data forwhich sufficientmetadatawere
available.We addressed the problemof lack of ecological context
data by creating our owndatabase of lake ecological context. The
detailed methods and approach for building this database have
been published previously [17]; here we publish and describe the
database for the 51 101 lakes and reservoirs ≥4 ha in the study
area (1 800 000 km2).

We had 3 related motivations for developing this database:
(i) to facilitate further development of our basic understand-
ing of lake water quality at broad scales using water qual-
ity data on thousands of lakes collected over the last several
decades (see [11, 17] for details); (ii) to build the capacity to ap-
ply this scientific understanding to environmental management
and policy of inland waters; and (iii) to foster broad-scale re-
search by designing an open-science database that is extensible
for future uses and by making the data and methods publicly
accessible.

LAGOS-NE comprises 3 data modules that, although in-
tegrated in the same database, were derived using different
data sources and data integration methods, and thus must
be version-controlled separately. LAGOS-NELOCUS v1.01 includes
lake location and physical characteristics based on an exist-
ing national-scale database of lake and streams in the United
States for all lakes. LAGOS-NEGEO v1.05 includes measures of
land, water, and air (ecological context) obtained from exist-
ing national-scale GIS (geographic information system) data sets
and measured in multiple zones (delineated by different spatial
classifications) around all lakes. Thismodule also contains some

temporal data for climate, land use/cover, and atmospheric de-
position variables. LAGOS-NELIMNO v1.087.1 includes in situmea-
surements of lake water quality for a subset of the above lakes.
These 87 data sets of lake water quality were obtained from
a combination of sources including government, tribal agen-
cies, university researchers, citizen scientists, and non-profit
agencies. Samples were taken during any season of the year
from the most recent decades, mostly from the late 1980s to
2012.

The largest challenge in building LAGOS-NE was the hetero-
geneity of the data set formats, variable conventions and units,
and metadata, none of which were standardized. Many steps
of data integration required manual input from experts in di-
verse fields and close collaboration among specialists in ecoin-
formatics, database design, freshwater ecology, and geography;
all combined, the effort took 6 years and involved ∼15 individu-
als, spread across numerous institutions.

We designed the database using principles of open science
so future users could ask new research questions by using the
existing database or adding new data modules to the database.
To ensure that users could do this, we documented the ma-
jor steps of data set integration and carefully integrated meta-
data directly into the database itself, we emphasized data prove-
nance, and we used a database versioning system. In this data
paper, we make the following research products available: (i)
data tables with the data that make up LAGOS-NE and an R
package for accessing the data and integrating the tables; (ii)
for each of the 87 water quality data sets, we provide the eco-
logical metadata language (EML) metadata files that we au-
thored after receiving the data, the data files that we pro-
cessed to import into LAGOS-NE and the R-script that we wrote
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Table 1: Summary statistics for LAGOS-NE study area

State Area (km2)

Number
of lakes
(≥4 ha)

Mean annual
temperature (◦C)

Mean annual
precipitation

(mm)

% agricul-
tural
land

% urban
land

% forested
land % wetland

Connecticut 12 878 763 9.7 1253 7.2 24.4 54.5 9.0
Illinois 145 920 2819 11.3 1005 68.9 11.9 15.0 1.7
Indiana 93 717 1874 11.2 1072 62.0 10.8 22.5 1.5
Iowa 145 736 903 9.1 881 78.0 7.5 6.9 1.9
Maine 84 123 2645 5.1 1149 3.7 3.5 66.9 12.1
Massachusetts 21 013 1698 8.9 1235 5.8 25.2 50.1 12.2
Michigan 150 489 6511 7.2 841 26.2 10.6 35.5 19.2
Minnesota 218 543 13 984 5.3 709 44.7 5.7 19.7 19.0
Missouri 180 537 1858 12.7 1100 50.7 7.0 36.6 2.1
New Hampshire 23 980 1109 6.5 1209 3.8 7.9 74.5 6.4
New Jersey 19 599 1143 11.8 1188 13.8 31.1 27.9 21.4
New York 126 070 4461 7.6 1094 21.9 9.3 54.1 7.2
Ohio 106 917 1279 10.6 1003 50.0 14.7 30.9 1.0
Pennsylvania 117 293 1755 9.3 1109 22.7 12.3 59.5 1.6
Rhode Island 2809 253 10.0 1246 4.9 29.5 44.6 13.6
Vermont 24 913 528 5.9 1176 13.3 5.5 70.0 4.7
Wisconsin 145 295 6009 6.6 831 36.7 7.5 35.5 13.7

This table includes the numbers of lakes and geophysical setting of each state and state averages for climate and the 4 major land use/cover types,
which do not add up to 100% because we do not include all cover types. Temperature and precipitation data are 30-year climate norms (1981–2010; PRISM,

http://www.prism.oregonstate.edu/normals/); land use/cover data are from the 2011 National Land Cover Database (NLCD; USGS, http://www.mrlc.gov). Note, bor-
der lakes are only counted in 1 state.

to process the data; and (iii) GIS coverages of the underly-
ing freshwater geographic features (lakes, streams, and wet-
lands) that are linked to the data tables for GIS processing by
researchers.

Study Site: Midwest and Northeast US Lakes

We selected an area of the United States known to have large
numbers of lakes, well-developed lake water quality sampling
programs, and that spans diverse geographic conditions and
thus gradients of ecological context (Table 1). Our study area of
17 US states includes 51 101 lakes ≥4 ha (Fig. 1). These states are
in the north temperate climatic zone, which experiences cold
winters and warm, humid summers. The study area includes
part of the Interior Plains, Laurentian Uplands, Appalachian
Highlands, and Atlantic Plain geological provinces, and thus en-
capsulates a range of geological ages, glacial histories, and to-
pography. Land use/cover is highly variable, ranging from re-
gions of intense agriculture in the corn belt that span portions of
Minnesota,Wisconsin, Iowa,Missouri, Indiana, andOhio, to pre-
dominantly forested or urban regions of the northeasternUnited
States, including the states of Maine, New Hampshire, New Jer-
sey, and parts of New York, and primarily forested regions of
northern Minnesota, Wisconsin, and Michigan.

Although the majority of the data that we provide are for
lakes ≥4 ha (see below for reasons for using this threshold), we
do include somedata on lakes≥1 ha and<4 ha if datawere avail-
able. Although there may be water quality data for some lakes
in this smaller size range, ecological context variables are not
available for these lakes.

Overview of LAGOS-NE

LAGOS-NE includes some data on all lakes in a study area (above
the minimum lake area threshold, which was 4 ha), which we
call the “census” population of lakes. The census population of
lakes is a critical feature of LAGOS-NE because it allows us to

characterize the ecological context of every lake in our study
population and to identify whether the lakes for which we have
water quality data are biased in any way. LAGOS-NE includes 3
main categories of variables: (i) variables that describe the physi-
cal characteristics and location of lakes themselves; (ii) variables
that describe in situ water quality; and (iii) variables that de-
scribe a lake’s ecological context at multiple scales and across
multiple dimensions (such as hydrology, geology, land use, cli-
mate, etc.) based on the principles of landscape limnology [12,
18–20]. Three factors dictated which data were included: past
research and theory about the spatial and temporal controls of
lakewater quality, data availability and quality, and the time and
resources necessary to compile, integrate, and process the orig-
inal data. In other words, data that were especially time- and
resource-intensive to collate, integrate, or process were given
lowest priority and, in some cases, were not ultimately incor-
porated into the database.

There was a number of constraints for each of the categories
of data that had to be considered. For creating the census pop-
ulation of lakes (i.e., their geospatial location, perimeter, and
surface area), we relied on a single source of data (the 1:24 000
National Hydrography Dataset [NHD]) [21]. For the in situ water
quality data, we incorporated data only if they were in a digitally
accessible format such as a text or spreadsheet file. Finally, for
the ecological context variables, we included only data for which
we could obtain a GIS or raster coverage at the national or state
scale for all 17 states.

We organized these 3 categories of data into database “mod-
ules” that had similar data types and sources so that we could
develop procedures and set standards for each module (Fig. 2).
The module structure also facilitates data reuse and extension
by accommodating future datamodules related to any other lake
or ecological context feature.

The design of LAGOS-NE and the workflow for its construc-
tion have been described previously in detail [17]. In particular,
the database design is based on the Consortium of Universi-
ties for the Advancement of Hydrologic Science, Inc. (CUAHSI),
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Figure 2: LAGOS-NE data modules and version numbers. The data modules and versions that are included in LAGOS-NE and are available with this paper include
LAGOS-NEGEO v1.05, LAGOS-NELOCUS v1.01 (note that in Soranno et al. [17], this module was called LAGOS-lakes), and LAGOS-NELIMNOv1.087.1. We include descriptions
of the types of data that are included in each module, with the major categories of variables the same as those describing the data tables in Additional file 1. The black
connectors among the modules show that the modules are connected to each other through common unique identifiers through the LAGOS-NELOCUS module (through

the unique lake ID). P is phosphorus, N is nitrogen, C is carbon, S is sulfur, and atm is atmospheric. This figure is modified from Fig. 1 in Soranno et al. [17].

Community Observations Data Model (ODM; CUAHSI ODM) as
described in Soranno et al. [17]. Here,we provide a brief overview.
One important guiding principle in creating LAGOS-NE was to
ensure data provenance, i.e., that we could trace the original
source data through to the final LAGOS-NE database. Because
each data module had different types of source data, we devel-
oped different procedures for data provenance for each module,
described in Soranno et al. [17] and in this paper. The database
model is based on ODM because it is a flexible data model (i.e.,
allows the incorporation of a wide range of types of data) that
allows for the incorporation of controlled vocabulary and, im-
portantly, allows for extensive documentation through a rela-
tional database structure of linked tables containing metadata
[17]. The database was created and is maintained in PostgreSQL
v9.1. However, for researchers to use the database for analy-
sis and modeling, it is necessary to export the data into ta-
bles that can be processed by statistical packages or computer
code. Therefore, we exported the data into a series of tables
(of similar data) that are needed to conduct research on ei-
ther the census population of lakes, the lakes for which there
are water quality data, or some combination. These are the
data files that have been used to conduct research on LAGOS-
NE to date and that we make available in this paper (see Ad-
ditional file 1 for a list of the tables and associated data that

we are making available). Further, we also make our GIS data
sets available to facilitate geospatial analyses of lakes, streams,
and wetlands used to create some of the major components of
LAGOS-NE.

Description of the LAGOS-NELOCUS v1.01 data
module

The LAGOS-NELOCUS module includes data on the physical loca-
tion, some features, and unique identifiers for all lakes in the
study area ≥1 ha, which means this data file has information on
141378 lakes. Note that, becausewe detected errors in the digiti-
zation of lakes between 1 and 4 ha, we have chosen to define our
census population of lakes as only those ≥4 ha, but we still make
data available for lakes smaller than 4 ha when available in this
and the LAGOS-NELIMNO data module. However, we recommend
caution in analyses, interpretation, and inference for lakes <4
ha in this database that depend on NHD’s spatial representation
and detection of water bodies. The data in this module include
lake unique identifiers, perimeter, area, latitude and longitude
(which are typically the centroid of the lake or a central point
that is within the lake boundary), GNIS name, and the zone IDs
that the lake is located within (e.g., state, county, or hydrologic
units). The GIS data sets that we also make available provide the
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A water quality database for US lakes 7

Figure 3: Examples of lake watersheds in LAGOS-NE. The watersheds are coded by the hydrologic class to which each lake belongs. Data are from the LAGOS-NEGEO

v1.01 data module and the GIS data coverages.

lake polygon features associated with this module, as well as
coverages for lake watersheds, streams, wetlands, spatial clas-
sifications, and glaciation history.

Definition of lakes

We defined lakes previously in Soranno et al. [17] as follows.
A “lake” in LAGOS-NE is a perennial body of relatively still wa-
ter. We include lakes and reservoirs that range from being com-
pletely natural to highly modified: lake basins can be entirely
natural, modified natural (i.e., a water control structure on a
natural lake), or a fully impounded stream or river (i.e., a reser-
voir). We explicitly exclude sewage treatment ponds, aquacul-
ture ponds, and detention ponds that are known to contain
basins that are entirely artificial andwere built for high-intensity
human use. In addition, due to their unusual nature and size, we
do not include the 5 Laurentian Great Lakes in our database. This
definition of “lake” for LAGOS-NE has been developed only for
the purpose of this database and its applications (e.g., to answer
questions about lake water quality). The intent of LAGOS-NE is
not to document and measure the total number of water bodies
in our study area, although we are able to perform this calcu-
lation for lakes ≥4 ha with an acceptable level of uncertainty
(see below).

Definition of lake watersheds

We calculated lake watersheds as “inter-lake watersheds” (IWS),
defined as the area of land draining directly into the lake as well
as the area that drains into upstream-connected streams and
lakes <10 ha (Fig. 3). We defined lake watersheds this way to de-
fine the drainage basin of lakes that includes connected streams
and their drainage basins. However, because research has shown
that large upstream lakes can trap nutrients flowing into them,
these large lakes can block the transport of nutrients that orig-
inate upstream from them to downstream lakes in a connected
lake chain (e.g., [22]). Therefore, to calculate a drainage basin for
a lake with large upstream connected lakes, we did not include
the drainage basins of upstream lakes >10 ha. See Soranno et al.
[17] for full details on how lake IWSs were calculated and the
section on LAGOS-NEGEO for further details.

Lakes near and beyond the state borders

For some of our analyses, we delineated boundaries in other
ways than political boundaries that were more ecologically rel-
evant, which resulted in the inclusion of some lakes outside of
the exact 17-state border. This fact allowed us to includemore in
situ data collected by state and citizen sampling programs that
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do not always follow strict state borders and may include lakes
that are outside of state lines. Although most of these border
lakes have hydrologic (i.e., lake connectivity measures) and to-
pographic (i.e., lake watershed delineations) calculations or wa-
ter quality data, some measures of ecological context may be
missing. For example, for lakes in Canada, we were not able to
estimate any data that relied on national data sets that stopped
at the Canadian border; one exception is the NHD, which ex-
tends into Canada to retain hydrologic boundaries.

Data sources of the LAGOS-NELOCUS module

Detailed information on data sources are found in Additional
file 5 in Soranno et al. [17]. Briefly, the data source for lakes and
streams in the 17-state area was the NHD [21]. The hydrologic
boundaries (i.e., for 3 of the spatial classifications, HUC12, HUC8,
HUC4) came from the Watershed Boundary Dataset (WBD) [23].
In addition, we used the digital raster data set of elevation for
watershed delineation from the National Elevation Dataset [24].
All download dates for these data sources are provided in Addi-
tional file 5 in the above citation.

Data-integration methods of the LAGOS-NELOCUS

module

Allmethods to create thismodule are described in Soranno et al.
[17]. The most challenging and time-consuming part of building
this module was connecting the sampling locations from the
lake water quality data sets (each contained different types of
unique identifiers, and sometimes only lake names) to a georef-
erenced location in the NHD. When data providers included the
lake latitude and longitude, wewere able tomostly automate the
procedure. Nevertheless, even when coordinates were available,
there were many cases where the latitude and longitude did not
intersect with the NHD lake polygon boundary, requiring man-
ual interpretation.

Quality Control of the LAGOS-NELOCUS module

The full description of error analysis for thismodule is described
in Soranno et al. [17]. However, here we briefly describe our ef-
forts to determine the minimum area of a lake that we could
confidently represent using the NHD (further details located in
Additional file 9 in Soranno et al. [17]). Although the NHD is a na-
tional data set, it is updated and edited regionally (often at the
state level) by local practitioners familiar with each study region.
As a result, there are regional differences in the resolution and
digitization of water bodies, particularly for small water bodies,
making it difficult to quantify or document even nominal error
rates, or rather, the minimum lake size that is well-represented
in the NHD. It has been documented previously that the NHD
may not successfully identify small water bodies due to a vari-
ety of reasons including the resolution of the original underlying
data of the NHD database, errors in digitization, and hydrologic
changes since the time of map creation (e.g., [25, 26]). Because
of these documented issues, some programs have set minimum
lake area cutoffs for sampling lakes. Most notable is the EPA-
National Lakes Assessment of 2007, which chose a minimum
size of 4 ha, although a smaller size cutoff was chosen for the
EPA-National Lakes Assessment of 2012 [27]. To determine an
appropriate size cutoff for our purposes, we conducted an anal-
ysis to identify the lakes that are best represented by the NHD
across the LAGOS-NE study area.

We selected 4 states (WI, MI, IA, ME) in which to evaluate er-
ror rates of water body identification for lakes ≥1 ha and 7 states
(WI, MI, IA, ME, MO, NH, OH) in which to evaluate error rates
for lakes ≥4 ha. We randomly selected three 100-km2 rectangles
from each state then compared the number of lakes occurring
in the NHD GIS coverage with the number of lakes in the best
available aerial imagery from a range of sources to calculate the
percentage of lakesmissing from the NHD. The average percent-
age of lakesmissing from the NHDwas 58% for the ≥1 ha 4-state
test and 13% for the≥4 ha 7-state test. Because an average of 87%
of lakes ≥4 ha that are present in high-resolution aerial imagery
are also present in the NHD, we chose this surface area as our
cut-off and accepted this error rate.

Data in the LAGOS-NELOCUS module

Figure 1 shows the census population of all lakes≥4 ha in the 17-
state area, including border areas beyond the 17-state boundary.
As expected, the lakes are not evenly distributed, with higher
densities in the northern parts of the study area. For those lakes
with known lake depth (9808 lakeswithmaximumdepth values,
and 4090 lakes with mean depth values), there is little regional
pattern of lake depth; shallow and deep lakes are found through-
out the study area (see [28] for further details). Watershed size
varies greatly across the study extent, reflecting the wide range
of different lake hydrologic types and connections to upstream
water bodies (Fig. 3). In fact, the proportion of lakes in different
lake hydrologic connectivity classes varies regionally across our
study extent (Table 2) (see [29] for further details).

Description of the LAGOS-NELIMNO v1.087.1
Data Module

The LAGOS-NELIMNO module includes in situ measurements of
lake water quality. We included variables that are most com-
monly measured by state agencies and researchers for study-
ing eutrophication (water quality data and metadata, including
chlorophyll a, Secchi depth,water color, DOC, total and dissolved
phosphorus [P], nitrogen [N], and carbon [C]) (Fig. 2). For eachwa-
ter quality data value, we also include metadata as additional
columns in the exported data table (metadata including ana-
lytical method, data qualifier from the program, detection limit
[when available], and the LAGOS-NE censor code) (Fig. 2), includ-
ing the analytical methods, qualifiers with data flags from the
original program (qual, which is not standardized for LAGOS-NE),
detection limits (if available), and standardized censor codes
from our quality control procedures (censorcode, standardized
for LAGOS-NE). Finally, we include documentation about each
source program that is linked to each data value.

Data sources of the LAGOS-NELIMNO module

We acquired individual water quality data sets for LAGOS-
NELIMNO by contacting individuals at each of the 17 state and 5
tribal agencies. These contacts helped us to identify the state
agency–collected data set required by the Clean Water Act that
was most likely to be in the public domain. In this way, we were
able to acquire at least 1 (and typically more) data set from each
of the 17 states. Because state and tribal agencies vary in sam-
pling approach and intensity (see below for details), we sought
to supplement these data sets with other known sources of wa-
ter quality data, including university researchers, federal agen-
cies, and non-profit groups, to integrate into the LAGOS-NELIMNO

module. The full list of data sources acquired is in Soranno
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Table 2: Numbers of lakes in each state by lake hydrologic class

State
Lakes ≥4
ha (#)

Isolated
Lakes (#)

Headwater
lakes (#)

Drainage
lakes (#)

Drainage lakes with
upstream lakes (#)

Connecticut 770 40 119 424 187
Illinois 2831 1417 279 952 183
Indiana 1883 760 244 697 182
Iowa 915 339 87 402 87
Maine 2661 94 619 1211 737
Massachusetts 1716 210 269 751 486
Michigan 6531 2649 1087 1672 1123
Minnesota 14 031 6609 1894 2673 2855
Missouri 1865 435 179 1113 138
New Hampshire 1118 70 224 581 243
New Jersey 1148 219 129 521 279
New York 4477 629 1210 1915 723
Ohio 1282 543 105 520 114
Pennsylvania 1757 316 397 840 204
Rhode Island 266 35 40 115 76
Vermont 531 14 74 364 79
Wisconsin 6026 2982 823 1236 985
Total 49 808 17 361 7779 15 987 8681

The number of lakes ≥4 ha in each of the lake hydrologic classes by state, as well as the total numbers of lakes by hydrologic class calculated for the study extent.
Note, in this table, lakes are counted for each state in which they occur (i.e., lakes that straddle 2 states are counted in both states).

et al. [17] in Additional file 17; however, we incorporated a sub-
set of these data sets in LAGOS-NELIMNO v1.087.1 (the data file
LAGOSNE˙source program 10871.csv contains the list of sources
for this version of LAGOS-NE).

Data integration methods of the LAGOS-NELIMNO

module

Allmethods to create thismodule are described in Soranno et al.
[17]. Briefly, for each data set acquired, we authored LAGOS-NE
metadata in EML to aid in data provenance (included in this pa-
per). We also incorporated key metadata features (e.g., meth-
ods used, censor codes, if applicable), and sampling program in-
formation) into the database so that future users could easily
identify these important attributes. Because each data set was
unique in structure, file format, and naming conventions, we
manually processed each data set and its metadata so that they
could be translated into the standard LAGOS-NE vocabulary and
data model. Although labor-intensive, we created customized R
scripts to process and load each data set separately (included in
this data paper).

Quality control of the LAGOS-NELIMNO module

The full description of our quality assurance/quality control
(QAQC) procedures for this module is described in Additional
file 2. Here, we provide a brief overview of our approach. Our
goal for this effort was to identify egregiously high values and
values that might be too low, both defined below. Note that our
quality control procedures were not designed to identify statis-
tical outliers, which individual users are expected to perform
themselves because such analyses depend on the subsequent
statistical analysis of each user. There were 3 major phases in
the QAQC procedure for LAGOS-NELIMNO. Phases I and II were
designed to identify the egregious values that we defined as
those that (i) did not make ecological sense, (ii) were far be-
yond what has been detected in previous studies, (iii) were not
technically feasible (e.g., SRP>TP), or (iv) were a result of a data
or file corruption or error in the data loading stage. For these

egregious values, we explored the issues that might be underly-
ing the values and removed them from the LAGOS-NELIMNO data
export provided in this data paper because we had sufficient
evidence that they were not scientifically valid data values. We
were very conservative in these assessments to avoid removing
data values that were high, yet still valid. Phase III was designed
to identify and flag values that seemed to be lower than ana-
lytically possible (i.e., below detection limits) when there were
sufficient metadata; however, note that these data are still pro-
vided in this data paper because it is not appropriate to re-
move data that are below detection when those data could be
valid.

For all versions of LAGOS-NELIMNO, phases I and II are con-
ducted on the entire cumulative data set to leverage as large of a
sample size as possible to detect problem values. In other words,
because many of the QAQC analyses outlined here make use of
all information from an individual lake or variable, incorporat-
ing new data may result in a better assessment of the data than
when there are fewer data. Thus, for each new version of LAGOS-
NELIMNO, new decisions are made about egregious values. In this
data paper, we describe the procedures for assessing all major
versions of LAGOS-NELIMNO, but we present the results only for
this version of LAGOS-NELIMNO (v1.087.1).

Because there are few accepted practices for conducting such
quality control on a large, integrated database, we created our
own procedures for phases I and II by creating tests to iden-
tify egregious values that leverage a large, integrated database
with multiple measures of water quality and well-established
expected relationships among variables. The database that we
used to identify egregious values was based on data in the full
LAGOS-NELIMNO database for samples taken from all lake depths
provided by the source data sets (note, our data exports in this
data paper are only for epilimnetic or surface samples). While
the quality control procedures that we implemented here were
designed to help resolve the large and egregious errors in a com-
bined data set such as this, there are likely additional extreme
values in the database due to the size and heterogeneity of the
data. Users may want to check for additional issues in the data
values specific to their intended analyses.
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Data in the LAGOS-NELIMNO module

All data in LAGOS-NELIMNO v1.087.1 are from samples that we
identified as being collected from either the lake surface or the
epilimnion (thewell-mixed surface layer of a thermally stratified
lake during the period of stratification). Because we did not have
lake temperature data to quantify the exact epilimnion depth in
all lakes, we used information from the source data sets to either
determine epilimnion depth or to select data from only the top
water layers. Although we received data from different depths
in lakes, the majority of the samples were from the surface or
epilimnion. The database includes samples from any season of
the year. However, most of the published analyses to date have
focused on the summer stratified period.

Lakes are not sampled the same way by all individuals,
groups, or agencies; there are differences in the variables mea-
sured, the frequency and timing of sampling, and the propor-
tion of lakes sampled. For example, for total phosphorus, the
4 states with the largest number of unique lakes with at least
1 value for total phosphorus per state include Wisconsin (1920
lakes), Minnesota (1588), New York (1289), and Michigan (1109)
(Table 3). However, the stateswith the highest proportion of their
lakes with total phosphorus samples are the smaller states with
fewer lakes, such as New Hampshire (64%), Vermont (58%), and
Rhode Island (42%). Notably, there are some states with interme-
diate numbers of lakes that still have quite large percentages of
their lakes with total phosphorus values, including Maine (35%
of 2645 lakes), Wisconsin (32% of 6009 lakes), and New York (29%
of the 4461 lakes).

The most commonly measured variable in LAGOS-NELIMNO is
water clarity, measured as Secchi depth (a relatively easy and
cost-effective measure of water quality), with 897 724 measure-
ments taken from 12034 unique lakes in the 17 states from
mostly the mid 1980s to 2011 (Table 3). The second and third
most sampled measures of water quality are chlorophyll a and
total phosphorus, respectively. Although it appears that total
nitrogen is sampled far less frequently than total phosphorus,
some labs measure total nitrogen directly and report that single
value, whereas other labs measure the constituents that make
up total nitrogen (total Kjeldahl nitrogen and nitrate+nitrite)
and sum them together to calculate total nitrogen. All of our
analyses conducted on total nitrogen have used such calculated
and measured values of nitrogen together, which increase the
sample sizes for total nitrogen markedly.

Most of our data came from state agencies, either alone or
as part of joint programs with citizen scientists or university re-
searchers (Table 4), which highlights the importance of citizen
science programs for monitoring lake water quality in this lake-
rich area of the United States.

Using the 3 most sampled variables in the data set (Sec-
chi depth, chlorophyll concentration, and total phosphorus), we
found that larger lakes were more likely to be sampled for water
quality than smaller lakes (Fig. 4). This result was expected given
the economic and recreational interest in larger lakes, including
easier public access. Previous research has already documented
this basic pattern in 6 of the states included in LAGOS-NE [30].
Across all states, almost 80% of lakes >400 ha havewater quality
data.

Lakes are also unevenly sampled through time, depending
on the variable (Fig. 5). Some programs’ focus is on long-term
monitoring, whereas others are short-term initiatives. Typically,
long-term monitoring programs are localized to a few lakes, al-
though there are exceptions (e.g., monitoring for acid rain in the
northeastern United States in the 1980s-present has resulted in

good temporal and spatial coverage for some variables through
time and space) [31].

Description of the LAGOS-NEGEO v1.05 Data
Module

The LAGOS-NEGEO module includes information on the ecologi-
cal context of the census lakes, their watersheds, and their re-
gions. The information provided in the data tables for this mod-
ule is organized into 3 main themes in which data are exported
into individual tables: CHAG—climate, hydrology, atmospheric
deposition of nitrogen and sulfur, and surficial geology; LULC—
land use/cover, canopy cover, terrain metrics, and dam density;
and CONN—lake, stream, and wetland abundance and connec-
tivity measures (Fig. 2). We also provide the GIS coverages that
include some of the underlying data for this module, includ-
ing lake polygons and their hydrologic classifications, defined
in Soranno et al. [17]; wetland polygons and their classification;
streams as a line coverage and their classification by stream or-
der; the zones used for this study (state and county, hydrologic
units [at the 4, 8, and 12 scales]) [32]; and lake watersheds (IWS).
We also include boundaries of US states and Canadian provinces
for mapping.

Data sources of the LAGOS-NEGEO module

Detailed information on data sources are found in Additional
file 5 in Soranno et al. [17]. Almost all data sources for this mod-
ule are from national-scale data sets and thus use standardized
methods throughout the study extent.

Data integration methods of the LAGOS-NEGEO module

All methods to create this module are described in Additional
files 5, 7, 8, 13, and 14 in Soranno et al. [17]. Briefly, we calculated
the metrics for this module that describe the ecological context
surrounding lakes by developing project-specific GIS tools in the
ArcGIS environment, which are referred to as the LAGOS GIS
Toolbox [33]. The toolbox outputsmultiple individual data tables
of calculated values organized by the above 3 data themes that
are then imported into LAGOS-NEGEO for different spatial classi-
fications, including values calculated at the level of the individ-
ual lake, 100-meter and 500-meter buffers around each lake, the
lake IWS, states and counties, hydrologic units, and ecological
drainage units (an ecoregion spatial classification). The unique
identifiers for this data module are the zone IDs for each spa-
tial classification for which we calculate these metrics. In other
words, we calculate land use around a lake in each of the zones
of the many spatial classifications in LAGOS-NE. However, the
data are exported into individual tables by spatial classification.
Therefore, there are different numbers of rows in each table; for
example, there are 51 101 rows for the land use metrics calcu-
lated for the 100-meter lake buffer because there are 51 101 lakes
that have a 100-meter buffer area, but only 17 rows for the land
use metrics calculated for the state spatial classification.

Quality control of the LAGOS-NEGEO module

The full description of error analysis for thismodule is described
in Additional file 14 in Soranno et al. [17]. The quality control
procedures for this module included procedures to identify pos-
sible errors or improbable values as a result of the extensive
automated GIS data processing that creates the LAGOS-NEGEO

data tables and to correct those problems. We assumed that the
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Figure 4: Percentage of lakes by lake area with water quality data. Percentage
of census lakes in each lake size bin (top panel) compared with the percentage
of census lakes for which there are limnological data for Secchi (second panel),

chlorophyll a (third panel), and total phosphorus (TP; bottom panel).

original data layers had already gone through extensive qual-
ity control by the originators of the data sets. We defined errors
and improbable values to be: (i) values that did not make eco-
logical sense; (ii) values that were well beyond what has been
observed in previous studies; (iii) values that are not technically
feasible; or (iv) null values that indicate an absence of data,when
in fact data exist based on the input data coverages. Note, it
was not our intention to remove statistical outliers that may or
maynot be real/true values. Rather, we conducted procedures on
each exported table that included verifying column headers and
units, mapping the exported data to evaluate mapping extent
and boundary issues using visual inspection, mapping the data
distributions of each value, identifying values that were missing
or zero, plotting distributions of the data, ensuring that propor-
tions summed to 100 where relevant, and inspecting univariate
plots of metrics that are known to be related (e.g., % urban land
use vs % impervious surface).

Data in the LAGOS-NEGEO module

This module contains the largest amount of data of any of the
modules. For example, Fig. 6 shows the wide range of ecolog-
ical context for the LAGOS-NE study area calculated for 3 dif-
ferent spatial classifications. For those variables that are mea-
sured coarsely (e.g., baseflow, runoff, atmospheric deposition,

geology), we calculated variables for only the broader spatial
classifications. For example, we did not calculate baseflow for
spatial classifications finer than HUC12 because the underlying
data for baseflow are estimated on a zone generally coarser than
the area of a lake watershed.

Research to Date Using LAGOS-NE

Prior versions of this database have supported numerous peer-
reviewed publications to date. In particular, LAGOS-NE is ideally
suited for studying the local to regional controls of water qual-
ity through both space and time because of the large number of
lakes with in situ water-quality measurements and their wide
gradients of ecological context. The lake census data set also
makes it possible to quantify the types of biases present in the
data set to assess the potential influence of uneven sampling ef-
forts on results across both space and time. Below, we describe
the types of research questions that have been and are being
addressed using LAGOS-NE, organized according to 3 main top-
ics related to studying water quality across space and time in
thousands of lakes. We have published 10 articles using por-
tions of this database, and 13 articles are in reviewor preparation
presently.

Methods and database development for macrosystems
ecology

Several of our lines of research have required the development
of novel methods and the application of existing methods in
novel ways. Much of the impetus for this work on methods and
database development has been driven by 2 needs. The first
was to further develop the database—i.e., creating derived and
predicted data as a new data product that is publicly accessi-
ble (e.g., [28]). The second was to better understand the spa-
tial and temporal distribution of data contained in LAGOS-NE
and to further our understanding of important ecological at-
tributes of lakes acrossmultiple spatial scales. These 2 needs are
not mutually exclusive—analyses that have helped contribute
data to LAGOS-NE have also addressed important ecological
questions.

Three data gaps were identified early during database de-
velopment, including (i) a lack of lake depth information (lake
depth drives many in-lake processes), (ii) the need to develop
a flexible method for creating ecological regions from multi-
themed mapped data, which are often used in macroscale re-
search to account for broad-scale patterns and processes, and
(iii) the need for developingways tomeasure freshwater connec-
tivity to account for the transport and processing of materials
in lakes at broad scales. For the first gap, Oliver et al. [28] used
a linear mixed model to predict lake depth for lakes where in
situ measurements were lacking, allowing the relationship be-
tween surface area and lake depth to vary by region because of
the strong regional differences in this relationship. Predictions
in some regions were far better than other regions, potentially
due to differences in underlying geomorphology. To address the
second gap, Yuan et al. [34] developed a novel spatially con-
strained spectral clustering algorithm that balances geospatial
homogeneity and region contiguity to delineate ecological re-
gions. Cheruvelil et al. [35] have since applied this clustering al-
gorithm across the 17-state study region and tested the ability
of newly developed regions to capture variation in lake nutri-
ents and water clarity. Finally, to address the third gap, Fergus
et al. [29] developed approaches for determining freshwater con-
nectivity of lakes, streams, and wetlands across broad spatial
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Figure 5: The number of years of water quality data by lake. The number of years for which at least 1 sample is taken during the summer stratified season (15 June to
15 September) for Secchi depth in meters, total phosphorus in ug/L, total nitrogen in ug/L (includes both measured and calculated values), and chlorophyll a in ug/L.

extents. The resulting freshwater metrics and analysis provide
insight into the spatial distribution of surface water connectiv-
ity types across the LAGOS-NE study area and provide LAGOS-
NE users with novel metrics of connectivity for use in future
research.

A further challenge in large, integrated databases such as
LAGOS-NE is the well-known problem with data derived from
analytical methods related to the issue of detection limits [36].
Stow et al. (personal communication) studied the in situ concen-
trations that were too low to be quantified by standard analyt-
ical practices—measurements that are termed left-censored or
below a detection limit of an analytical method. Unfortunately,
detection limits were only sometimes reported (although we do
include those data in LAGOS-NELIMNO where available). In some
cases, low values were flagged as being censored, with an expla-
nation as to the reason for censoring the data value, but in other
cases the reason for censoring was not clear. In some instances,
patterns in the data suggested that ad hoc substitutions for cen-
sored observations may have occurred without clear documen-
tation. Stow et al. (personal communication) describe a statis-
tical approach that can be used to accommodate left-censored
data duringmacroscale statistical analyses. Thiswork also led to
refining how censored observations were reported in LAGOS-NE,
which has been incorporated into all later versions of LAGOS-
NELIMNO, including v1.087.1.

Lake water quality is affected by many ecological context
features, such as lake physical characteristics, land cover, land
use, and climate. The relationship between these features and
the water quality measurements is not always linear. In addi-
tion, the data tend to be noisy and often contain missing values,
which makes it challenging to fit effective statistical models. To
overcome these challenges, Yuan et al. [37] developed a novel
algorithm for learning non-linear features to predict lake water
quality. The algorithm also enables the missing values to be im-
puted in a way that preserves the relationship between the pre-
dictors and response variables. Furthermore, because many of
the lakewater quality variables are strongly correlatedwith each
other, their models are expected to be similar. This similarity
information can thus be exploited to build better models, espe-
cially for the lake water quality variables that have very few ob-
servations because they are not sampled frequently. Members of
our research team are developing a machine learning approach
known as multi-task learning that can simultaneously build re-
gression models of multiple lake water quality variables for a
large number of lakes, taking into account both the correlation
between the variables and the spatial autocorrelation among the
lakes. Because we expect many ecological data sets across broad
geographic scales to have similar data gaps and challenges as
LAGOS-NE, we think these methods will be extremely valuable
for other researchers studying different macroscale questions.
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16 Soranno et al.

Figure 6: Example ecological context variables by spatial classification in LAGOS-NE. The top 4 panels are zoomed in to selected regions of Minnesota and Wisconsin
so that the zone boundaries can be seen. The upper left panel shows stream density in each lake IWS, and the upper right panel shows the percentage of connected
wetlands in each lake IWS. The middle left panel shows the 2011 percent urban land use/cover in each hydrologic unit code 12 (HUC12), and the middle right panel

shows the 2011 percent agricultural land use/cover in each hydrologic unit code 12 (HUC12). The lower left panel shows the 2010 nitrogen deposition in each HUC8,
and the lower right panel shows the average percentage of streamflow that is baseflow in each HUC8.
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Understanding spatial variation in lake nutrients and
eutrophication at sub-continental scales

LAGOS-NE allows investigation of spatial variation in lake nu-
trients and eutrophication at macroscales. For example, mem-
bers of our team have identified general spatial principles that
constrain relationships between ecosystem variables with dif-
ferent spatial structures. In other cases, specific questions re-
garding spatial patterns have focused on identifying important
landscape controls on nutrients and their ratios [38], potential
stress induced on phytoplankton communities by high nitrogen
levels, and spatial autocorrelation in lake-specific relationships
between chlorophyll and nutrients and carbon [39]. In addition,
LAGOS-NE contains a wealth of information on a variety of lake
ecosystem types. Shallow lakes, in particular, are very abundant
across the study area and represent systems that can exhibit
hysteresis in response to lake eutrophication. Our team is also
investigating the spatial distribution and temporal dynamics of
water clarity in shallow lakes of the LAGOS-NE study area.

An important area of research, and one that was a moti-
vating factor for the creation of LAGOS-NE, is understanding
the importance of cross-scale interactions (CSIs)—where eco-
logical processes operating at one spatial or temporal scale
interact with processes operating at another scale—in lake
ecosystems. Because of their importance ecologically and the
challenge of quantifying them over large spatial extents, Wag-
ner et al. [40] evaluated the statistical power of large multi-
thematic, multi-scaled data sets, such as LAGOS-NE, to detect
CSIs. This work not only helped inform the design of large-scale
studies aimed at detecting CSIs, but also focused attention on
the importance of considering CSI effect sizes and their ecolog-
ical relevance. To extend this work, members of our team are
investigating the importance of both within- and cross-scale in-
teractions in landscape models predicting lake nutrients, and
the role that connectivity among freshwaters plays in these in-
teractions. Understanding and predicting nutrients in lakes at
macroscales is important to inform estimates of lake contribu-
tions to continental and global nutrient cycles. To date, much
of this work has been performed on a nutrient-by-nutrient ba-
sis, despite knowing that cycles of nitrogen and phosphorus and
other key elements are best understood by considering multiple
elements in tandem, e.g., in a stoichiometric framework [41] or
through analysis of coupled biogeochemical cycles (e.g., [42–44]).
Currently, efforts are underway to develop spatial joint nutri-
ent distribution models to evaluate how our understanding of
landscape-scale drivers of lake nutrients and predictive perfor-
mance are improved by considering multiple nutrients simul-
taneously (multivariate models) compared with traditional uni-
variate approaches that ignore that nutrient cycles can be tightly
coupled in freshwaters.

Understanding temporal and spatial variation in lake
eutrophication at sub-continental scales

In addition to the vast spatial data contained in LAGOS-NE, tem-
poral data are available for many water quality variables and
some of the ecological context variables (e.g., land use/cover and
atmospheric deposition). This is important information within
the context of understanding and predicting how lake ecosys-
tems have and will respond to global change, such as changes
in climate and land use, and management activities to reduce
nutrient inputs to lakes. Because we do not expect responses
to such change and actions to be the same everywhere, these
questions must be addressed across both space and time. In

particular, recent environmental changes and management ef-
forts have beenhypothesized to both improve anddegradewater
quality in lakes. However, to date, there have been no studies to
examine these issues comprehensively across broad scales and
to examine which drivers are most strongly related to eutroph-
ication status in lakes. LAGOS-NE is very well suited to answer
these types of questions.

For example, nearly 3000 lakes were examined for trends in
nutrients and chlorophyll from 1990 to 2013 using LAGOS-NE
[45]. Across all lakes, nitrogen has declined, and phosphorus
and chlorophyll have not changed. Nitrogen and stoichiometric
changes in lakes were related to atmospheric deposition of ni-
trogen, providing key insight into large-scale nutrient transport
and policies such as the Clean Air Act. Using only citizen sci-
ence data in a subset of the LAGOS-NE database, Lottig et al. [46]
showed results that suggested little evidence for major declines
or improvements in water quality. In addition, members of our
team are examining the relationships between a wide range of
climate metrics and water quality in ∼11 000 lakes in LAGOS-NE
to determine (i) which climate metrics are most related to water
quality; (ii) whether physical, chemical, and biological aspects
of lakes respond to climate in the same way; and (iii) how the
climate–water quality relationship varies across space and re-
gions with different ecological contexts. However, the temporal
dynamics of lake ecosystem properties can sometimes be non-
linear and exhibit variability across the landscape—largely
because of climate and within-lake processes. Our team has
developed models for understanding and predicting the often
complex temporal patterns observed in water clarity. These
studies point to the importance of considering both space and
time when trying to understand broad-scale environmental is-
sues in surface waters.

Using LAGOS-NE for Future Research,
Management, and Policy

To facilitate the potential future use of LAGOS-NE, we have thor-
oughly documented the database and its methods [17], and here
we share LAGOS-NE data with the broader research community.
In this data paper, we include a wide range of research products,
including the water quality and ecological context data, the GIS
coverages underlying much of the analyses on freshwaters, and
an R package that facilitates use of LAGOS-NE [47]. This pack-
age includes functions to retrieve, store, and interact with the
LAGOS-NE database, which works across many different operat-
ing systems. The package should increase the ease with which
users of the database are able to access the data and documen-
tation while maintaining a reproducible workflow.

Key motives for constructing this database included interest
in examining lake nutrients and productivity at multiple spatial
and temporal scales, fostering broad-scale aquatic ecology and
macrosystems research in an open-science platform, and pro-
viding new understanding and resources for management and
policy-makers. To this end, several team members have made
presentations at scientific meetings about the structure and use
of LAGOS-NE, and subsets of LAGOS-NE data have been shared
with other researchers and stakeholders and agency personnel
in advance of this publication. These early uses of LAGOS-NE
data by other researchers outside of our team include an in-
vestigation of patterns and causes of shifting distribution of a
sentinel fish species, developing models to simulate lake tem-
peratures and fish species distributions, and developing a re-
cruitment model for a popular game fish. Results from the latter
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2 efforts will inform state-level fisheries management as well
as aid in prioritization of lakes for habitat conservation action
across a tri-state region.

Much of the research that we and others are conducting with
LAGOS-NE has implications for ecosystem management or en-
vironmental decision-making. In addition, we have collaborated
with boundary organizations and decision-makers. For exam-
ple, under development is a dashboard of the ecosystem ser-
vices provided by lakes for use by land managers. In addition,
we have helped the state of Michigan determine lake-specific
nutrient standards. Our hope is that this database and the as-
sociated support tools and documentation serve as a power-
ful resource and a foundation for future research and decision-
making by a broad community of scientists, policy-makers, and
natural resource managers. Indeed, our success and experience
with database construction and research have inspired us to ex-
pand the spatial extent for LAGOS-NE. We have begun to build
LAGOS-US, which will include similar data as LAGOS-NE but will
be for the continental United States.

Challenges and Recommendations for
Creating Large, Integrated, and
Heterogeneous Databases

We found that the largest challenge when creating this database
was integrating many small heterogeneous data sets that had
few common standards. Although creating such large, inte-
grated data sets using fully automated procedures may happen
someday, it appears that we are nowhere near such automation
today. Until standards in metadata documentation and robust
ontologies are created and widely adopted when creating local
or regional data sets, future efforts to integrate these into larger
databases will have to rely on close collaborations among do-
main experts and ecoinformatics professionals, extensive man-
ual interpretation of individual data sets, and funds sufficient to
implement these labor-intensive approaches [16]. Nevertheless,
it is worth the time and money invested in database integration
if the resulting databases support new research, management,
policy, public outreach, and education at all levels.We anticipate
that LAGOS-NE will serve as a foundation for new data modules
that can be used beyond the original intent of LAGOS-NE.

The economic value of water quality data in an
integrated database

This extensive effort was supported by a US National Science
Foundation grant that totaled $2.4 million, along with resources
from other projects. Our team ranged in size from 14–20 indi-
viduals across the 6 years of the project, with many members
compiling and integrating data, authoring metadata, creating
new data products, and implementing quality control proce-
dures, resulting in a tremendous number of person-hours. How-
ever, when one considers the cost of the data collection for the
water quality data in the first place, the expense of this post-
processing integration work is not as large as it sounds. Sprague
et al. [16] suggest that a single sample (estimated for collecting
nutrient or chemistry data from streams) ranged in cost from
$2000 to $6000 per sample. If we assume similar rates for lake
sampling, but lower the cost as some aspects of lake sampling
may be cheaper than stream sampling and multiply that cost
(estimated as $1000–$4000 US) by the total number of records of
nutrient or chemical samples in LAGOS-NE (n = 589 909), then
the combined estimate to collect the water quality data found in

LAGOS-NE is in the range of $0.5–2.4 billionUS. It cost us between
0.10% and 0.40%of the cost to sample the data in the first place to
harmonize these half amillion records and to build an ecological
context database for them. This relatively small investment in
preserving, documenting, and harmonizing these valuable data
sets creates the needed infrastructure for new broad-scale re-
search, management, education, and outreach uses.

Strategies for broad-scale data integration efforts

One challenge is to prioritize research areas and to identify the
types of data sets that may benefit from a similar type of in-
tegration. State, federal, tribal, and citizen science water quality
data sets were an excellent source of quality data for integration
and conducting broad-scale research on aquatic systems. There
are likely other such data sources that would benefit from being
integrated as we have done here. We recommend the following
strategies tomake the best use of future data integration efforts.

(1) The database integration effort should be driven by key
underlying research questions or goals and grounded in a
strong conceptual foundation of the important features to
include. In our case, the principles of landscape limnol-
ogy [12, 18–20] guided the development of LAGOS-NE, which
helped us to prioritize geospatial and lake features for inclu-
sion in the database because the addition of any data type
or data set cost time and money.

(2) For databases with more than 1 major data type, it is very
helpful to build the database in modular form, each with its
own versioning system, specific data integration methods,
and quality control procedures. This strategy was not a pri-
mary goal at the outset of our project, but it emerged some-
what organically through the life of the project. We now rec-
ognize the many benefits that the modularity brings to the
database, including making it much easier to be dynamic
rather than static by providing a platform for the addition
of new data, new types of data, and new modules in the fu-
ture (such as for biological data or data from high-frequency
sensors).

(3) The entire process should be grounded in an open-science
framework. Knowing that the database, design, and meth-
ods were to be shared and made usable by future users in-
fluenced our decisions throughout the process and made
documentation a high priority throughout. Although we are
making the full database available now, before this point, we
supported open science by publishing subsets of LAGOS-NE
data that were used in individual publications (e.g., [48, 49]).

(4) Creation of LAGOS-NE required a strong focus on team sci-
ence, and in particular the roles of and incentives for early-
career researchers in such efforts. This type of research can-
not be conducted in a single-investigatormode, but requires
a highly collaborative and effective team-based model (e.g.,
[50–52]). We explicitly considered strategies for ensuring
that early-career team members get credit for their contri-
butions [53], and we recommend providing team members
with opportunities for leadership, projectmanagement, per-
sonnel management, and intellectual growth. For example,
they can be part of major decisions and can lead smaller ef-
forts throughout the project, as well as be given power to
shape team policies and practices. This integration of early-
career researchers into the entire research team and effort
will give early-career professionals deep knowledge of the
database and procedures, as well as the skills to conduct
such work in the future.
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(5) The decision of how to disseminate the database docu-
mentation needs to be considered early in the project. For
example, database documentation papers are rare, espe-
cially in ecology, but are very important. The documentation
and procedural approaches for developing this large, inte-
grated, and heterogeneous database had to be disseminated
through publication prior to making the database available
[17] and prior to publication of research results stemming
from LAGOS-NE because methods sections in journal arti-
cles are too short to include all the necessary documenta-
tion of suchmethods. Other researchersmay be discouraged
by the very real consequence that publishing such products
takes time and energy investments thatmay slow downpro-
duction of research publications. However, such a paper was
instrumental in supporting later research articles that used
LAGOS-NE. Therefore, we recommend that this (and other)
database documentation papers become a more standard
type of paper to describe the extensive methods involved
and to supplement data papers. Such papers will facilitate
the use, extension, and translation of these databases well
into the future, as well as foster future research on broad-
scale, complex, and societally relevant environmental
questions.

Availability of supporting source code and
requirements

Project name: LAGOS-NE
Project home page: https://github.com/cont-limno/LAGOS
Operating system(s): e.g., platform independent
Programming language: R
Other requirements: R packages required (with associated

versions): dplyr (≥0.7.0), rappdirs (≥0.3.1), lazyeval (≥0.2), purrr
(≥0.2.2.2), magrittr (≥1.5), sf, curl (≥2.7.0), stringr (≥1.2.0)

License: GPL

Availability of supporting data

The data sets supporting the results of this article are available
in the Ecological Data Initiative repository, including the follow-
ing specific components:

� LAGOS-NE-LOCUS v1.01 [54];
� LAGOS-NE-LIMNO v1.087.1 [55];
� LAGOS-NE-GEO v1.05 [56];
� LAGOS-NE-GIS v1.0 [57];
� Snapshots of the R package in the LAGOS GitHub page are
also available in the GigaScience repository, GigaDB [58].

Additional files

Soranno˙etal 2017 Additional file 1 8SEP17 final.docx
Soranno etal 2017 Additional file 2 qaqc-limno v2.docx
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