
1 

 

Small Values in Big Data: The Continuing Need for Appropriate 

Metadata 

 

Craig A. Stow1, Katherine E. Webster2, Tyler Wagner3, Noah Lottig4, Patricia A. Soranno2, 

YoonKyung Cha5 

  

1National Oceanic and Atmospheric Administration Great Lakes Environmental Research 

Laboratory, Ann Arbor, MI 48176 USA 

2Michigan State University, Dept. Fisheries & Wildlife, East Lansing, MI 48824 USA 

3U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Unit, The Pennsylvania 

State University, 402 Forest Resources Building, University Park, PA, 16802 

4Univ Wisconsin, Center for Limnology, Boulder Jct, WI USA 

5Univ Seoul, School Environmental Engineering, Seoul, South Korea 

 

Disclaimer: This draft manuscript is distributed solely for purposes of scientific peer review. Its content is 

deliberative and predecisional, so it must not be disclosed or released by reviewers. Because the 

manuscript has not yet been approved for publication by the US Geological Survey (USGS), it does not 

represent any official finding or policy.

© 2018 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1574954117303102
Manuscript_a3de6759cf442eaeb5c2da628e52590a

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1574954117303102


2 

 

Abstract  1 

Compiling data from disparate sources to address pressing ecological issues is increasingly 2 

common. Many ecological datasets contain left-censored data – observations below an analytical 3 

detection limit. Studies from single and typically small datasets show that common approaches 4 

for handling censored data — e.g., deletion or substituting fixed values — result in systematic 5 

biases. However, no studies have explored the degree to which the documentation and presence 6 

of censored data influence outcomes from large, multi-sourced datasets. We describe left-7 

censored data in a lake water quality database assembled from 74 sources and illustrate the 8 

challenges of dealing with small values in big data, including detection limits that are absent, 9 

range widely, and show trends over time. We show that substitutions of censored data can also 10 

bias analyses using ‘big data’ datasets, that censored data can be effectively handled with 11 

modern quantitative approaches, but that such approaches rely on accurate metadata that describe 12 

treatment of censored data from each source.  13 

  14 
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Introduction  15 

 Data sharing is an increasing expectation in the sciences1-3. This outlook arises from the 16 

recognition that data are expensive and should be made widely available for maximum utility, as 17 

well as the view that information funded by taxpayers should be accessible. Although there have 18 

been concerns that users of such data are simply “datavores” or perhaps worse, “research 19 

parasites” 4, there are many scientific gains to be made from assembling data from diverse 20 

sources and harmonizing them into a consistent format for further research. The environmental 21 

sciences, in particular, stand to benefit as we investigate phenomena occurring across broad 22 

spatial and temporal scales5-7.  23 

 Comprehensive metadata are essential to interpret large, integrated databases so that data 24 

provenance and context are retained1,8, and to reduce the chance that patterns accidentally arise 25 

as artifacts of differing observational protocols. Complete metadata should accurately describe 26 

the “censored” observations, which result when measured samples have values that are either too 27 

high or low to be quantified (supplemental box). Samples that are below a lower detection limit 28 

are most common and are termed “left-censored”. Examples include nutrient and chemical 29 

concentrations that fall below the detection limit of the analytical approach9-10.  Though less 30 

common, “right-censoring” may also occur when, for example, concentrated aqueous samples 31 

are not adequately diluted before analysis or when Secchi depth, a measure of water clarity, 32 

exceeds the lake depth11.   33 

 Analyzing data containing censored observations may be complicated by the fact that 34 

detection limits for the same characteristic can differ depending on the measurement protocols 35 

used, and may change over time. Ideally, metadata in a harmonized database would indicate 36 

which observations are censored and the detection limit for each censored observation. However, 37 
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even basic metadata can be lacking in data repositories containing data from many sources8. 38 

Thus, it is important to consider whether the censored observations are sufficiently well-39 

documented in ecological datasets to rigorously use them in analyses of compiled datasets. 40 

 Two common approaches for treating left-censored data include: 1) discarding the 41 

censored observations or 2) substituting a value including: the detection limit, half the detection 42 

limit, or zero. Under limited circumstances, these informal approaches may not strongly 43 

influence the conclusions derived from the data analysis. For example, qualitative pattern 44 

assessment may not be affected, particularly if the proportion of censored observations is low, 45 

and their range is small relative to the overall data range. However, censored data contain 46 

information, which will be improperly represented when observations are discarded or 47 

substitution is used, possibly influencing inference, particularly when they comprise higher 48 

proportions of the database. Additionally, even if the overall proportion of censored observations 49 

is small, censoring may be disproportionately high in some groups within the data, causing 50 

misleading comparisons. 51 

 Rigorous approaches to accommodate censored data have long been available12-14.  Helsel 52 

15-18, Antweiler and Taylor19, and Antweiler20 stressed the challenges of analyzing censored data 53 

and presented methods to analyze datasets containing censored observations.  However, these 54 

approaches still require accurate censoring metadata for all observations.   55 

Our goal was to examine censored data properties in commonly-measured ecological 56 

variables that have been harmonized into a large, integrated database to determine the effect of 57 

censored data on ecological inference. Because such integrated databases are becoming 58 

increasingly common, the potential biases due to censored data invites investigation. We used a 59 

large, harmonized water quality database compiled from 76 sources21-22. Our objectives were to 60 
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quantify: a) the proportion of datasets and data values with sufficient metadata to confidently 61 

identify censored observations; b) variation in reported detection limits across sources and 62 

through time in the last several decades of water quality sampling; and c) the effect of three 63 

strategies for dealing with censored observations on a simple water quality model and whether 64 

the proportion of censored observations influences that effect.  Our results highlight the need for 65 

accurate documentation and metadata.    66 

   67 

Methods 68 

We draw on our experience in developing LAGOS-NE (LAke multi-scaled GeOSpatial 69 

& temporal database – Northeast and Midwest lakes), a lake water quality database with data 70 

from 17 northeastern USA states21.  LAGOS-NE version 1.087.1 includes contributions from 76 71 

state, federal, tribal, university, citizen science, and non-profit monitoring programs with 72 

chlorophyll a, total nitrogen, and total phosphorus (CHLa, TN, and TP, respectively) 73 

measurements in lake surface waters. Data from two monitoring programs, consisting of 1 and 5 74 

total observations, were omitted prior to our analysis.  The number of observations and programs 75 

supplying data for each variable ranged, respectively, from 40,670 to 209,732 and from 33 to 66 76 

(Table 1); most data were collected between 1970 and 2013.      77 

 During the creation of LAGOS-NE, codes that documented censor status and whether or 78 

not the source program provided detection limits were assigned to each observation.  Data 79 

providers indicated values were censored in multiple ways:  (a) explicit detection limits (DL) 80 

were provided with each value; (b) DLs were assumed to be the reported value when tags such as 81 

‘<’ were provided; and (c) DLs were provided in the metadata but not specified in the dataset.  82 

Based on these codes, we summarized the number of programs and corresponding number of 83 
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observations that had DL information and the proportion of LAGOS-NE data that was comprised 84 

of censored observations for each water quality variable. We used, respectively, statistical 85 

summaries and cumulative frequency distributions compiled at decadal time steps to provide 86 

insights into variation in DLs among programs and over time.   87 

Prior to finalizing LAGOS-NE, we deleted a small number of non-censored that values 88 

were reported as zero (351, 40 and 266 for CHLa, TN and TP, respectively).  We made the 89 

decision to delete these, because it was unclear if these values were true zeroes, rounding 90 

artifacts, or substituted values and because bivariate plots with related variables indicated, in 91 

many cases, that these were outlier values. 92 

 To demonstrate the effect that data censoring can have on quantitative analyses we 93 

simulated a large dataset with known censoring patterns. The simulated data represent a log-94 

linear relationship between TP and CHLa concentrations using parameter values previously 95 

estimated from a subset of LAGOS-NE lakes23. We performed simulations where the proportion 96 

of censoring was set to 5, 15, and 30% of the simulated data. For each of the three sets of 97 

simulations, we generated 100 datasets consisting of 10,000 lakes each. The intercept, slope and 98 

residual standard deviation used to generate the data were -0.24, 0.83, and 0.40, respectively. For 99 

each simulated dataset, the response variable, CHLa, was left-censored at 5, 15, or 30%. We then 100 

analyzed each dataset using linear regression where the censored values were estimated 101 

iteratively and constrained to fall below the detection limit24-25, and three naïve approaches 102 

where: (1) censored values were omitted, (2) censored values were set to the detection limit, and 103 

(3) censored values were set to half the detection limit. All models were fitted using Bayesian 104 

estimation. Diffuse normal priors (N[0,1000]) were used for the intercept and slope parameters 105 

and a diffuse uniform prior (Unif[0,10]) was used for the residual standard deviation using JAGS 106 
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in the R2jags package26, run from within R version 3.3.027. We ran three parallel Markov chains 107 

beginning each chain with different values. From a total of 10,000 samples from the posterior 108 

distribution the first 5,000 samples of each chain were discarded for a total of 15,000 samples 109 

used to characterize the posterior distributions. We assessed convergence for all parameters both 110 

visually (trace plots), as well as with the Brooks-Gelman-Rubin statistic. During each simulation 111 

the estimated values of the intercept, slope, and residual standard deviation were compared to the 112 

true values used in the data generating process to calculate the resultant biases. 113 

 114 

Results  115 

Depending on the water quality variable, 39.4 to 60.6 % of programs documented 116 

censored observations either within the database or in accompanying metadata (Table 1a).  117 

Despite substantial proportion of programs that did not provide DL information, their 118 

contributions constituted less than 20 % of the observations in LAGOS-NE, suggesting that 119 

larger lake monitoring programs typically had more information on censored data.  Further, 120 

censored observations comprised a small percentage of the database, 2.4 % or less for all three 121 

water quality variables (Table 1b).  122 

The wide range of ways that censored data were identified in the original program 123 

datasets complicated harmonization. For example, observations could be associated with specific 124 

DLs, DLs could be documented program-wide, or DLs could be identified as tagged values or 125 

even, in one case, inserted as negative numbers in the database. The percentage of observations 126 

with specified DLs differed depending on the water quality variable.  For CHLa, TN, and TP, 127 

respectively, 23, 66  and 28 % of observations had the DL specified for each observation; 19, 2, 128 

and 42 % of observations had DLs assigned through metadata or as tags; and the remaining 38, 129 
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18, and 14 % of observations were from datasets with a mixture of censoring strategies.  A few 130 

of the latter programs provided databases with data collected over multiple decades and may 131 

have changed specification of censored data within their database over time.  132 

The extent to which individual programs substituted values when concentrations were 133 

less than the DL cannot be fully evaluated. For censored observations that had associated DLs 134 

specified, respectively, 7.5, 0, and 12.7 % of observations were equal to one-half the DL and 135 

42.1, 1.6, and 16.0 % observations were equal to the DL for CHLa, TN, and TP. Some programs 136 

reported non-censored observations with concentrations less than the reported DL, possibly 137 

indicating that the reported DL was an overall method DL, not batch-specific. This disparity of 138 

reporting approaches for censored observations was one of the most challenging aspects of data 139 

harmonization. 140 

Further complexity for data users of LAGOS-NE was the wide range of DLs (Table 1b). 141 

Reported detection limits differed by over two orders of magnitude for CHLa and TP (Table 1b); 142 

six DLs for TP were very high and exceeded 100 µg/L, with a maximum at 570.  Despite large 143 

ranges, however, median DLs were low, respectively, 1, 50 and 2 µg/L for CHLa, TN and TP.   144 

Finally, we compared the overall distribution of DLs with those for data collected prior to 145 

2000 and in the 2000 and 2010 decades (Figure 1). Temporal patterns in detection limits differed 146 

among the three water chemistry variables. DLs for CHLa were most consistent over the three 147 

time periods, with a only a small percentage having DLs exceeding 1 ug/L. In contrast, DLs for 148 

TN and TP differed in cumulative frequency over time. For TN, DLs for samples collected prior 149 

to 2000 included both lower and higher values compared to other time periods and overall 150 

(Figure 1a).  For TP, data collected prior to 2000 had lower DLs compared to later years with 151 

70% of DL values less than 10 µg/L.  The time period prior to 2000 did have a higher frequency 152 
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of DLs equal to and greater than 20 µg/L compared to later years, including half of the six DL’s 153 

over 100 and the two values exceeding 200. In subsequent decades, the DL for TP analyses 154 

shifted towards a dominance of DL equal to 10 µg/L. These patterns suggest, at least for TP, that 155 

while maximum detection limits have declined over time, the majority of earlier data was 156 

analyzed under protocols with generally lower DLs. We speculate that this might be due to 157 

increased automation in laboratories combined with a tradeoff of sacrificing lower sensitivity at 158 

lower ends of the concentration range. The results provide cautions that systematic differences in 159 

DL within the database have the potential to generate artifacts that interfere with trends and 160 

patterns in the data, particularly influencing analyses based on low concentrations.   161 

Our simulation study of the effects of different replacement strategies for censored data on 162 

parameter estimation provide further evidence for careful consideration of how censored 163 

observations are treated in large datasets.  Regression lines generated from one of the 100 164 

simulated data sets of 10,000 lakes help visualize the problem that occurs using various methods 165 

to accommodate the censored observations (Figure 2a). In this specific result, the “true” 166 

regression and censored model lines are essentially coincident, indicating that the censored 167 

model closely replicates the truth.  The lines generated by omitting the censored observations 168 

and setting the censored observations to the detection limit are similar to one-another, both with 169 

intercepts that are higher and slopes that are lower than those of the “true” model. In contrast, the 170 

line that results from setting the censored observations to half the detection limit has an intercept 171 

that is lower and a slope that is higher than the true model. 172 

This specific result is indicative of the general pattern that becomes apparent from the 100 173 

simulations (Figure 2b). Omitting censored observations or setting them to the detection limit 174 

causes negatively biased slopes, positively biased intercepts, and negatively biased standard 175 
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deviations. However, when the censored observations are set to half the detection limit, the 176 

slope, intercept, and standard deviation biases are reversed. For all three methods the size of the 177 

bias increases with the proportion of censored observations. Concurrently, the censored model 178 

remains unbiased, even when 30% of the observations were censored. 179 

 180 

Discussion 181 

We offer a cautionary tale regarding potential problems posed by censored data, for which 182 

approaches to address them have been documented in the literature for many years.  However, 183 

adding to the analytical issues raised in the past, the censored data in LAGOS-NE v1.087.1 are 184 

likely characteristic of other large, harmonized, environmental databases and illustrate that 185 

despite a history of documentation, problems persist, and new uncertainties introduced due to 186 

differences in analytical procedures and data reporting among monitoring programs. While the 187 

proportion of values clearly identifiable as below detection was small, there remained a 188 

proportion of observations showing symptoms consistent with having been substituted, as well as 189 

a small number that we labeled as “missing” because it was unclear if they were truly zero or if 190 

their missingness was a detection limit artifact. This inability to clearly differentiate censored 191 

observations puts users of compiled data in a difficult position; we discarded a small number of 192 

observations for lack of a clearly superior alternative, given the limitations of the supporting 193 

metadata.  194 

Our results highlight the need for standard reporting of censored data for these common 195 

water quality variables and identify complexities inherent in combining data from disparate 196 

sources.  Additionally, our results support findings of Sprague et al.8 regarding difficulties in 197 

combining datasets.  In the case of LAGOS-NE, many of the limitations described in Sprague et 198 
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al.8 were minimized because we solicited data directly from the program maintainers and 199 

requested metadata information regarding aspects such as units, methods, chemical species and 200 

detection limits and associated data tags20. In fact, if the dataset did not contain sufficient 201 

metadata we did not consider it for inclusion in LAGOS-NE; however even with substantial 202 

metadata, censored observation documentation was sometimes ambiguous. 203 

Further, our simulation study showed how handling of censored data could influence 204 

common analyses, such as regression modeling. The approach we have demonstrated is useful 205 

for linear regression modeling; other approaches are available for different applications. For 206 

example, the Bayesian hurdle model can use one set of predictor variables to predict which 207 

response variable observations are below detection, and another set to estimate the value of the 208 

response variable for those observations above the detection limit28. An important outcome of 209 

our analysis shows that such biases do not diminish with sample size.  Thus, if quantified 210 

estimates are needed, as they are for most statistical analyses of large datasets, then choosing 211 

methods to appropriately incorporate the censored observations is necessary, and metadata 212 

documentation of censoring is critical.  213 

Harmonizing datasets from multiple sources offers great benefits, but also presents 214 

challenges, many of which can be overcome with accurate metadata documenting the nuances of 215 

the assembled data. The first major challenge that we documented is the wide range of strategies 216 

for documenting DLs and censored observations among data sources. This challenge makes data 217 

harmonization especially time-consuming. The second major challenge more for users of the 218 

database is the changes in reported DL from the 1970’s to present, the period when many 219 

ecological datasets have been collected. These changes could bias trend detection in lower 220 

concentrations of ecological variables such as nutrients. Although problems posed by improper 221 
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censored handling data are well-documented, and approaches to accommodate censored 222 

observations are available when censored status is fully known, we find that the problem persists. 223 

The temptation to treat left-censored values cavalierly may arise because, for many 224 

environmental applications, low values indicate the absence of contamination, and thus are of 225 

minimal concern. However, using substitution or discarding low values resulted in biased 226 

estimation even when the proportion of censored values was small and the number of 227 

observations was large. Our regression analysis example demonstrates that contemporary 228 

computational approaches make rigorous treatment of censored observations straightforward, if 229 

the metadata include adequate documentation. For censored data this documentation should 230 

include a clear indication of which observations were censored and a specification of the 231 

detection limit for each censored observation. Thorough compilation of detailed metadata in the 232 

database harmonization process and attention to metadata during statistical analyses by the user 233 

remain critical for successful research efforts relying on big data.    234 
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Table Captions 332 

Table 1.   Overview of censored and non-censored data in the LAGOS-NE database for each 333 

water quality variable.  (a)  The number and percentages of individual programs supplying 334 

datasets with and without DL information and the corresponding number and percentage of 335 

observations.  (b) The number of censored observations within LAGOS-NE and summary 336 

statistics of DL for censored values. 337 

  338 



19 

 

Table 1 339 

Water quality variable 

Measure CHLa TN TP   

(a) Programs with and without DL information 

Number of programs n 58 33 66 

Percent with DL information % 43.1 39.4 60.6 

  Percent with no DL information % 56.9 60.6 39.4   

      

Number of observations  n 209732 41670 158968 

Percent from programs with DL % 80.6 85.6 83.1 

  Percent from programs with no DL  % 19.4 14.4 16.9   

(b) DL from censored observations 

Number of censored observations n 5088 192 3264 

 % of total 2.43 0.46 2.05 

      

Concentration (µg/L) median 1 84 10 

mean 0.99 145.3 9.0 

min 0.03 20 0.3 

    max 10 280 570   

 340 

 341 

 342 

 343 

 344 

 345 

  346 
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Figure Captions 347 

 348 

Figure 1   349 

Cumulative frequency distribution plots of detection limits for censored observations in LAGOS-350 

NE.  Distributions of all DLs and those within decadal time intervals are shown. The x-axis for  351 

TP and CHLa plots, respectively, were truncated to 30 and 3 µg/L to better capture the majority 352 

of observations, thus eliminating 84 and 18 observations.  Summary statistics are in Table 1.  353 

 354 

Figure 2  355 

(a) One realization from a simulation representing the log-linear relationship between total 356 

phosphorus (predictor variable) and chlorophyll a (response variable) in north temperate lakes. 357 

Dots represent values from individual lakes (n = 10,000) and open dots represent censored 358 

observations, where 30% of the observations are left-censored. Solid lines are posterior mean 359 

regression lines from a censored regression model and three naïve regressions where censored 360 

values were either substituted or omitted from the analysis. Note that the “Truth” fitted line is the 361 

true underlying relationship and it is hardly visible because it is overlaid with the censored 362 

regression model fit. 363 

 364 

(b) The difference between the estimated and true values for the intercept, slope and residual 365 

standard deviation used to simulate data for a simulation representing the log-linear relationship 366 

between total phosphorus and chlorophyll a in north temperate lakes. There were five scenarios 367 

evaluated, including a censored regression model and three naïve regressions where censored 368 

values were either substituted or omitted from the analysis. Simulations were performed 369 
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assuming 5% (A), 15% (B), or 30% (C) of the observations being left-censored. The open 370 

squares, triangles, and circles represent the mean difference across 100 iterations for the residual 371 

standard deviation, slope, and intercept, respectively, and the horizontal bars represent the 2.5 372 

and 97.5 percentiles across the 100 simulations.  373 
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Figure 1 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

  382 
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Figure 2a 383 

 384 

 385 

 386 

  387 
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Figure 2b 388 

 389 

 390 

  391 
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Supplementary web panel: 392 

Terminology used to define aspects of data quality.  Definitions from Helsel (2011). 393 

TERM DEFINITION 

  

CENSORED 

DATA 

Typically a low level concentration with a value between zero and the reporting limit; 

can also be a concentration above an upper threshold set by analytical constraints 

 

REPORTING 

LIMIT 

Concentration above which values are reported without qualification by either detection 

or quantitation limits 

 

DETECTION 

LIMIT (DL) 

Value below which a concentration cannot be distinguished from zero.  Related terms are 

LOD (limit of detection) and MDL (method detection limit) 

 

QUANTITATION 

LIMIT (QL) 

Value below which a reliable single number cannot be reported with precision.  Related 

term is  LOQ (limit of quantitation) 

 

DATA 

SUBSTITUTION 

Replacement of censored data in a dataset with, for example, zero, ½ the detection limit, 

or the detection limit.   

TAG OR 

QUALIFIER 

Field in a database that indicates whether a value is censored 

  

MISSINGNESS The manner in which data are missing from a sample of a population, which can cause 

artifacts in data analysis under certain conditions 

  

 394 

Analytical Methods Committee (AMC) (2001). What should be done with results below the detection 395 

limit?  Mentioning the unmentionable. AMC Technical Brief (No 5): 2. 396 




