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Conceptions of Good Science  
in Our Data-Rich World

KEVIN C. ELLIOTT, KENDRA S. CHERUVELIL, GEORGINA M. MONTGOMERY, AND PATRICIA A. SORANNO

Scientists have been debating for centuries the nature of proper scientific methods. Currently, criticisms being thrown at data-intensive science 
are reinvigorating these debates. However, many of these criticisms represent long-standing conflicts over the role of hypothesis testing in science 
and not just a dispute about the amount of data used. Here, we show that an iterative account of scientific methods developed by historians and 
philosophers of science can help make sense of data-intensive scientific practices and suggest more effective ways to evaluate this research. We use 
case studies of Darwin’s research on evolution by natural selection and modern-day research on macrosystems ecology to illustrate this account of 
scientific methods and the innovative approaches to scientific evaluation that it encourages. We point out recent changes in the spheres of science 
funding, publishing, and education that reflect this richer account of scientific practice, and we propose additional reforms.
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Scientists have been debating for centuries the   
 nature of proper scientific methods, especially the role 

of hypothesis testing in scientific practice (Laudan 1981). 
These debates are being reinvigorated as many fields of 
science, including high-energy physics, astronomy, public 
health, climate science, environmental science, and genom-
ics, are increasingly using data-intensive approaches (Bell 
et al. 2009, Baraniuk 2011, Winsberg 2010, King 2011, Porter 
et  al. 2012, Mattman 2013, Khoury and Ioannidis 2014, 
Katzav and Parker 2015). Data-intensive science has been 
described as research in which the capture, curation, and 
analysis of (usually) large volumes of data are central to the 
scientific question; it has also been defined as research that 
uses data sets so large or complex that they are hard to pro-
cess and analyze using traditional approaches and methods 
(Hey et al. 2009, Critchlow and van Dam 2013).

Although the term data intensive is relatively new, histori-
ans of science point out that scientists have been capturing, 
curating, and analyzing large volumes of data for centuries in 
ways that have challenged existing techniques (Muller-Wille 
and Charmantier 2012). For example, the disciplines of 
natural history and taxonomy provide important historical 
examples of data-intensive research; as Strasser (2012) put 
it, “Renaissance naturalists were no less inundated with new 
information than our contemporaries” (p. 85). However, 
contemporary data-intensive science is also characterized by 
new computational methods and technologies for creating, 
storing, processing, and analyzing data and also by the use 
of interdisciplinary teams for designing and implementing 

research to address complex societal challenges (Strasser 
2012, Leonelli 2014). Consequently, in some areas of sci-
ence (e.g., astronomy), there can be particularly sharp 
distinctions between historical and current data-intensive 
approaches, whereas in other areas of science (e.g., natural 
history), there are fewer differences (Evans and Rzhetsky 
2010, Haufe et al. 2010, Pietsch 2016).

Contemporary examples of data-intensive science include 
collecting evidence for the existence of the Higgs boson, 
sequencing the human genome, developing computer mod-
els of climate change and carbon sequestration, and iden-
tifying relationships between social networks and human 
behaviors. Despite these high-profile examples and the 
increasing availability of large data sets for many science dis-
ciplines, there are concerns that contemporary data-inten-
sive research is bad for science or that it will lead to poor 
methodology and unsubstantiated inferences. For example, 
data-intensive research has been criticized for being atheo-
retical, being nothing more than a “fishing expedition,” 
having a high probability of leading to nonsense results or 
spurious correlations, being reliant on scientists who do not 
have adequate expertise in data analysis, and yielding data 
biased by the mode of collection (Boyd and Crawford 2012, 
Fan et al. 2014, Lazer et al. 2014).

Such concerns actually reflect deeper and more wide-
spread debates about the centrality of hypothesis-driven 
research that have challenged the scientific community for 
centuries. Most contemporary scientific disciplines share 
a commitment to a hypothesis-driven methodology (see 
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Peters R 1991, Weinberg 2010, Keating and Cambrosio 2012, 
Fudge 2014). Definitions for hypotheses vary across disci-
plines (ranging from specific to general and quantitative to 
qualitative; Donovan et al. 2015), but we define hypothesis-
driven methodology in terms of the linear process canonized 
in many textbooks and represented in figure 1.

Although this linear scientific process continues to be 
held up as an exemplar in many textbooks and grant pro-
posal guidelines (Harwood 2004, O’Malley et  al. 2009, 
Haufe 2013), recent commentaries from scientists and 
historians and philosophers of science have argued that his-
torical and contemporary scientific practices incorporate a 
much more complex, iterative mixture of different methods 
(e.g., Kell and Oliver 2004, Glass and Hall 2008, Gannon 
2009, O’Malley et al. 2010, Forber 2011, Elliott 2012, Glass 
2014, Peters DPC et al. 2014, Pietsch 2016). These scholars 
argue that focusing primarily on a linear, hypothesis-driven 
account of science impoverishes the scientific enterprise by 

encouraging scientists to focus on narrowly defined ques-
tions that can be posed as testable hypotheses. For example, 
hypothesis-driven approaches are particularly helpful for 
choosing between alternative mechanisms that could explain 
an observed phenomenon (e.g., through a controlled experi-
ment), but they are much less helpful for mapping out new 
areas of inquiry (e.g., the sequence of the human genome), 
identifying important relationships among many differ-
ent variables, or studying complex systems. According to 
those who accept an iterative account of scientific methods, 
attempting to draw a sharp distinction between hypothesis-
driven and data-intensive science is misleading; these modes 
of research are not in fact orthogonal and often intertwine 
in actual scientific practice (e.g., O’Malley et al. 2009, Elliott 
2012, Peters DPC et al. 2014).

Unfortunately, the historical and philosophical literature 
on iterative scientific methods has not been well inte-
grated into recent accounts of data-intensive research, nor 
have the implications for evaluating research quality been 
fully explored. We address both of these gaps by showing 
how data-intensive research can be conceptualized more 
effectively using iterative accounts of scientific methods 
and by showing how these accounts encourage innovative 
approaches for evaluation. We argue that the key to assess-
ing the appropriateness of data-intensive research—and, 
indeed, any scientific practice—is to evaluate how it is situ-
ated within broader research practices. Scientific practices 
should be evaluated on the basis of the significance of the 
knowledge gap that they address and the alignment between 
the nature of the gap and the approach or combination of 
approaches used to address it. In order to better reflect scien-
tific practices and to accommodate all scientific approaches, 
including data-intensive ones, we point out recent changes 
and propose additional reforms in the spheres of funding, 
publishing, and education.

Debates over scientific methods
Contemporary debates over data-intensive methods are 
merely the latest episode in a long-standing conflict over 
the proper roles of hypotheses in scientific research. In 
the seventeenth century, figures such as Robert Boyle and 
Robert Hooke espoused the use of hypotheses, whereas 
Francis Bacon and Isaac Newton argued that investigators 
could easily be led astray if they proposed bold conjectures 
rather than working inductively from the available evidence 
(Laudan 1981, Glass 2014). These examples illustrate the 
long history during which hypothesis-driven science has 
waxed and waned in popularity (figure 2; Laudan 1981). 
Most scientists did not favor the use of hypotheses dur-
ing the eighteenth century, but this perspective changed 
dramatically over the next 100 years (Laudan 1981). By 
the late nineteenth century, largely descriptive disciplines 
such as natural history were beginning to be dismissed as a 
form of “stamp collecting” (Johnson 2007). Popper’s (1963) 
emphasis on the hypothetico-deductive (H-D) method 
proved hugely influential during the twentieth century, and 

Figure 1. Linear account employed in many descriptions  
of the scientific method.
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most textbooks continue to focus on hypothesis testing as 
the core of the scientific method (see figure 1; Harwood 
2004). Although some scientists, publishers, and funders 
have remained loyal to a Popper-informed account of the 
scientific method that privileges hypothesis-driven research, 
many today are questioning this focus and mirroring the 
methodological debates embodied in previous time periods 
(Hilborn and Mangel 1997, Kell and Oliver 2004, Glass and 
Hall 2008, Peters DPC et al. 2014).

In particular, despite the huge potential for new data-
intensive methodologies to generate knowledge (King 2011), 
the advent of these techniques has raised questions about 
the appropriate relationships between hypothesis-driven 
and observationally driven modes of investigation (Kell and 
Oliver 2004, Beard and Kushmerick 2009). Again, historians 
of science have shown that this debate is not a new one and 
that scientists have struggled for centuries with storing, ana-
lyzing, and standardizing large quantities of data (Muller-
Wille and Charmantier 2012). Nevertheless, contemporary 
data-intensive science raises additional issues because of its 
extensive use of statistical and computer science method-
ologies and interdisciplinary teams (Strasser 2012), thereby 
adding further dimensions to debates about appropriate 
scientific methods.

A richer account of scientific practice
Many concerns about data-intensive research can be 
addressed by defining scientific practice more broadly 
(figure 3), as has been argued in recent historical and philo-
sophical studies of scientific methods. Taking this view, the 
fundamental goal of science is to address gaps or challenges 
facing our current state of knowledge. Hypothesis testing is 
one approach for filling these knowledge gaps, but science 
proceeds in other ways as well (Chang 2004, Franklin 2005, 
O’Malley et al. 2009, Elliott 2012, O’Malley and Soyer 2012). 

Scientists attempt to answer research questions with obser-
vations, field studies, or integrated databases (Leonelli 2014); 
they engage in exploratory inquiry or modeling exercises to 
detect patterns in available data (Steinle 1997, Burian 2007, 
Elliott 2007, Winsberg 2010, Katzav and Parker 2015); or 
they create new tools, techniques, and methods (Baird 2004, 
O’Malley et al. 2010)—all of which in turn enable them to 
test hypotheses, answer questions, or gather additional data 
more effectively.

This multiplicity of different research approaches is not 
new, but it has become even more prominent in contempo-
rary data-intensive research. Historically, it was often most 
efficient for scientists to work from hypotheses that guided 
their inquiry in the most promising directions. But with the 
advent of high-throughput technologies and data-mining 
techniques that make data less expensive to generate and 
analyze, other approaches that are more inductive also play 
a fruitful role in scientific research (Franklin 2005, Servick 
2015). Broad hypotheses or background assumptions may 
still provide guidance about what sorts of questions or 
exploratory inquiries are likely to be most fruitful, but these 
are not the sorts of specific hypotheses envisioned by most 
hypothesis-driven accounts of scientific method (Franklin 
2005, Leonelli 2012, Ratti 2015). Because it is difficult (often 
impossible) for an individual scientist to become an expert 
in all of these contemporary approaches and methods, good 
science also incorporates the most appropriate disciplines 
and collaborators, thus making the development of effec-
tive—and often interdisciplinary—scientific teams more 
essential than in the past, and the resulting research reflects 
a combination of methods originating from multiple disci-
plines (Cheruvelil et al. 2014, NRC 2015).

An important feature of the scientific methods illustrated 
in figure 3 is that they are often employed in an iterative 
fashion in order to address complex research challenges 

Figure 2. A depiction of the waxing and waning of hypothesis-driven approaches.



Forum

4   BioScience • XXXX XXXX / Vol. XX No. X http://bioscience.oxfordjournals.org

Figure 3. A representation of scientific practice as an iterative process, with many approaches and links (as depicted 
by two-way arrows). The evaluation or assessment of scientific practices is based on the importance of the knowledge 
generated, the importance of the gap or challenge addressed, and the alignment of the approaches and methods used  
to conduct the science.
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(Chang 2004, O’Malley et  al. 2010, Elliott 2012, Leonelli 
2012). Although some contemporary data-intensive research 
focuses primarily on the repeated use of inductive methods 
and machine-learning algorithms (Evans and Rzhetsky 
2010, Lazer et  al. 2014, Pietsch 2016), much of it involves 
a combination of different approaches. O’Malley and col-
leagues (2010) argued that not only data-intensive research 
but also scientific practice as a whole should be character-
ized as an iterative interplay between at least four differ-
ent modes of research: hypothesis-driven, question-driven, 
exploratory, and tool- and method-oriented. As inquiry 
proceeds, initial questions are specified, whereas others are 
revised or give rise to new lines of research. In an effort to 
address these questions, new equipment and techniques 
are often developed and tested, frequently generating new 
questions and altering old ones. In the course of investigat-
ing questions and developing new techniques, exploratory 
approaches are often central (O’Malley et  al. 2010). These 
exploratory efforts, which can include experimentation, 
data mining, and simulation modeling, often involve the 
systematic variation of experimental parameters or analysis 
of datasets in search of important regularities and patterns 
(Elliott 2007, Winsberg 2010). In many cases, this web of 
activities generates the sorts of tightly constrained contexts 
in which specific hypotheses can be fruitfully tested, but this 
may be just one component of a much broader scientific 
context. In fact, the methodological iteration between dif-
ferent approaches results in a process of epistemic iteration 
by which our knowledge is gradually altered and improved 
(Elliott 2012), as is depicted by the two-way arrows in  
figure 3 that highlight the links among knowledge, motiva-
tion, and the multiple approaches employed by scientists.

One of the primary lessons to be learned from the iterative 
model of scientific methods is that contemporary research, 
and especially data-intensive research, incorporates a wide 
variety of different approaches, which gain their significance 
primarily from their roles in broader research programs 
and lines of inquiry. Therefore, evaluating the quality of this 
work requires much more than looking to confirm that it 
incorporates a well-formulated hypothesis (Kell and Oliver 
2004, Beard and Kushmerick 2009). Instead, it should be 
evaluated on the basis of the alignment between the nature 
of the knowledge gap or challenge addressed and the com-
bination of approaches or methods used to address the gap. 
Research should be evaluated favorably if it incorporates 
approaches and methods that are well-suited for addressing 
an important gap in current knowledge, even if they do not 
focus solely or primarily on hypothesis testing (figure 3).

An iterative model of scientific practice alleviates many 
common concerns about data-intensive research. The 
potential for generating spurious correlations becomes less 
serious when data-generated patterns are identified and 
evaluated as part of larger research projects that incorporate 
broader research questions, hypotheses, or objectives and 
when appropriate techniques and inferences are used to deal 
with spurious correlations (Hand 1998). These projects are 

also frequently embedded within conceptual frameworks or 
theories that facilitate the investigation of underlying causal 
mechanisms. Some proponents of data-intensive science 
argue that it can largely replace hypothesis testing, focus-
ing on generating correlations rather than seeking causal 
understanding (Prensky 2009, Steadman 2013). In contrast, 
we contend that data-intensive science will typically be 
most fruitful when it is part of broader inquiries that guide 
the collection and interpretation of data and that provide 
additional investigations of the correlations that are gener-
ated (Leonelli 2012, Kitchin 2014). Finally, the worry that 
individual researchers do not have the skill sets to perform 
data-intensive work can be alleviated by the development 
of interdisciplinary research teams that can accomplish the 
iterative tasks required for many contemporary scientific 
research projects. Admittedly, data-intensive methods can 
still be used inappropriately, such as when data are collected 
without standard approaches or quality metadata or when 
data are simply mined for correlative relationships without 
attention to spurious correlations (Hand 1998). However, we 
argue that this is a matter of improper technique or a poorly 
designed research program, which can occur in any form 
of scientific practice; it is not a problem inherent in data-
intensive methods themselves.

Examples of iterative data-intensive research 
practices
The interplay between multiple research approaches can 
be observed across many scientific subdisciplines and time 
periods. To illustrate, we present two examples drawn from 
the natural sciences. The first example highlights the his-
torical nature of these debates concerning scientific meth-
ods (the study of evolution by natural selection; figure 4a). 
It shows that even though contemporary data-intensive 
approaches have unique characteristics, historical research 
also incorporated iterative and data-intensive components. 
The second example highlights how methods from con-
temporary data-intensive ecology are being used to better 
understand broad-scale ecological research questions and 
environmental problems (the study of macrosystems ecol-
ogy; figure 4b). It also illustrates how contemporary data-
intensive research incorporates greater use of computational 
approaches and interdisciplinary teams than did historical 
data-intensive research.

The historical study of evolution by natural selection. Darwin’s 
development of the theory of natural selection provides 
a classic example of research that incorporates multiple 
approaches. Despite the efforts of some commentators to 
reconstruct Darwin’s research as primarily hypothesis-driven 
(Ayala 2009), he spent more than two decades performing 
exploratory work in an effort to identify the patterns that he 
later explained in The Origin of Species. Driven by curios-
ity and a naturalist’s love for nature, as well as a structured 
observational agenda that he learned from scholars like 
Humboldt, Cuvier, and Lyell, Darwin’s observations during 
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his famous voyage aboard the Beagle generated questions 
that guided his inductive data collection over subsequent 
decades. During that time, he drew upon a wide range of 
methods and sources (Hodge 1983), including data pro-
duced by fellow members of the traditional scientific elite 
and countless women and other so-called amateurs practic-
ing science outside of the scientific societies and journals of 
the nineteenth century. In the Origin, for instance, Darwin 
cites animal breeders as an important source of data, and in 
Expression of Emotions, mothers provided observations of 
their own children to supplement those made by Darwin of 
his own family (Harvey 2009, Montgomery 2012).

Darwin’s use of natural history methods led Frank 
Gannon to write a tongue-in-cheek editorial pointing out 
that in today’s funding structure Darwin’s work would be 
dismissed as “an open-ended ‘fishing expedition’” (Gannon 
2009). However, Darwin also engaged in experiments that 
showed how his theory of evolution could explain the details 
of sexual form in plant species (Bellon 2013). His combina-
tion of methods and compilation of data from a variety of 
sources proved to be extremely fruitful, and works such as 
Origin (1859), The Variation of Animals and Plants under 
Domestication (1868), The Descent of Man (1871), and 
Expression of Emotions (1872) all embody a blend of what 
are now often held up as distinct approaches: inductive and 
deductive methods, observation and experiment.

Even in Darwin’s own time, he was forced to con-
sciously navigate scientific norms when considering how 
to present his multi-modal research. For example, follow-
ing nineteenth-century philosophers of science such as 

William Whewell and John F. W. Herschel, Darwin orga-
nized the Origin to conform to the scientific values of the 
day—namely, demonstrating the strength of a theory by the 
breadth of facts it explained (Ruse 1975). Arguing from anal-
ogy, as Whewell recommended, Darwin began by recogniz-
ing an uncontested phenomenon—that artificial selection 
quickly resulted in drastic structural changes in domestic 
breeding of animals such as pigeons—and used this accepted 
truth to compel the reader to accept his inference that natu-
ral selection accounted for species changes.

Darwin’s use of both inductive and deductive methods also 
followed Whewell’s methodological recommendations. In 
contrast with more recent accounts of hypothesis-driven sci-
ence, Whewell insisted that scientists should move through 
a very gradual inductive process to arrive at successively 
more general causal laws (Snyder 1999). Only after perform-
ing this inductive process did he think that scientists could 
legitimately move on to test these hypotheses. Thus, Whewell 
himself encouraged the use of a combination of research 
modes, and this is reflected in Darwin’s works. Philosophers 
of science have since debated the extent to which Darwin was 
influenced by different methodologists (including Francis 
Bacon and John Stuart Mill, as well as Whewell and Herschel) 
and precisely when Darwin switched from an inductive to 
a deductive approach during the 20-plus years of gestation 
of the Origin (Ruse 1975, Hodge 1991). Regardless of the 
exact year when this switch occurred, it is clear that scientists 
today—like Darwin—often move back and forth between 
the best aspects of both inductive and deductive logic when 
formulating and testing a theory. Similarly—and again like 

Figure 4. Two examples of iterative scientific efforts using multiple approaches.
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Darwin—scientists also often blend laboratory- and field-
work, observation and experiment, and data from multiple 
sources rather than conforming to artificially distinct modes 
of scientific practice that are sometimes held up as “tradi-
tional” to a particular field of science, despite the long history 
of a multimodal reality.

The contemporary study of macrosystems ecology. A contem-
porary example of data-intensive research that involves 
multiple and iterative approaches comes from the emerging 
subdiscipline of macrosystems ecology (Heffernan et  al. 
2014). Most traditional ecological research is conducted 
by studying organisms and their environments at relatively 
small scales—such as individual species, communities, or 
ecosystems—using methods such as lab or field experiments, 
modeling, field surveys, or long-term studies (Carmel et al. 
2013). However, environmental changes such as the spread 
of invasive species, climate change, and land-use intensifica-
tion are occurring globally, are the result of relationships 
and interactions between human and natural systems, 
and may result in widespread but complicated effects. For 
example, across regions and continents (at the scales of hun-
dreds of kilometers), there are differences in the direction 
and magnitude of environmental changes, the underlying 
geophysical and ecological contexts, and social structures. 
These differences mean that results from fine-scaled studies 
in some regions are not likely to apply to other regions and 
that the study of ecological systems at larger scales—such as 
regions to continents—is required. Macrosystems ecology 
fills this gap by explicitly studying fine-scaled ecological 
patterns and processes nested within regions and continents 
and employing a variety of methods to do so.

Such multiscaled understanding of ecological systems 
cannot be achieved through an individual hypothesis test 
or a field experiment, nor can it be achieved by using only 
one approach (Heffernan et al. 2014, Levy et al. 2014). For 
example, to understand the complex relationships among 
tree growth, human disturbance, and regional and global 
climate, scientists need to study forests as a whole using 
multiple methods within a region rather than at the scale of 
individual trees or stands (Chapin et al. 2008). One approach 
that ecologists have used to study ecological systems at 
regional scales is by quantitatively delineating ecological 
regions that represent a measured combination of geophysi-
cal features thought to influence fine-scaled ecological pro-
cesses (Cheruvelil et al. 2013). However, existing ecological 
regions have limitations in that they were created for a vari-
ety of purposes, using different underlying geophysical and 
human data and using a variety of methods.

For example, lake water quality is related to both climate 
and land use. Therefore, scientists have speculated that lake 
water quality is likely to strongly respond to changes in both 
climate and land uses. However, the response of lake water 
quality to such environmental changes is likely to vary among 
regions and continents. In fact, Cheruvelil and  colleagues 
(2008, 2013) had observed that lake water chemistry varied 

regionally but that the variation depended on how the bound-
aries of “regions” were defined. Therefore, they had the 
overarching goals of developing new ways to define regional 
boundaries that were based on the geophysical features that 
are likely important for predicting regional water quality 
and its response to climate and land-use change (figure 4b). 
Meeting these goals required the iterative use of multiple 
research methodologies, data collected by various individuals 
and groups, and contributions from multiple disciplines.

An interdisciplinary team was created (sensu Cheruvelil 
et  al. 2014) that included ecologists, computer scientists, 
and experts in geospatial analysis and ecoinformatics to 
create a large, multiscaled database by integrating multiple 
lake data sources (including field surveys of water quality 
conducted by state agency scientists, citizen scientists, and 
university researchers) with geospatial data quantified at the 
national scale (Soranno et  al. 2015). The team used three 
data-intensive approaches to meet their goal of developing 
new ecological regions for water quality (figure 4b): First, 
they developed and tested a clustering algorithm to define 
regional boundaries (Yuan et al. 2015); second, they used an 
exploratory data-mining analysis to determine which geo-
physical features were correlated with the regional boundar-
ies and might lend insight into the underlying mechanisms 
driving regional variation in lake water quality (Cheruvelil, 
Lyman Briggs College and Department of Fisheries and 
Wildlife, Michigan State University, East Lansing, personal 
communication, 9 November 2015); and third, they used 
statistical models to quantify how well the regional bound-
aries captured variation in lake water quality for thousands 
of lakes in approximately 100 regions (Cheruvelil, Lyman 
Briggs College and Department of Fisheries and Wildlife, 
Michigan State University, East Lansing, personal commu-
nication, 9 November 2015). Ecological regions were created 
with a variety of geophysical features that are related to lake 
water quality, many of which are expected to be strongly 
affected by changes in climate and land use. Employing 
multiple scientific practices, rather than solely a hypothesis-
driven approach, improved their ability to use the regional 
scale for understanding, explaining, and predicting ecologi-
cal phenomena across spatial scales.

Lessons learned from examples of iterative data-intensive 
research. Together, these two examples illustrate the major 
points that we have made in this article. First, they show that 
although scientists have been working with challenging quanti-
ties of data for centuries, contemporary data-intensive science 
incorporates additional features. For example, whereas Darwin 
received data from numerous sources, he worked primarily on 
his own (with input from colleagues) to analyze the data. In 
contrast, the environmental scientists in the second example 
worked with computer scientists and experts in ecoinformatics 
in order to make optimal use of contemporary computational 
tools for integrating, creating, and analyzing data.

Second, these examples illustrate the power of moving iter-
atively among multiple research methods. What made both 
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of these research efforts successful is not the fact that they 
used a particular approach but rather that the approaches 
they chose were well designed for addressing important 
knowledge gaps. In Darwin’s case, his research was impor-
tant because he was addressing one of the most fundamental 
issues in biology—namely, the processes by which species 
have changed over time. Similarly, the scientists in our sec-
ond example were addressing the important societal issue of 
the response of water quality to environmental changes at 
macroscales. Encouraging scientists to emulate the iterative 
approaches embodied in these two examples requires the 
development of richer conceptions of scientific practice.

Recommendations for promoting good science in our 
data-rich world
A number of reforms should be made to promote not only 
iterative data-intensive science but also the scientific enter-
prise more broadly (table 1). First, funding agencies (and 
reviewers) should evaluate the quality of proposed research 
not based on a uniform requirement that it states a specific 
hypothesis but based on the importance of the knowledge 
gaps that it identifies and the appropriateness of the methods 
proposed for addressing those gaps (O’Malley et  al. 2009). 
For example, some recent funding initiatives are placing 
emphasis on grand challenges (e.g., the human genome 
project, brain research, personalized medicine, smart cities) 

that do not lend themselves to solely hypothesis-based 
approaches. Therefore, rather than expecting researchers to 
shoehorn proposals into a misleading, linear research for-
mat, reviewers should be open to proposals that describe a 
more realistic, iterative research trajectory. This reform will 
require developing appropriate grant guidelines and review 
mechanisms that encourage mixed modes of scientific prac-
tice, such as those recently being used by the US National 
Institutes of Health to fund investigators rather than indi-
vidual projects (table 1).

Second, rather than expecting articles to be structured 
to embody a linear hypothesis-testing approach, journal 
editors and reviewers should be open to publications that 
are organized around the full range of methods used to 
address knowledge gaps. Allowing journal articles and 
other research products to take a greater variety of forms 
will help alleviate the discrepancies that a number of 
authors have identified between the structure of scientific 
articles and the actual practice of research (e.g., Medawar 
1996, Schickore 2008). Some journals and online reposito-
ries are providing guidelines and mechanisms for scientists 
to disseminate data and computer code, and the science 
community as a whole is discussing ways to give scien-
tists credit for a variety of research products that will help 
advance a broader view of scientific practices (e.g., Goring 
et al. 2014; see also table 1).

Table 1. Recommendations for promoting iterative data-intensive science.
Components of 
science

Current norms Proposed reforms Recent exemplar of reform

Funding Proposals are expected to have an 
organizing hypothesis.

Proposals should be expected to 
have alignment between knowledge 
gaps and approaches.

Several institutes of the NIH have 
introduced long-term funding opportunities 
that allow investigators to pursue more 
creative, innovative research projects (e.g., 
http://grants.nih.gov/grants/guide/rfa-files/
RFA-DE-17-002.html and http://grants.nih.
gov/grants/guide/rfa-files/RFA-NS-16-001.
html)

Proposals are expected to describe 
a linear, non-iterative approach.

Proposals should be expected to 
describe appropriate iterative use  
of multiple approaches. 

The Biotechnology and Biological Sciences 
Research Council of the UK describes 
multiple methods that are integrated into 
the systems-biology research it funds 
(http://bbsrc.ac.uk/research/systems-
approach).

Publishing Articles are expected to be 
structured to embody a hypothesis-
testing approach.

Articles should be structured to 
convey the alignment between the 
identified knowledge gaps and the 
approaches used.

A new journal, Limnology and Oceanography 
Letters, requires an explicit statement by 
the authors of the knowledge gaps filled  
by the study (www.LOLetters.com).

The components of iterative 
research are difficult to publish 
on their own (e.g., exploratory 
analysis, data, methods, code). 

Articles focused on any aspect 
of iterative research should be 
publishable based on contribution 
to knowledge, data, or methods 
development

Recent advent of outlets for a broad range 
of research products, such as data journals 
(e.g., Earth System Science Data, Scientific 
Data, GigaScience, Biodiversity Data Journal), 
online code repositories (e.g., GitHub, 
BitBucket), and online data repositories 
(e.g., FigShare, Dryad, TreeBASE)

Education
(K–12, 
undergraduate,  
and graduate)

Students are taught mainly about 
hypothesis testing.

Students should be taught multiple 
scientific methods and to choose 
approaches that best align with 
knowledge gaps.

Reformed teaching approaches, such as 
authentic science labs (e.g., Luckie et al. 
2004, Harwood 2004) and teaching with 
case studies (e.g., http://sciencecases.lib.
buffalo.edu/cs/collection, http://www.evo-ed.
org, White et al. 2013).

Students are taught linear, non-
iterative scientific methods.

Students should be taught an 
iterative account of scientific 
methods.

Dissemination of nonlinear accounts of 
scientific methods (e.g., http://undsci.
berkeley.edu/article/howscienceworks_02)
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Third, whereas K–12 through graduate science education 
currently emphasizes a linear, hypothesis-driven approach 
to science, it should be reformed to incorporate more com-
plex models of the scientific method. For example, students 
should be taught that hypothesis testing is just one impor-
tant component of a much broader landscape of scientific 
activities that need to be combined in creative and interdis-
ciplinary ways to move science forward (Harwood 2004). 
Including the history, philosophy, and sociology of science 
in science curricula; teaching science in interdisciplinary 
ways; and using reformed teaching methods in science 
courses (e.g., inquiry-based labs, case studies) can introduce 
students to the multiple methods scientists have historically 
used—and continue to use—to address significant knowl-
edge gaps (table 1).

Conclusions
The recognition that data-intensive research methods—and 
indeed, research practices in all areas of science—need to 
be evaluated as part of broader research programs does 
much to alleviate common concerns about these and other 
non-hypothesis-driven methods. Although data-intensive 
and exploratory efforts to identify patterns in large datasets 
have the potential to generate spurious results, all methods 
have their potential problems when used poorly; when 
used properly, such data-intensive approaches can play a 
very fruitful role in broader research programs that also 
test hypothesized processes and mechanisms. The iterative 
research methods that we have described in this article allow 
researchers to address more complex questions than they 
could with hypothesis testing alone. To make these efforts 
successful, changes are needed in the norms for research 
funding, publication, and education. In all these areas, more 
emphasis should be placed on aligning research methods 
with the knowledge gaps that need to be addressed rather 
than focusing primarily on hypothesis testing. In addition, 
scientific practice should be more explicitly recognized as 
an iterative path through multiple approaches rather than 
as a linear process of moving through pre-defined steps. Of 
course, this does not mean that “anything goes”; rather, it 
facilitates more careful thought about how to fund, publish, 
and teach the right combinations of methods that will enable 
the scientific community to tackle the big issues confronting 
society today.
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