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Abstract

The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in
lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of
inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We
assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a–TP
relationships than traditional log-linear models, whether there were regional differences in the form of the
relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105
temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear
model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the
best-fitting model varied among regions: the maximum and lower Chl a asymptotes were positively and negatively
related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was
negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher
maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations
at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a–TP relationship than
wetland-rich regions. Interpretation of Chl a–TP relationships depends on regional differences, and theory and
management based on a monolithic relationship may be inaccurate.

Understanding relationships between primary producers
and their growth-limiting resources is necessary to evaluate
ecosystem functioning and determine ecosystem health
(Rapport et al. 1998). Measures of primary producer
biomass, including chlorophyll a (Chl a) concentrations in
lakes, are commonly used in studies of ecosystem func-
tioning (Balvanera et al. 2006). Moreover, Chl a and TP
concentrations have been used throughout the world to
understand and classify freshwater ecosystems (Carlson
1977). Early studies of Chl a–TP relationships in lakes
worldwide showed that Chl a concentrations increased as a
log-linear function of increasing TP concentrations (Dillon
and Rigler 1974; Jones and Bachmann 1976). These
relationships suggest that phosphorus limits primary
production in most lakes, which has become a long-
standing paradigm in limnology (but see Sterner 2008).

Chl a–TP relationships have been used worldwide as the
empirical basis for managing cultural eutrophication of
lakes by reducing TP inputs (Schindler 2012). Predictive
models of the Chl a response to TP are often used to
estimate the target TP concentration that would be
required to achieve healthy aquatic ecosystems. For
example, the Dillon and Rigler (1974) model, which relates
log-transformed average summer Chl a concentration to
log-transformed average spring TP concentration using
data from multiple lakes, is the prototype for this

approach; many analogous models have subsequently
followed. Regardless of the details of the specific model,
the U.S. Environmental Protection Agency (2010) and
other agencies worldwide have endorsed the general
strategy of stressor-response modeling to develop nutrient
and restoration standards.

There are two important potential sources of error in
developing and applying Chl a–TP models. For log-linear
models, it is assumed that Chl a concentrations will
respond to TP as a constant power function; however,
the log-linear model may be a local approximation that is
applicable only over a limited TP concentration range.
Several studies have found that sigmoidal models, which
have accelerating and decelerating (e.g., asymptotic)
phases, best describe Chl a–TP relationships (McCauley
et al. 1989; Watson et al. 1992). Other factors, such as
nitrogen, can account for variation in chlorophyll at higher
TP concentrations (Downing and McCauley 1992); conse-
quently, Chl a may have asymptotic maximum concentra-
tions relative to TP (McCauley et al. 1989). In these cases,
the use of simple log-linear models would overpredict Chl a
at high TP concentrations. The second source of error in
Chl a–TP models may occur when data are aggregated at
inappropriate spatial extents, such as when data from
lakes within and across regions are combined into a single
model. Several recent studies have shown that there are
differences in Chl a–TP relationships across regions (e.g.,
Soranno et al. 2010). Therefore, accurate application of* Corresponding author: filstrup@iastate.edu
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this fundamental limnological relationship may require
both model form and spatial specificity.

Numerous factors, including physical processes (Mazumder
1994), zooplankton community composition (Kamarainen
et al. 2008), and nitrogen concentrations or nitrogen-to-
phosphorus (N : P) ratios (Smith 1982; McCauley et al.
1989), have been hypothesized to influence Chl a–TP
relationships. Wagner et al. (2011) demonstrated that log-
linear Chl a–TP relationships differed among regions with
regional differences in model parameters being related to
regional land use and land cover (LULC). No studies
have compared linear vs. nonlinear model formulations
across regions explicitly, however, or have examined
potential links to regional LULC variables.

In this study, we used a nutrient database from many
lakes across diverse regions to investigate regional vari-
ability in the shapes of Chl a–TP relationships. Our aims
were to (1) determine if nonlinear models fit Chl a–TP
relationships better than linear models, (2) quantify regional
variability in the parameters of Chl a–TP relationships, and
(3) identify LULC characteristics related to any interregional
variability.

Methods

Dataset description—The lake nutrient dataset analyzed
for this study included Chl a and TP concentrations from
2105 lakes across six northeastern and midwestern states in
the United States: Iowa, Maine, Michigan, New Hamp-
shire, Ohio, and Wisconsin (Fig. 1A; Cheruvelil et al.
2013a). Data were from surface mixed layer samples
collected during summer thermal stratification from unique
lakes (i.e., each lake is included only once). Lakes with
surface areas of , 0.01 km2 or depths of , 2 m were
excluded from analyses.

Regional mean Chl a and TP concentrations (both in
mg L21) were calculated for each of the 35 Ecological
Drainage Units (EDUs) contained within the study extent
(Table 1; Fig. 1A). We obtained LULC data from the 1992
National Land Cover Dataset (http://landcover.usgs.gov/
natllandcover.php). LULC proportions were determined
for each of the 35 regions as described by Wagner et al.
(2011). We quantified regional LULC for pastures, urban,
and forested wetlands. EDUs were selected as a regional-
ization framework based on Cheruvelil et al. (2013b), who
quantitatively compared seven different frameworks for
grouping lakes using water chemistry data from this study
area. They found that EDUs were one of three frameworks
that most effectively grouped lakes for lake alkalinity and
TP. EDUs are watershed-based units that share common
physiography, climate, and connectivity (Higgins et al.
2005).

Model-free approximation of relationship form—To
visualize regional variability and nonlinearity of Chl a–
TP relationships, we used locally weighted scatterplot
smoothing (LOWESS) on the entire dataset and for each
region containing at least 10 lakes (n 5 25 regions).
LOWESS allows underlying trends in datasets to be
discerned without model bias (Cleveland and McGill

Fig. 1. Map of study area indicating (A) location of lakes
(points) and regions (gray boundaries) included in this study, (B)
percent pasture land use by region, and (C) percent forested
wetlands land cover by region.
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1985). The f-parameter, which is used to determine the
degree of smoothing, was allowed to vary (f 5 0.2, 0.5, or
0.8) depending on the number of lakes considered in each
analysis (i.e., regions with many lakes used a smaller
f-value). Data were log10-transformed to decrease hetero-
scedasticity and to more closely meet the assumption of
model error normality. Visual inspection of plots of model
residuals vs. predicted values and a histogram of residuals
indicated that these assumptions were reasonable. Data
visualizations were performed using SigmaPlot 10.0 (SyStat
Software Inc. 2006).

Candidate models—We compared two four-parameter
(4P) sigmoidal models (the 4P logistic and 4P Gompertz
models) to the log-linear model to determine if nonlinear
models of log10-transformed variables better describe Chl
a–TP relationships than a log-linear model. We tested these
two commonly used sigmoidal models to determine if
different formulations of sigmoidal models consistently
outperformed the linear model (Zeide 1993), assuming that
they would outperform the linear model, and to test several
possible shapes for describing Chl a–TP relationships. For
example, the inflection point of the logistic model occurs at

the midpoint between the upper and lower asymptotes,
whereas the inflection point of the Gompertz model occurs
at , M of the distance to the upper asymptote (Zeide
1993). Consequently, the Gompertz model outperforms the
logistic model when the inflection point occurs earlier in the
curve. Sigmoidal model equations were as follows:

4P logistic model:

Chlij~Diz
Ai{Di

1zexp {Ci TPij{Bi

� �� �zeij

ð1Þ

4P Gompertz model:

Chlij~DizAi exp {exp {
(TPij{Bi)

Ci

� �� �� �
zeij

ð2Þ

where Chlij 5 log10 Chl a concentration for lake j in region
i, TPij 5 TP concentration for lake j in region i, Ai 5 upper
asymptote of Chl a concentration (i.e., Chl a at infinite TP)
in region i, Bi 5 model inflection point (i.e., where the
curve changes from an accelerating increase to a deceler-
ating increase) in region i, Ci 5 rate of increase (i.e.,
steepness of curve) in region i, and Di 5 lower asymptote of
Chl a concentration (i.e., Chl a at 0 mg L21 TP) in region i.

Model fitting and selection—All models were estimated
using the same lake nutrient dataset with log10-transformed
Chl a (mg L21) as the response variable and grand-mean
centered log10-transformed TP concentrations (mg L21) as
the predictor variable. Our Bayesian hierarchical modeling
approach used a varying parameter model in which all
parameters were allowed to vary across regions. This
approach is similar to that used in Wagner et al. (2011)
except that we used a nonlinear model with four varying
parameters in addition to the linear model with two varying
parameters (i.e., slope and intercept). The general form of
the nonlinear hierarchical model, using the 4P logistic
model (Eq. 1) as an example, was as follows:

eij*N 0, s2
� �

ð3Þ

Ai

Bi

Ci

Di

0
BBB@

1
CCCA*MVN m,Sð Þ ð4Þ

m~ �AA, �BB, �CC, �DD
� �

ð5Þ

where Ai, Bi, Ci, and Di are as described above and m and S
5 population mean and population variance-covariance
matrix, respectively. Prior probability distributions for s, m,
and S were noninformative (i.e., not based on preexisting
information); we used a uniform prior for s, diffuse normal
priors for m, and modeled S using the scaled inverse-
Wishart distribution (Gelman and Hill 2007). The program
Just Another Gibbs Sampler (JAGS) was used for all
analyses (Plummer 2012). Three parallel chains were run
with different initial values to generate 670,000 samples

Table 1. Region names corresponding to labels in Fig. 1.

Label Region name

BPU Bayfield Peninsula and Uplands
BSR Big Sioux River
CBR Chippewa–Black River
CUP Central Upper Peninsula
D Driftless
ECW East Central Wisconsin
EUP East Upper Peninsula
GM Great Miami–Little Miami
GOR Glaciated Ohio River Tributaries
ICR Iowa–Cedar Rivers
LSC Lower St. Croix–Downeast Maine Coastal
MC Middle Connecticut
MHS North Lake Michigan–Lake Huron–Straits of Mackinac
MIP Southeast Michigan Interlobate and Lake Plain
NRB Nishnabotna River Basin
PKA Penobscot–Kennebec–Androscroggin
RR Rock River
SAP Southern Alleghany Plateau
SB Saginaw Bay
SCB Scioto Basin
SCR St. Croix River
SD Southern Driftless
SDM Skunk–Des Moines–Mississippi
SLE Southern Lake Erie
SLM Southeast Lake Michigan
SMC Saco–Merrimack–Charles
UC Upper Connecticut
UDM Upper Des Moines River
ULR Upper Illinois River
USJ Upper St. John–Aroostook
WLE Western Lake Erie
WMD Western Lake Michigan–Door Peninsula
WMR Wapsipinicon–Maquoketa Rivers
WPK Western Upper Peninsula–Keweenaw Peninsula
WR Wisconsin River

Chlorophyll–phosphorus relationships 1693
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from the posterior distributions for each analysis after
discarding the first 60,000 samples. We retained every third
sample for a total of 70,002 samples. We examined the scale
reduction factor (R̂), a convergence statistic, for each
parameter, trace plots, and plots of posterior distributions
to assess convergence.

We compared a measure of fit from the three candidate
models to identify which model best described Chl a–TP
relationships. We used the deviance information criterion
(DIC; Spiegelhalter et al. 2002) to identify the best-fitting
(hereafter, best) model. DIC differences (DDIC values) were
calculated for model i as DDICi 5 DICi 2 DICmin, where
DICmin was the smallest DIC value in the model set.
Generally, a DDIC from 5 to 10 indicates that the model
with the smaller DIC is better (Spiegelhalter et al. 2002). DIC
calculations require knowledge of the effective number of
parameters estimated in a model. We used Monte Carlo
simulations to evaluate the performance of DIC to select
among the candidate models that were fit in this study. The
general approach consisted of (1) simulating 100 datasets
that mimicked the structure of the original data (i.e.,
multiple lakes within 35 regions) using the 4P logistic model
as the data-generating model, (2) fitting each of the three
candidate models to each dataset, (3) using DIC to select the
best model, and (4) calculating DIC-based model weights
that provide the relative likelihood of the model given the
data (Burnham and Anderson 2002). This analysis allowed
us to evaluate how well DIC performed in choosing the best
model given that we know the identity of the model (i.e., 4P
logistic model) used to generate the test data.

Model parameter covariation with LULC—We subse-
quently modeled the varying coefficients of the best model as
a function of regional (i.e., EDU-level) percentage pasture
land use, percentage urban land use, and percentage forested
wetlands. Percentage urban land use and forested wetlands
were logit transformed prior to analysis because of their
skewed distributions, which were characterized by few
regions containing high percentages of these LULCs. To
limit the number of covariates explaining regional variability
in our analyses, we focused on percentage pasture fields and
forested wetlands because they were shown to be important
in explaining regional variation in slopes and intercepts from
a linear model describing Chl a–TP relationships using the
same data set (Wagner et al. 2011). We also examined
percentage urban land use because urban development
influences nutrient ratios of runoff; urban runoff and sewage

discharges characteristically have N : P ratios much less than
the Redfield ratio (i.e., N : P , 16 by moles; Downing and
McCauley 1992). For the 4P-nonlinear models, this ap-
proach included modeling each parameter using combina-
tions of percentage pasture land use, percentage urban land
use, and percentage forested wetlands. A model with a
covariate (cov) on each parameter was as follows:

Ai

Bi

Ci

Di

0
BBB@

1
CCCA~

c0azc1a|covi

c0bzc1b|covi

c0czc1c|covi

c0dzc1d|covi

0
BBB@

1
CCCA ð6Þ

where Ai, Bi, Ci, and Di are as described above and c0x and
c1x are the fixed intercept and slope describing the
relationship between parameter x and an EDU-level
covariate (cov). The candidate set consisted of models that
contained only a single predictor variable on each of the four
parameters, which resulted in four models being fit for each
covariate (e.g., four models were fit for percentage pasture
land use with one model for each of parameter Ai, Bi, Ci, and
Di). After fitting the single covariate models and based on
the DIC and estimated parameters and associated uncer-
tainty estimates, combinations of different LULC covariates
were combined to evaluate more complex models. The
resulting 15 candidate models were evaluated using DIC and
DDIC.

Results

Dataset description—Regions in this study differed in
both water quality and LULC. Regional mean Chl a and
TP concentrations varied by greater than one order of
magnitude (3.5–69.4 mg L21 and 7.6–168.1 mg L21, respec-
tively; Table 2). Regional pasture land use varied from 0%
to 43% (Table 2) and tended to be greatest for regions
within the midwestern states of Iowa, Ohio, and Wisconsin
(Fig. 1B). Regional forested wetlands land cover varied
from 0% to 26% (Table 2) and were most dense in regions
within the state of Michigan, especially in the Upper
Peninsula (Fig. 1C). Regional urban land use varied from
0% to 21% (Table 2).

Model-free approximation of relationship form—LOW-
ESS fits for the entire dataset and by region suggested that
Chl a–TP relationships were nonlinear across all regions and

Table 2. Summary of average water chemistry and land use and land cover by region. The regions that had the minimum and
maximum values are displayed in parentheses and correspond to the regions displayed in Fig. 1 and Table 1.

Variable Median Minimum (region) Maximum (region)

Water chemistry

Chlorophyll (mg L21) 11.9 3.5 (LSC) 69.4 (SLE)
Total phosphorus (mg L21) 27.5 7.6 (LSC) 168.1 (WMR)

Land use and land cover

Pastures (% area) 12.3 0.2 (LSC) 43.2 (NRB)
Forested wetlands (% area) 4.3 0.2 (SAP) 25.5 (EUP)
Urban (% area) 2.8 , 0.1 (BPU) 21.2 (ULR)

1694 Filstrup et al.
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within individual regions, respectively. Although LOWESS
fits indicated that Chl a–TP relationships varied widely
among regions, these fits were generally nonlinear and more
closely resembled sigmoidal models (Fig. 2). Chl a concen-
trations increased minimally with increased TP concentra-
tions below 10 mg L21 for LOWESS fits to the entire dataset
and within most regions with low TP concentration ranges.
Regions with TP concentrations above 10 mg L21 typically
displayed greater increases in Chl a concentrations per unit
increase in TP concentration. Numerous regions displayed
decelerating or even slightly decreasing Chl a–TP relation-
ships near the upper end of their region-specific TP range,
although some regions maintained relatively consistent rates
of increase even near their upper TP range.

Model fitting and selection—Deviance information crite-
rion (DIC) values supported our hypothesis that hierarchi-
cal nonlinear models better describe Chl a–TP relationships
compared to a log-linear model. Both nonlinear models
performed significantly better than the log-linear model.
The 4P logistic model had the lowest DIC value (DIC 5
808.9; DDIC 5 0.0), followed by the 4P-Gompertz model
(DIC 5 829.3; DDIC 5 20.4) and the log-linear model
(DIC 5 848.4; DDIC 5 39.5). The 4P logistic model was
selected as the best model to use in subsequent analyses.

DIC performed well in correctly selecting the model used
to generate test data when we tested the accuracy of DIC
during Monte Carlo simulations (Fig. 3). The 4P logistic
model was correctly selected as the best model in 98% of
the simulated datasets, with model weights . 0.97 in 96%
of simulated datasets. The 4P-Gompertz model was
selected as the best model once. The log-linear model was
never selected as the best model, and the largest model
weight was very small (, 0.0001). Because DIC correctly
selected the data-generating model as the best model in
almost all simulated datasets, we are confident in the use of
DIC to differentiate between nonlinear and log-linear

models when selecting for the best model in our observed
dataset.

Chl a–TP relationships were highly variable among
regions, as indicated by differing shapes of the best model
for individual regions (Fig. 4). For example, the model for
the Saginaw Bay region has a smaller difference in Chl a
concentrations and flatter shape between the lower and
upper asymptotes than the model for the East Central
Wisconsin region. Variance in parameter uncertainty by
region was likely due, in part, to low numbers of lakes in
some regions, while other regions contained lakes with TP
concentrations spanning only a portion of the TP range
contained in the entire dataset. For example, the East Upper
Peninsula region has high uncertainty of Chl a concentration
predictions at high TP concentrations because the region
contained lakes with relatively low TP concentrations.

Regional differences in the shapes of Chl a–TP
relationships were also reflected in differences in model
parameter estimates among regions (Table 3), although
each parameter showed relatively unique spatial patterns
in parameter estimates and their uncertainty estimates
(Fig. 5). Upper asymptote parameter estimates were largest
in some of the regions in Iowa, Wisconsin, Ohio, and
Maine and were lowest in some of the regions in Michigan
(Fig. 5A). The standard deviations of upper asymptote
parameter estimates were low in almost all regions in Iowa
and some of the regions in Wisconsin and Ohio. The
standard deviations were large, however, for regions in
Michigan, especially the Upper Peninsula (Fig. 5E), which
suggests that these parameter estimates have high uncer-
tainty. Inflection point parameter estimates did not show
strong regional patterns in either their values or the
standard deviations of these values (Fig. 5B,F). Rate
parameter estimates and their standard deviations also
did not show strong regional patterns, with both Iowa and

Fig. 2. Fits of Chl a–TP relationships for the entire dataset
and for individual regions using LOWESS, a locally weighted
regression technique. The f-parameter, which is used to determine
the amount of smoothing, was allowed to vary (f 5 0.2, 0.5, or
0.8) depending on the number of lakes considered in each analysis.

Fig. 3. Histogram of model probabilities from Monte Carlo
simulations challenging DIC to select among three candidate
models. The 4P logistic model was used to generate the test data.
Probabilities near 1 indicate that the model being evaluated is the
best fit.

Chlorophyll–phosphorus relationships 1695
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Maine containing regions with both high and low values
(Fig. 5C,G). Similarly, lower asymptote parameter esti-
mates generally displayed both high and low values for
regions within the same state (Fig. 5D) but were most
uncertain in Iowa and Ohio (Fig. 5H). In general, model
parameter estimates did not display discernible gradients
from east to west across the spatial extent of this study and
often displayed both high and low regional mean values
within state political boundaries.

Model parameter covariation with LULC—Regional
LULC influenced the parameters of sigmoidal Chl a–TP
relationships across the spatial extent of this study. The
best model explaining this regional variability included
modeling the lower and upper asymptote parameters as
functions of the regional percentage of pasture fields and
the rate parameter as a function of the regional percentage
of forested wetlands (Table 4). Urban land use was not as
important as pastures or wetlands in explaining regional
variability in Chl a–TP relationships. Similarly, no LULC
class was useful in explaining regional variability in the
inflection point parameter. There was some support for a
model that included only the relationship between regional
percentage of forested wetlands and the rate parameter
(DDIC 5 4.4), indicating some model selection uncertainty
(Table 4). Because the effect of wetlands on the rate

parameter in this model was of similar magnitude and
direction to the best model, we focus the rest of our results
and discussion on the best model.

There was a positive relationship between the regional
percentage of pasture land use and the upper Chl a
asymptote parameter, whereas negative relationships exist-
ed between the regional percentage of pasture land use and
the lower Chl a asymptote parameter and between the
regional percentage of forested wetlands and the rate
parameter (Fig. 6; Table 5). The positive influence of
pastures on the upper asymptote parameter had the largest
effect size of any LULC class on model parameters with the
highest probability that the direction of this relationship
was in the direction of the estimated posterior mean
(Table 5). Although the effects of pasture land use on the
lower asymptote parameter and forested wetlands on the
rate parameter were more uncertain, as indicated by
confidence intervals on effect sizes (overlapping zero),
there was a 74% and 85% probability that these two LULC
classes had negative effects on the lower asymptote and rate
parameters, respectively (Table 5).

Discussion

Our findings are consistent with previous studies that
Chl a–TP relationships are better described by nonlinear

Fig. 4. Regional model fits of a hierarchical logistic model describing Chl a–TP relationships. Region names correspond to those
presented in Fig. 1 and Table 1. The model fit for all data is shown in lower right panel. Black circles are data points corresponding to
individual lakes, solid lines are model fits, and shaded areas are 90% credible regions.

1696 Filstrup et al.
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and sigmoidal models than log-linear models (McCauley et
al. 1989; Watson et al. 1992). The sigmoidal shape suggests
that there are three phases to fertilization response in lakes:
an initial lag phase, an acceleration phase, and a
deceleration phase (Fig. 4). During the initial lag phase,
Chl a concentrations increase only slightly in response to
increasing TP concentrations, suggesting a minimum TP
concentration threshold that must be crossed before a
noticeable increase in phytoplankton biomass is observed.
Although initial increases in TP were not related to
phytoplankton biomass increases in the pelagic zone, TP
may have initially stimulated growth of benthic algae,
which typically respond to environmental stressors more
rapidly than pelagic phytoplankton (Lambert et al. 2008).
Above this critical TP concentration, Chl a concentrations
increase more rapidly with increasing TP concentrations.
During the deceleration phase, Chl a concentrations
increase more slowly with increasing TP concentrations
and approach upper maximum Chl a concentrations. This
limit to maximum phytoplankton biomass in regions

suggests that other factors became limiting at high TP
concentrations (e.g., light and nitrogen), supporting the
findings of McCauley et al. (1989).

Assuming that the empirical correlation between Chl a
and TP is a causal relationship, this sigmoidal relationship
suggests that management decisions based on log-linear
models may be inaccurate because the degree of Chl a
response to TP depends on TP concentration. Our analysis
suggests that the development of management strategies to
accurately produce achievable restoration targets may be
more useful if lake managers consider the phase of Chl a–
TP relationships. For example, large TP reductions will be
required to achieve noticeable decreases in Chl a concen-
trations if TP concentrations in the lake are at the high end
of the deceleration phase. Contrastingly, TP reductions are
predicted to produce relatively large decreases in Chl a
concentrations if the lake is in the acceleration phase. Smith
and Shapiro (1981) concluded that the failure of measured
TP reductions to produce decreases in Chl a concentrations
in a previous study may have resulted from the curvilinearity

Table 3. Posterior means and 95% credible intervals (CRI; analogous to confidence intervals in frequentist statistics) for estimated
parameters from the 4P logistic model (Eq. 1) describing relationships between log10 total phosphorus and log10 Chl a by region (Fig. 1
and Table 1) and for the entire dataset. UA 5 upper asymptote, I 5 inflection point, R 5 rate, LA 5 lower asymptote.

Region name

UA I R LA

Mean (95% CRI) Mean (95% CRI) Mean (95% CRI) Mean (95% CRI)

BPU 1.56 (0.84, 2.57) 0.30 (20.40, 0.94) 3.00 (1.30, 4.71) 0.19 (20.50, 0.72)
BSR 1.94 (1.67, 2.30) 0.35 (0.07, 0.64) 3.26 (2.03, 4.68) 0.11 (20.50, 0.67)
CBR 1.59 (1.36, 1.90) 0.14 (20.09, 0.36) 3.35 (2.16, 4.68) 20.03 (20.57, 0.38)
CUP 1.15 (0.71, 2.19) 20.02 (20.60, 0.79) 2.91 (1.06, 4.79) 0.05 (20.59, 0.46)
D 1.97 (1.39, 2.72) 0.19 (20.27, 0.64) 3.17 (1.79, 4.69) 0.17 (20.49, 0.77)
ECW 2.12 (1.61, 2.73) 0.47 (0.21, 0.70) 3.19 (2.00, 4.57) 0.04 (20.41, 0.33)
EUP 1.89 (1.15, 2.75) 0.40 (20.01, 0.77) 3.24 (1.78, 4.81) 0.29 (20.07, 0.53)
GM 1.90 (1.59, 2.31) 0.25 (20.17, 0.63) 3.14 (1.76, 4.58) 0.15 (20.51, 0.77)
GOR 1.66 (1.45, 1.96) 20.01 (20.40, 0.38) 3.25 (1.92, 4.72) 0.23 (20.43, 0.82)
ICR 1.79 (1.58, 2.11) 0.19 (20.20, 0.52) 3.23 (1.87, 4.70) 0.14 (20.52, 0.75)
LSC 1.46 (0.74, 2.47) 0.09 (20.53, 0.65) 2.79 (1.26, 4.46) 0.07 (20.45, 0.34)
MC 2.12 (1.60, 2.79) 0.45 (0.25, 0.69) 3.45 (2.30, 4.83) 0.34 (0.16, 0.47)
MHS 1.36 (0.89, 2.10) 0.22 (20.10, 0.60) 2.96 (1.48, 4.50) 20.01 (20.38, 0.18)
MIP 1.67 (1.06, 2.54) 0.49 (0.09, 0.88) 3.07 (1.73, 4.49) 0.01 (20.48, 0.29)
NRB 1.82 (1.54, 2.29) 0.26 (20.09, 0.65) 3.05 (1.70, 4.45) 0.13 (20.53, 0.70)
PKA 1.94 (1.33, 2.76) 0.33 (0.00, 0.65) 2.67 (1.48, 3.91) 0.20 (20.18, 0.38)
RR 2.14 (1.75, 2.58) 0.49 (0.21, 0.76) 3.21 (1.99, 4.61) 0.08 (20.43, 0.45)
SAP 1.80 (1.22, 2.56) 0.29 (20.26, 0.85) 3.03 (1.51, 4.60) 0.22 (20.45, 0.79)
SB 1.18 (0.68, 2.08) 0.24 (20.45, 0.94) 2.98 (1.03, 4.78) 0.18 (20.44, 0.51)
SCB 1.48 (1.09, 2.04) 0.13 (20.23, 0.54) 3.23 (1.72, 4.8) 0.02 (20.57, 0.50)
SCR 1.84 (1.51, 2.33) 0.24 (20.02, 0.53) 3.02 (1.88, 4.28) 20.02 (20.58, 0.38)
SD 2.04 (1.58, 2.69) 0.25 (20.27, 0.71) 3.17 (1.80, 4.68) 0.16 (20.52, 0.82)
SDM 2.09 (1.79, 2.61) 0.41 (0.05, 0.85) 2.81 (1.49, 4.20) 0.23 (20.48, 0.89)
SLE 2.23 (1.68, 2.93) 0.20 (20.20, 0.58) 3.24 (1.90, 4.73) 0.17 (20.53, 0.83)
SLM 1.86 (1.41, 2.49) 0.50 (0.28, 0.76) 3.41 (2.21, 4.89) 0.31 (0.08, 0.46)
SMC 1.47 (1.15, 2.06) 0.11 (20.09, 0.40) 3.10 (1.74, 4.60) 0.23 (20.04, 0.39)
UC 1.81 (1.08, 2.72) 0.34 (20.20, 0.76) 3.04 (1.53, 4.61) 0.33 (20.15, 0.59)
UDM 2.03 (1.70, 2.54) 0.35 (0.09, 0.63) 3.31 (2.07, 4.81) 0.05 (20.55, 0.55)
ULR 2.04 (1.51, 2.68) 0.28 (20.03, 0.60) 3.27 (2.02, 4.69) 0.04 (20.58, 0.56)
USJ 2.06 (1.48, 2.76) 0.19 (20.04, 0.43) 3.40 (2.14, 4.92) 0.14 (20.17, 0.36)
WLE 1.80 (1.23, 2.57) 0.24 (20.22, 0.74) 3.07 (1.66, 4.57) 0.20 (20.46, 0.71)
WMD 1.82 (1.10, 2.68) 0.31 (20.18, 0.75) 3.10 (1.67, 4.59) 0.14 (20.47, 0.60)
WMR 2.00 (1.58, 2.55) 0.27 (20.25, 0.75) 3.13 (1.74, 4.61) 0.16 (20.53, 0.81)
WPK 1.29 (0.72, 2.33) 0.21 (20.54, 0.99) 2.96 (1.01, 4.82) 0.24 (20.45, 0.57)
WR 1.87 (1.41, 2.51) 0.21 (20.06, 0.51) 3.06 (1.95, 4.33) 20.20 (20.73, 0.20)
All data 1.79 (1.55, 2.08) 0.27 (0.11, 0.42) 3.12 (2.30, 4.00) 0.13 (20.10, 0.33)
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Fig. 5. (A–D) Map of the mean and (E–H) standard deviation of the posterior distribution
of model parameters by region for the best 4P hierarchical logistic model describing Chl a–TP
relationships. Region names correspond to those presented in Fig. 1 and Table 1.
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of Chl a–TP predictive models. Our findings support this
conclusion and argue for applying the best available
predictive model to develop effective management strategies.

Although nonlinear models best described regional Chl
a–TP relationships, the shapes of these relationships varied
considerably among regions, as reflected in regional
variability in model parameter estimates across the study
extent (Figs. 4, 5). These findings support the conclusions
of Wagner et al. (2011), who used a similar hierarchical
modeling approach to characterize regional variability in
slope and intercept parameters for log-linear models of Chl
a–TP relationships. Because Chl a–TP relationships vary
among regions, accurate management strategies may
require models developed at the appropriate regional scale
rather than at the whole-state or large-jurisdiction scale.
For example, regions with greater upper asymptote
parameter estimates (cf. Rock River region vs. Saginaw
Bay region; Fig. 4) are likely to contain lakes with higher
maximum phytoplankton biomass concentrations than
lakes in other regions. Lakes in regions with greater rate
parameter values (cf. Upper Des Moines River region vs.
West Upper Peninsula–Keweenaw Peninsula; Fig. 4) are
likely to have greater proportional increases of phyto-
plankton biomass relative to increasing TP than other
regions. These sensitive regions will likely display notice-
able increases in phytoplankton biomass for small increases
in TP. As a result, region-specific management strategies
and restoration targets may be more effective for managing
lakes compared to those at larger scales. The ‘‘one-size-fits-
all’’ approach to lake management at the state or national

level would be ineffective, especially in states or countries
with highly variable regions, as has been recognized for
some states in setting nutrient standards (Heiskary and
Wilson 2008; Soranno et al. 2008).

The Bayesian hierarchical modeling approach enabled us
to estimate region-specific parameters for the best model,
although data for individual regions may not fully describe
a sigmoid shape. This capability, referred to as ‘‘partial
pooling,’’ uses a common prior distribution on model
parameter estimates to effectively provide a loose con-
straint that allows regions to share information without
forcing parameter estimates to be identical (Gelman and
Hill 2007). In contrast, ‘‘full pooling,’’ which has been
commonly used in previous approaches (Dillon and Rigler
1974), would estimate regional model parameters under the
assumption that lakes in all regions behave identically (i.e.,
model parameter estimates would be identical for all
regions). It would have been difficult to estimate region-
specific model parameters if we had used data from
individual regions separately (i.e., ‘‘no pooling’’) because
wide ranges of Chl a and TP concentrations are required to
reveal the shapes of sigmoidal relationships. Partial pooling
is a reasonable compromise that enabled us to estimate
model parameters for individual regions under the assump-
tion that regions exhibit common but not identical
behaviors. Although imposing an assumption of sigmoidal
relationships in regions with limited data carries some risk,
model uncertainties partly compensate for this by being
relatively high where they are outside of the data range for
that region (e.g., region the East Upper Peninsula region in
Fig. 4).

Regional LULC was related to the region-specific model
parameter estimates describing Chl a–TP relationships.
During the deceleration phase, regions with greater pasture
land use had greater maximum phytoplankton biomass
concentrations at high TP concentrations (i.e., greater
upper asymptote values; Fig. 6A). In agricultural regions,
pasture runoff may supply phosphorus in a more bioavail-
able form to lakes than is supplied by other LULCs.
Sharpley et al. (2004) found that 49–80% of soil TP was
inorganic in manure-treated soils vs. 26–57% in untreated
soils. Similarly, He et al. (2004) demonstrated that water-
extractable P, which is immediately bioavailable, accounted
for the largest fraction of TP in dairy manure with
inorganic and organic P accounting for 12–44% and 2–
23% of manure TP, respectively. Water-extractable P has
been shown to be a good indicator of potential P loss
during runoff events (Kleinman et al. 2002). As a result, TP
can be more effectively assimilated into phytoplankton
biomass in regions with more pasturelands, resulting in
greater Chl a concentrations for similar TP concentrations.
In regions with less pasturelands, TP may consist of greater
percentages of biologically unavailable fractions (e.g.,
phosphate bound to clay particles) or fractions that require
additional processing before assimilation (e.g., recalcitrant
organic phosphorus fractions).

Interestingly, pasture land use had a negative effect on
the initial lag phase (i.e., lower asymptote) of Chl a–TP
relationships in contrast to the positive relationship with
the deceleration phase (Fig. 6B). This finding suggests that

Table 4. Candidate models for modeling variation in region-
specific parameters from a 4P hierarchical logistic model
describing the relationship between log10 total phosphorus and
log10 Chl a among regions. DIC 5 deviance information criterion.
Models are listed from lowest-to-highest DIC. Covariates (land
use and land cover measured as percentages) included in the
model are shown with the model parameter being modeled in
parentheses (UA 5 upper asymptote, LA 5 lower asymptote, R
5 rate, and I 5 inflection point). DDIC 5 DIC differences and
were calculated for model i as DDICi 5 DICi 2 DICmin, where
DICmin was the smallest DIC value in the model set. nc 5 model
did not converge.

Model no. Candidate model DIC DDIC

1 Pastures (UA), pastures (LA),
wetlands (R)

797.7 0

2 Wetlands (R) 802.1 4.4
3 Pastures (UA), urban (LA),

wetlands (R)
803.5 5.8

4 Pastures (UA) 803.6 5.9
5 Pastures (R) 804.1 6.4
6 Urban (LA) 806.4 8.7
7 Urban (UA) 808.2 10.5
8 Pastures (LA) 808.5 10.8
9 Pastures (I) 810.4 12.7
10 Wetlands (LA) 810.6 12.9
11 Wetlands (UA) 811.0 13.3
12 Wetlands (I) 818.2 20.5
13 Pastures (UA), wetlands (R) nc nc
14 Urban (R) nc nc
15 Urban (I) nc nc
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mechanisms by which pastures affect Chl a–TP relation-
ships may differ depending on the amount of TP in the
region. Pasturelands can have complex effects on phyto-
plankton by creating light deficiency through increased
turbidity while concurrently contributing large loads of
bioavailable P (North et al. 2013). At low TP concentra-
tions, pastures may have a larger effect on underwater light
climate (i.e., increased erosion of soils and particulate
organic matter leading to increased turbidity), which masks
additional TP concentrations contributed by surface runoff.
Agricultural regions, including those with substantial
pasturelands, may contribute greater sediment loads to
streams both during low-flow conditions and during storm
events (Allan et al. 1997), suggesting that the potential for
light limitation increases in these regions (Julian et al. 2008).
However, our findings showed that regional pasture land use

Fig. 6. Relationships between regional parameters from a 4P hierarchical logistic model describing Chl a–TP relationships and land
use and land cover for (A) the upper asymptote of log10 Chl a vs. region percentage pasture land use, (B) the lower asymptote of log10 Chl
a vs. region percentage pasture land use, and (C) the rate parameter vs. region percentage forested wetlands (logit transformed). Points
are estimated posterior means, and vertical lines are 90% credible intervals (analogous to confidence intervals in frequentist statistics).
Solid line is estimated hierarchical regression line, and light and dark shaded areas are 80% and 90% credible regions, respectively.

Table 5. Summary of the effects of regional covariates on
region-specific parameters from the best model (4P logistic model)
describing the relationship between log10 total phosphorus and
log10 Chl a among regions. Covariates (land use and land cover
measured as percentages) included in the model are shown with
the model parameter being modeled in parentheses (UA 5 upper
asymptote, LA 5 lower asymptote, R 5 rate), posterior means,
90% credible intervals (CRI; analogous to confidence intervals in
frequentist statistics), and the probability that the effect is the
direction of the estimated posterior mean (positive or negative;
Pr[direction of posterior mean]).

Regional
predictor

Posterior mean
(effect size)

90% CRI
(lower, upper)

Pr (direction of
posterior mean)

Pastures (UA) 1.32 0.0894, 2.539 0.96
Pastures (LA) 20.538 21.99, 0.861 0.74
Wetlands (R) 20.282 20.736, 0.148 0.85

1700 Filstrup et al.
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had a stronger statistical effect on the upper asymptote
parameter than the lower asymptote parameter (Table 4).

Alternatively, correlations between pasture land use and
model parameter estimates may be indicative of different
underlying stressor-response mechanisms in different re-
gions. These relationships may be not directly attributed to
changes in the percentage of pasturelands among regions
but, rather, indirectly to how changes in percentage of
pasturelands affect other LULCs in diverse regions. For
example, in the state of Iowa, where 90% of the total land
area is under some form of agricultural land use (Arbuckle
and Downing 2001), regions with more pasturelands may be
expected to have better water quality than surrounding
regions with less pasturelands that are subjected to increased
row-crop agriculture and chemical P fertilizer applications.
In the states of Maine and New Hampshire, which contain
the six most heavily forested regions in this study, regions
with more pasturelands may be expected to have poorer
water quality than surrounding regions with greater
percentages of nonagricultural LULCs. Therefore, pasture-
lands may be expected to have different effects on water
quality depending on the dominant LULCs in the region.

Regional wetland land cover had an overall negative
relationship with the rate parameter characterizing the
acceleration phase (Fig. 6C), suggesting that wetlands
mediate the influence of nutrients on phytoplankton growth
and thus may play a role in improving regional water
quality. Wetlands can influence the proportional increase in
Chl a relative to TP concentrations through a variety of
potential mechanisms. Previous studies have demonstrated
the phosphorus removal capabilities of wetlands (Kynkään-
niemi et al. 2013). The P-removal capacity of wetlands is
finite, however, resulting in substantial export of TP when
the sediments become P saturated (Richardson 1985).
Wetlands also play major roles in nutrient transformations
(i.e., mineralization and assimilation) among different forms
of P. The composition of the organic P fraction is important
in determining the bioavailability of P in wetlands and
depends on soil type, allochthonous organic matter sources,
and deposition of detritus (Reddy et al. 1999). If wetlands
were exporting large percentages of recalcitrant P, such as
humic acids that can make up large fractions of wetlands
soils (Bridgham et al. 1998), then a smaller percentage of TP
would be available for assimilation into phytoplankton
biomass once it reached the lake basin. Phytic acids, which
have low bioavailability to terrestrial plants because plants
have limited abilities to produce phytase (Unno and Shinano
2013), may also contribute large fractions of organic
phosphorus in these regions. Phytic acids are also likely of
low bioavailability to phytoplankton.

Alternatively, wetlands may influence the acceleration
phase of Chl a–TP relationships by modifying the
underwater light climate of lakes. At both the lake (Gergel
et al. 1999) and regional (Fergus et al. 2011) scales, lake
colored dissolved organic carbon (CDOC) is positively
related to neighboring wetlands. Wetland-derived CDOC,
in turn, affects Chl a–TP relationships in lakes by
increasing the chlorophyll to TP ratio (Webster et al.
2008), although chlorophyll : TP ratios can be negatively
affected by color in mixed lakes (Havens and Nurnberg

2004). Humic color limits light availability throughout the
water column, resulting in photosynthesis being restricted
to near the lake surface (Christensen et al. 1995).
Phytoplankton can physiologically adapt to low-light
climates by increasing cellular Chl a content (Foy 1987).
If regions with greater wetland cover contain large numbers
of humic lakes, lakes with low TP concentrations may
support higher-than-expected Chl a concentrations and
therefore result in reduced rates of increase with TP from
these elevated baseline concentrations. Experimental ma-
nipulation of microcosms suggests that organic matter
loading rates may induce large changes in within-lake
dynamics, including regime shifts (Sirota et al. 2013).

Although urban land use composed a maximum of 21%
of regional LULC (Table 2), it did not explain regional
variability in model parameter estimates for the best model
(Table 3). Ninety percent credible intervals, which are
analogous to confidence intervals in statistics based on the
normal distribution, for the effect of urban land use on
model parameters for rate, inflection point, and lower and
upper asymptotes contained zero (posterior mean and 90%
credible interval 5 0.39 [20.16, 0.99], 0.01 [20.07, 0.09],
20.01 [20.11, 0.09], and 0.08 [20.45, 0.22], respectively).
Urban land uses are typically characterized by runoff or
discharges with very low N : P ratios (, 22 molar ratio),
and N limitation occurs more frequently in lakes with low
N : P ratios (Smith 1982; Downing and McCauley 1992).
Although N limitation would be predicted to decouple Chl
a–TP relationships, McCauley et al. (1989) showed that TN
influenced Chl a–TP relationships in lakes, especially in
lakes with high TP concentrations. These authors suggested
that variation in TN : TP ratios would determine charac-
teristics of the deceleration phase of Chl a–TP relation-
ships. Because urban land uses did not explain regional
variability in the upper asymptote parameter in our best
model in the current study, this finding suggests that either
maximum TP concentrations were not great enough for
lakes to develop N limitation or pasture land use had
stronger effects on covarying TN and TP concentrations in
our study area. Pasturelands typically have very low
TN : TP ratios, whereas row-crop agricultural lands have
high TN : TP ratios (Arbuckle and Downing 2001), which
may help explain why pasture land use better explained
regional variability in model parameter estimates than total
agricultural land use or row-crop agricultural land use
(Wagner et al. 2011).

In conclusion, our findings suggest that Chl a–TP
relationships are nonlinear in most regions despite diverse
landscape characteristics and that these relationships can
differ substantially in shape among regions. Both the TP
concentration of the ecosystem and the LULC of the region
interact to produce complex responses of concentrations of
phytoplankton biomass to TP that ultimately affect overall
ecosystem functioning in lakes. Our results suggest that
management models are most appropriately developed at
both the local and the regional scale. Because of regional
influences on parameters describing Chl a–TP relation-
ships, management activities developed for larger jurisdic-
tion areas, such as states, provinces, or countries, may be
flawed unless political units are homogeneous in LULCs.

Chlorophyll–phosphorus relationships 1701
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Coordinating management strategies across regions that
cross jurisdictional boundaries may lead to more effective
management by government agencies. Although best
management practices are implemented at the local scale,
information from regional Chl a–TP relationships can be
used to target LULCs that will provide the maximum
return for desired management outcomes.
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KYNKÄÄNNIEMI, P., B. ULÉN, G. TORSTENSSON, AND K. S.
TONDERSKI. 2013. Phosphorus retention in a newly construct-
ed wetland receiving agricultural tile drainage water. J.
Environ. Qual. 42: 596–605, doi:10.2134/jeq2012.0266

LAMBERT, D., A. CATTANEO, AND R. CARIGNAN. 2008. Periphyton
as an early indicator of perturbation in recreational lakes.
Can. J. Fish. Aquat. Sci. 65: 258–265, doi:10.1139/f07-168

MAZUMDER, A. 1994. Phosphorus-chlorophyll relationships under
contrasting herbivory and thermal stratification: Predictions
and patterns. Can. J. Fish. Aquat. Sci. 51: 390–400,
doi:10.1139/f94-040

MCCAULEY, E., J. A. DOWNING, AND S. WATSON. 1989. Sigmoid
relationships between nutrients and chlorophyll among lakes.
Can. J. Fish. Aquat. Sci. 46: 1171–1175, doi:10.1139/f89-152

NORTH, R. L., J. G. WINTER, AND P. J. DILLON. 2013. Nutrient
indicators of agricultural impacts in the tributaries of a large
lake. Inland Waters 3: 221–234, doi:10.5268/IW-3.2.565

1702 Filstrup et al.

 19395590, 2014, 5, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.4319/lo.2014.59.5.1691, W

iley O
nline L

ibrary on [03/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.1046%2Fj.1365-2427.1997.d01-546.x
http://dx.doi.org/10.1046%2Fj.1365-2427.1997.d01-546.x
http://dx.doi.org/10.4319%2Flo.2001.46.4.0970
http://dx.doi.org/10.4319%2Flo.2001.46.4.0970
http://dx.doi.org/10.1111%2Fj.1461-0248.2006.00963.x
http://dx.doi.org/10.1111%2Fj.1461-0248.2006.00963.x
http://dx.doi.org/10.1890%2F0012-9658%281998%29079%5B1545%3ACNAPMI%5D2.0.CO%3B2
http://dx.doi.org/10.1890%2F0012-9658%281998%29079%5B1545%3ACNAPMI%5D2.0.CO%3B2
http://dx.doi.org/10.4319%2Flo.1977.22.2.0361
http://dx.doi.org/10.5061%2Fdryad.75s9s
http://dx.doi.org/10.5061%2Fdryad.75s9s
http://dx.doi.org/10.1890%2F12-1872.1
http://dx.doi.org/10.1093%2Fplankt%2F17.7.1461
http://dx.doi.org/10.1126%2Fscience.229.4716.828
http://dx.doi.org/10.4319%2Flo.1974.19.5.0767
http://dx.doi.org/10.4319%2Flo.1992.37.5.0936
http://dx.doi.org/10.4319%2Flo.1992.37.5.0936
http://dx.doi.org/10.4319%2Flo.2011.56.6.2127
http://dx.doi.org/10.1111%2Fj.1365-2427.1987.tb01045.x
http://dx.doi.org/10.1890%2F1051-0761%281999%29009%5B1377%3ADOCAAI%5D2.0.CO%3B2
http://dx.doi.org/10.1890%2F1051-0761%281999%29009%5B1377%3ADOCAAI%5D2.0.CO%3B2
http://dx.doi.org/10.1080%2F07438140409354243
http://dx.doi.org/10.1080%2F07438140409354243
http://dx.doi.org/10.2134%2Fjeq2004.1528
http://dx.doi.org/10.1080%2F07438140809354068
http://dx.doi.org/10.1111%2Fj.1523-1739.2005.00504.x
http://dx.doi.org/10.1007%2Fs10021-008-9181-9
http://dx.doi.org/10.1139%2FF08-161
http://dx.doi.org/10.1139%2FF08-161
http://dx.doi.org/10.2134%2Fjeq2002.2026
http://dx.doi.org/10.2134%2Fjeq2012.0266
http://dx.doi.org/10.1139%2Ff07-168
http://dx.doi.org/10.1139%2Ff94-040
http://dx.doi.org/10.1139%2Ff94-040
http://dx.doi.org/10.1139%2Ff89-152
http://dx.doi.org/10.5268%2FIW-3.2.565


PLUMMER, M. 2012. JAGS Version 3.3.0.
RAPPORT, D. J., R. COSTANZA, AND A. J. MCMICHAEL. 1998.

Assessing ecosystem health. Trends Ecol. Evol. 13: 397–402,
doi:10.1016/S0169-5347(98)01449-9

REDDY, K. R., R. H. KADLEC, E. FLAIG, AND P. M. GALE. 1999.
Phosphorus retention in streams and wetlands: A review. Crit.
Rev. Environ. Sci. Technol. 29: 83–146, doi:10.1080/
10643389991259182

RICHARDSON, C. J. 1985. Mechanisms controlling phosphorus
retention capacity in freshwater wetlands. Science 228:
1424–1427, doi:10.1126/science.228.4706.1424

SCHINDLER, D. W. 2012. The dilemma of controlling cultural
eutrophication of lakes. Proc. R. Soc. B Biol. Sci. 279:
4322–4333, doi:10.1098/rspb.2012.1032

SHARPLEY, A. N., R. W. MCDOWELL, AND P. J. A. KLEINMAN.
2004. Amounts, forms, and solubility of phosphorus in soils
receiving manure. Soil Sci. Soc. Am. J. 68: 2048–2057,
doi:10.2136/sssaj2004.2048

SIROTA, J., B. BAISER, N. J. GOTELLI, AND A. M. ELLISON. 2013.
Organic-matter loading determines regime shifts and alterna-
tive states in an aquatic ecosystem. Proc. Natl. Acad. Sci.
USA 110: 7742–7747, doi:10.1073/pnas.1221037110

SMITH, V. H. 1982. The nitrogen and phosphorus dependence of algal
biomass in lakes: An empirical and theoretical analysis. Limnol.
Oceanogr. 27: 1101–1112, doi:10.4319/lo.1982.27.6.1101

———, AND J. SHAPIRO. 1981. Chlorophyll-phosphorus relations
in individual lakes: Their importance to lake restoration
strategies. Environ. Sci. Technol. 15: 444–451, doi:10.1021/
es00086a009

SORANNO, P. A., K. S. CHERUVELIL, R. J. STEVENSON, S. L. ROLLINS,
S. W. HOLDEN, S. HEATON, AND E. TORNG. 2008. A framework
for developing ecosystem-specific nutrient criteria: Integrating
biological thresholds with predictive modeling. Limnol.
Oceanogr. 53: 773–787, doi:10.4319/lo.2008.53.2.0773

———, ———, K. E. WEBSTER, M. T. BREMIGAN, T. WAGNER,
AND C. A. STOW. 2010. Using landscape limnology to classify
freshwater ecosystems for multi-ecosystem management and
conservation. BioScience 60: 440–454, doi:10.1525/
bio.2010.60.6.8

SPIEGELHALTER, D. J., N. G. BEST, B. P. CARLIN, AND A. VAN DER

LINDE. 2002. Bayesian measures of model complexity and
fit. J. R. Stat. Soc. Ser. B 64: 583–639, doi:10.1111/1467-
9868.00353

STERNER, R. W. 2008. On the phosphorus limitation paradigm for
lakes. Int. Rev. Hydrobiol. 93: 433–445, doi:10.1002/
iroh.200811068

SYSTAT SOFTWARE INC. 2006. SigmaPlot.
UNNO, Y., AND T. SHINANO. 2013. Metagenomic analysis of the

rhizosphere soil microbiome with respect to phytic acid
utilization. Microb. Environ. 28: 120–127, doi:10.1264/
jsme2.ME12181

U.S. ENVIRONMENTAL PROTECTION AGENCY. 2010. Using stressor-
response relationships to derive numeric nutrient criteria.
EPA-820-S-10-001. U.S. Environmental Protection Agency.

WAGNER, T., P. A. SORANNO, K. E. WEBSTER, AND K. S.
CHERUVELIL. 2011. Landscape drivers of regional variation
in the relationship between total phosphorus and chlorophyll
in lakes. Freshw. Biol. 56: 1811–1824, doi:10.1111/j.1365-
2427.2011.02621.x

WATSON, S., E. MCCAULEY, AND J. A. DOWNING. 1992. Sigmoid
relationships between phosphorus, algal biomass, and algal
community structure. Can. J. Fish. Aquat. Sci. 49: 2605–2610,
doi:10.1139/f92-288

WEBSTER, K. E., AND OTHERS. 2008. An empirical evaluation of the
nutrient-color paradigm for lakes. Limnol. Oceanogr. 53:
1137–1148, doi:10.4319/lo.2008.53.3.1137

ZEIDE, B. 1993. Analysis of growth equations. For. Sci. 39:
594–616.

Associate editor: George W. Kling

Received: 23 September 2013
Accepted: 23 May 2014
Amended: 29 May 2014

Chlorophyll–phosphorus relationships 1703

 19395590, 2014, 5, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.4319/lo.2014.59.5.1691, W

iley O
nline L

ibrary on [03/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.1016%2FS0169-5347%2898%2901449-9
http://dx.doi.org/10.1016%2FS0169-5347%2898%2901449-9
http://dx.doi.org/10.1080%2F10643389991259182
http://dx.doi.org/10.1080%2F10643389991259182
http://dx.doi.org/10.1126%2Fscience.228.4706.1424
http://dx.doi.org/10.1098%2Frspb.2012.1032
http://dx.doi.org/10.2136%2Fsssaj2004.2048
http://dx.doi.org/10.2136%2Fsssaj2004.2048
http://dx.doi.org/10.1073%2Fpnas.1221037110
http://dx.doi.org/10.4319%2Flo.1982.27.6.1101
http://dx.doi.org/10.1021%2Fes00086a009
http://dx.doi.org/10.1021%2Fes00086a009
http://dx.doi.org/10.4319%2Flo.2008.53.2.0773
http://dx.doi.org/10.1525%2Fbio.2010.60.6.8
http://dx.doi.org/10.1525%2Fbio.2010.60.6.8
http://dx.doi.org/10.1111%2F1467-9868.00353
http://dx.doi.org/10.1111%2F1467-9868.00353
http://dx.doi.org/10.1002%2Firoh.200811068
http://dx.doi.org/10.1002%2Firoh.200811068
http://dx.doi.org/10.1264%2Fjsme2.ME12181
http://dx.doi.org/10.1264%2Fjsme2.ME12181
http://dx.doi.org/10.1111%2Fj.1365-2427.2011.02621.x
http://dx.doi.org/10.1111%2Fj.1365-2427.2011.02621.x
http://dx.doi.org/10.1139%2Ff92-288
http://dx.doi.org/10.1139%2Ff92-288
http://dx.doi.org/10.4319%2Flo.2008.53.3.1137

