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Abstract. Broad-scale studies have improved our ability to make predictions about how
freshwater biotic and abiotic properties will respond to changes in climate and land use intensi-
fication. Further, fine-scaled studies of lakes, wetlands, or streams have documented the impor-
tant role of hydrologic connections for understanding many freshwater biotic and abiotic
processes. However, lakes, wetlands, and streams are typically studied in isolation of one
another at both fine and broad scales. Therefore, it is not known whether these three freshwa-
ter types (lakes, wetlands, and streams) respond similarly to ecosystem and watershed drivers
nor how they may respond to future global stresses. In this study, we asked, do lake, wetland,
and stream biotic and abiotic properties respond to similar ecosystem and watershed drivers
and have similar spatial structure at the national scale? We answered this question with three
U.S. conterminous data sets of freshwater ecosystems. We used random forest (RF) analysis to
quantify the multi-scaled drivers related to variation in nutrients and biota in lakes, wetlands,
and streams simultaneously; we used semivariogram analysis to quantify the spatial structure
of biotic and abiotic properties and to infer possible mechanisms controlling the ecosystem
properties of these freshwater types. We found that abiotic properties responded to similar dri-
vers, had large ranges of spatial autocorrelation, and exhibited multi-scale spatial structure,
regardless of freshwater type. However, the dominant drivers of variation in biotic properties
depended on freshwater type and had smaller ranges of spatial autocorrelation. Our study is
the first to document that drivers and spatial structure differ more between biotic and abiotic
variables than across freshwater types, suggesting that some properties of freshwater ecosys-
tems may respond similarly to future global changes.

Key words: aquatic vegetation; chlorophyll a; lakes; macroscale; National Aquatic Resource Surveys;
nutrients; spatial autocorrelation; spatial scale; streams; wetlands.

INTRODUCTION

Ecologists have long understood the complex nature
of ecosystems and the importance of spatial scale for
understanding both ecosystem pattern and process (e.g.,
Allen and Starr 1982, Levin 1992, Peters et al. 2007). In
fact, as the discipline has aged and technology has
advanced, more ecological studies explicitly examine the
role of scale for their species or ecosystem property of
interest and take into account complex relationships
among abiota and biota, as well as across ecosystems.
The fields of landscape ecology, macroecology, and
macrosystems ecology have further advanced the impor-
tance of studying phenomena at broad scales (i.e.,
regions to continents; Heffernan et al. 2014, McGill

2019), quantifying spatial structure of biotic and abiotic
properties and their drivers (e.g., Baskent and Jordan
1995, Perry et al. 2002, Lapierre et al. 2018), considering
the multi-scale drivers of biota and abiota (e.g., Whit-
taker et al. 2001, Stendera et al. 2012, Soranno et al.
2014), and recognizing the connections among and
within terrestrial and aquatic ecosystems of various
types (e.g., Peters et al. 2008, Rotjan and Idjadi 2013,
Hotchkiss et al. 2018). However, it remains rare to con-
duct research at the macroscale that includes multiple
ecosystem types and examines both biotic and abiotic
properties.
Freshwater ecosystems present an ideal opportunity

to do such macroscale, inter-ecosystem, and integrative
research. Freshwaters collect and process material from
the surrounding watershed, have well-defined bound-
aries, represent a widely distributed network, and are
hierarchically organized (e.g., Frissell et al. 1986, Wil-
liamson et al. 2009). In addition, freshwater nutrients
and biota reflect changes in their surrounding watershed
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(e.g., Allan et al. 1997, Williamson et al. 2009), such as
those caused by climate change and land use intensifica-
tion, both of which operate at multiple spatial scales. To
date, most freshwater research at the macroscale has
focused on individual freshwater types (i.e., lakes,
streams, or wetlands; Kling et al. 2000, Soranno et al.
2010, Stanley and del Giorgio 2018). However, when
comparable properties of different freshwater types have
been studied simultaneously at macro scales, surprising
similarities and differences have emerged. For example,
algal abundance per unit phosphorus across the United
States was greater in lakes than rivers (Soballe and Kim-
mel 1987), likely due to differences in water residence
time (the average duration water spends in the ecosys-
tem). In contrast, macroinvertebrate communities in
streams and lakes across Sweden were influenced more
by ecosystem habitat properties (e.g., substrate, vegeta-
tion, and water chemistry) than by regional properties
(e.g., elevation, latitude, and longitude; Johnson et al.
2004).
Interesting findings have also resulted from macro-

scale studies of abiotic properties across freshwater
types. For example, although lakes generally had lower
nutrient concentrations than wetlands, water chemistry
was positively related to modified land use regardless of
freshwater type in the southern region of New Zealand
(Galbraith and Burns 2007). In addition, lakes and
streams exhibited similar dissolved organic carbon con-
centrations, likely due to inputs from wetlands in the
upper midwestern United States (Lottig et al. 2011) and
regional land use was a shared driver of stream and lake
water chemistry in Sweden (Stendera and Johnson
2006). These few inter-ecosystem studies demonstrated
important similarities and differences among freshwater
types, facilitated the establishment of general frame-
works that may cross ecosystem boundaries, and
resulted in calls for research that includes a diversity of
ecosystem properties and various ecosystem types (Chal-
oner and Wotton 2011, Rotjan and Idjadi 2013, N~oges
et al. 2016).
Multi-scale drivers, predictor variables that operate

and can be quantified at multiple scales (e.g., Tonn
1990, Allan et al. 1997, Poff 1997, Read et al. 2015),
likely account for some of the macroscale study results
of either biota or abiota across multiple freshwater
types. Understanding how the spatial structure of these
ecosystem properties compares to that of their drivers
can provide insight about how spatial structure influ-
ences relationships among ecological properties
(Lapierre et al. 2018) and across freshwater types. For
example, a combination of broad-scale patterns in
hydrology and land cover, as well as lake and catchment
morphometry, generated an intermediate-scale spatial
structure in lake total phosphorus across the northeast-
ern United States (Lapierre et al. 2018). In streams and
lakes, benthic macroinvertebrates exhibited a patchy
spatial structure across several broad spatial extents
(>1,000 km) in the United States and Sweden, likely

due to their small size and limited dispersal ability
(Shurin et al. 2009). In contrast, the spatial structure of
stream water chemistry across Maryland, USA was
strongly related to broad-scale landscape variables, such
as agriculture and geology type (Peterson et al. 2006).
However, it is unknown to what extent these macroscale
patterns are consistent across lakes, wetlands, and
streams. Because streams have extensive networks and
longitudinal flow, they may exhibit a broader range of
spatial structure compared to lakes and wetlands
(Shurin et al. 2009). Ecologists also know little about
the multi-scale drivers or spatial structure of abiotic
and biotic properties of all freshwaters (i.e., lakes, wet-
lands, and streams combined). Therefore, macroscale
freshwater research that integrates across lakes, wet-
lands, and streams and studies both biotic and abiotic
properties has the potential to greatly contribute to eco-
logical understanding and prediction in the face of glo-
bal threats (Chaloner and Wotton 2011, Rose et al.
2017, Stanley and del Giorgio 2018).
For the first time, we integrate data about all three

freshwater types to ask do lake, wetland, and stream bio-
tic and abiotic properties respond to similar ecosystem
and watershed drivers and have similar spatial structure
at the national scale? We studied thousands of water
bodies at the scale of the conterminous United States
using the U.S. Environmental Protection Agency’s
National Aquatic Research Surveys (NARS; available
online).5 Owing to similar biogeochemical processing
across freshwaters, we expected abiotic properties to
respond to similar drivers at the macroscale, regardless
of freshwater type. However, we expected biotic variables
to respond to different external drivers across freshwater
types because of intra-ecosystem species and community
differences. We also expected the spatial structure of
these abiotic and biotic variables to reflect the spatial
structure of dominant drivers, which we predicted would
vary by freshwater type due to different water residence
times (streams < wetlands < lakes, generally; Kalff
2002). By studying both abiotic and biotic properties
across lakes, wetlands, and streams at the macroscale,
our results can increase understanding of broad-scale
responses to changes in climate and land use intensifica-
tion, as well as inform future national ecosystem
assessments and landscape-scale management and con-
servation efforts.

METHODS

Study sites

We used data from the U.S. Environmental Protection
Agency’s National Aquatic Research Surveys that
include sample sites in lakes, streams, and wetlands: the
2012 National Lakes Assessment (NLA), the 2008–2009
National Rivers and Streams Assessment (NRSA), and

5www.epa.gov/national-aquatic-resource-surveys
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the 2011 National Wetland Condition Assessment
(NWCA; Fig. 1a). Field crews sampled each freshwater
type during a summer index period, typically May–
September, during respective NARS years. For each
freshwater type, the EPA selected sample locations using
a statistically representative sample design that was
stratified by EPA ecoregion (Fig. 1b), as well as either
lake area, stream Strahler order (i.e., the position of a
stream in the river network), or wetland vegetation cate-
gory (e.g., intertidal emergent, forested palustrine;
USEPA 2016a,b,c). Each NARS also a priori hand-
selected “least disturbed” reference sites using screening

criteria that varied by state or ecoregion, which were also
included in our study.
NARS sample lakes were chosen from a target popu-

lation that included freshwater lakes, ponds, and reser-
voirs (hereafter referred to as lakes) ≥1 ha, at least 1 m
deep, with a minimum 0.1 ha of open water, and a mini-
mum retention time of one week (n = 1,130; USEPA
2016a). Sample streams were chosen from perennial
streams and rivers, hereafter referred to as streams
(n = 2,123; USEPA 2016b). Sample wetlands were cho-
sen from both marine and freshwater wetlands that con-
tained rooted vegetation; if open water was present, 90%
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FIG. 1. (a) Freshwater sample sites for the (a) National Lakes Assessment in blue (n = 1,130), the National Wetland Condition
Assessment in orange (n = 400), and National Rivers and Streams Assessment in green (n = 2,123). (b) U.S. EPA ecoregions (ag-
glomerated Omernik III regions; Omernik 1987): CPL, Coastal Plains; NAP, Northern Appalachians; NPL, Northern Plains;
SAP, Southern Appalachians; SPL, Southern Plains; TPL, Temperate Plains; UMW, Upper Midwest; WMT, Western Mountains;
and XER, Xeric.
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of wetland area was <1 m deep (USEPA 2016c). We used
only freshwater wetlands (n = 400) in this study to com-
pare ecological properties with lakes and streams. Most
response variables and driver variables were acquired
from each NARS raw data file (USEPA 2016d,e,f). How-
ever, lake watershed land use metrics and stream chloro-
phyll a concentration were obtained directly from EPA
personnel. The resulting database covers a broad geo-
graphical extent that includes nine ecoregions across the
conterminous U.S. (Fig. 1b), three freshwater types, and
two abiotic and two biotic properties. All data and code
used for analyses are available in an online repository
(King 2018, 2019).

Abiotic and biotic freshwater properties

Detailed sampling methods for ecosystem properties,
total phosphorus, total nitrogen, and chlorophyll a con-
centrations, as well as percent aquatic vegetation cover
(all measures of abundance) can be found in EPA field
and lab manuals (e.g., USEPA 2007, 2008, 2011a,b,c,
2012). Briefly, samples for total phosphorus (TP), total
nitrogen (TN), and chlorophyll a (CHL) were collected
using an integrated collection tube from the top 2 m of
the water column at an open water location in lakes,
grab samples from mid-channel at a depth of 0.5 m in
streams, and grab samples from open water >15 cm in
wetlands. Samples were then packed on ice and immedi-
ately sent for lab analysis to measure nutrient and algal
concentrations. Field crews recorded observations of
percent cover of aquatic vegetation for each sample site,
including emergent, submersed, and floating vegetation.
Lake aquatic vegetation cover was estimated based on
plants collected with a double-sided rake, stream plant
cover estimates were recorded by visual inspection or by
sounding with a pole, and wetland plant cover estimates
were determined by visual inspection (USEPA 2007,
2011a,b). Descriptions of the ecosystem properties (i.e.,
response variables in analyses) are in Table 1, and spatial
distributions of these variables are in Fig. 2.

Drivers of freshwater properties

The EPA characterized ecosystem and watershed con-
texts of each waterbody using watersheds from the
NHDPlus v2 for lakes and streams and used concentric
buffers around the center point of each wetland (200,
500, 1,000 m; USEPA 2016d,e,f). We used 1,000-m

wetland buffers as a proxy for wetland watersheds
because they were most similar in area to the lake water-
sheds (median area = 3.14 and 10.6 km2, respectively).
Soranno et al. (2015) found that when comparing lake
watersheds to 1,500 m buffers around lakes, they were
equally effective in quantifying the effect of land use/
cover on lake nutrients. Previous studies at the national
scale have similarly used wetland buffers to characterize
the landscape (e.g., Moon et al. 2017, Stapanian et al.
2018). The EPA quantified a variety of driver variables
at the watershed (and wetland buffer) scale: NLCD 2006
land use/cover, NADP 2007–2011 nitrogen deposition,
2000/2010 U.S. Census human population density, 2010
TIGER road density, and 2006 NED elevation (Table 2)
(USEPA 2016d,e,f). The EPA field crews estimated
riparian zone vegetation cover and we aggregated the
three vegetation layers (canopy, mid-layer, ground cover)
and types (herbaceous, woody, trees) (USEPA 2007,
2011a,b). Descriptions of predictor variables can be
found in Table 2.
Because climate is an important driver of freshwater

nutrients and biota at broad scales (Allan et al. 2005,
Wrona et al. 2006, O’Reilly et al. 2015), we added cli-
mate variables to our compiled NARS data set. We
extracted 800-m resolution 30-yr normal values for
mean annual precipitation, mean maximum tempera-
ture, and mean minimum temperature for the point loca-
tion of each sample site (1981–2010; data available
online).6 Winter precipitation was calculated from
monthly averages of 4-km resolution data for the
December–February prior to the sample period for each
NARS (i.e., streams sampled during 2008 have winter
precipitation data from Dec 2007–Feb 2008). Summer
precipitation and temperatures were calculated using
monthly averages of the 5-month sampling period of
May–September during the same year of each NARS.

Analysis

We used random forest (RF) analysis to determine the
important drivers of nutrients and biota in lakes,
wetlands, and streams simultaneously (i.e., in a single
combined model). RF is a machine-learning approach
that grows a regression tree for each bootstrap sample of
the original data set using a random subset of predictor

TABLE 1. Descriptive statistics for the lake, stream, and wetland response variables included in analyses.

Response variable (units)

Lakes Streams Wetlands

n Mean � SD n Mean � SD n Mean � SD

Total phosphorus (lg/L) 1,130 116.5 � 278.1 2,116 156.1 � 543.2 400 455.3 � 1004.6
Total nitrogen (lg/L) 1,130 1141.8 � 2579.6 2,116 1216.7 � 2392 390 2078.6 � 4748.7
Chlorophyll a (lg/L) 1,034 27.6 � 57.3 2,010 12.3 � 62.9 393 35.6 � 136.5
Aquatic vegetation (% cover) 1,115 28.7 � 26.7 2,113 7.7 � 15.0 400 29.3 � 33.3

6 http://prism.oregonstate.edu
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variables for each split that partitions the observations
(Breiman 2001). Each tree model then predicts observa-
tions not used in the model development (out-of-bag
samples) using both original and randomly permuted

data, resulting in mean square error estimates. Predictor
importance can be determined by the mean decrease in
accuracy (also known as “permutation accuracy impor-
tance measure”) whereby variable importance is the
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FIG. 2. Maps of the spatial distribution of the natural log (ln) of ecosystem properties, (a) total phosphorus (TP) (b) total nitro-
gen (TN), (c) chlorophyll a (CHL), and (d) percent aquatic vegetation cover (AqVeg) across lakes (squares), wetlands (triangles),
and streams (circles).

TABLE 2. Descriptive statistics for predictor variables calculated at either the ecosystem or watershed scale.

Predictor variable (units) Abbreviation Median 5th 95th

Ecosystem scale
Depth (m)† DEPTH 1.0 0.13 14.6
Riparian vegetation (%) Rveg 30.0 9.1 69.6
Mean annual precipitation, 30-yr norm (mm) PrecipNorm 965.5 290.7 1511.0
Summer precipitation average May–Sep of sample period (mm) PrecipSummer 83.1 13.0 164.1
Winter precipitation average Dec–Feb of sample period (mm) PrecipWinter 60.1 8.2 151.6
Minimum annual temperature, 30-yr norm (°C) TMIN 3.9 �2.6 12.9
Maximum annual temperature, 30-yr norm (°C) TMAX 16.2 10.0 25.6
Summer temperature average May–Sep of sample period (°C) Tsummer 19.3 12.0 26.6

Watershed or 1,000-m buffer scale
Mean elevation (m) ELEVMEAN 408.5 30.6 2504.1
Forest (%) FOREST_PCT 33.9 0 88.3
Agriculture (%) AG_PCT 8.5 0 78.3
Wetland (%) WETLAND_PCT 1.4 0 31.7
Urban (%) URBAN_PCT 3.8 0 26.1
Grassland (%) SHRUB_GRASS_PCT 9.0 0 84.7
Mean nitrogen deposition (kg/ha) NDEP 3.5 0.9 5.9
Population density (people/km2) POPDEN 12.7 0 702.0
Road density (km/km2) ROADDEN 1.3 0.1 4.0

Notes: For wetlands, 1,000-m buffers were used as a proxy for unavailable watersheds. Statistics shown are calculated across all
three freshwater types. Predictor variables without statistics are freshwater type (lake, wetland, stream) and ecoregion
(AGGR_ECO9_2015). 5th and 95th refer to percentiles.
†Maximum (lakes and wetlands) or mean thalweg (deepest part of the channel along reach) (stream) depth.
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difference in prediction accuracy before and after per-
mutation (Strobl et al. 2007). Ecologists increasingly use
RFs to determine which predictor variables are impor-
tant for classifying ecosystem properties (e.g., Cutler
et al. 2007, Hollister et al. 2016).
We ran 500 trees for each natural log-transformed

response variable and investigated the unscaled mean
decrease in accuracy measure using the randomForest
package (Liaw and Wiener 2002) in R 3.5.0 (R Core
Team 2018). When we plotted the change in error vs. the
number of trees, the error flattened at about 100 trees
(Appendix S1: Fig. S1); however, we selected 500 trees
to ensure unbiased out-of-bag estimates (Breiman 2001).
For each response variable, we included a mix of ecosys-
tem and watershed context variables (i.e., driver vari-
ables at different spatial scales), freshwater type, and
ecoregion membership as potential predictor variables
(Table 2). We identified a different number of important
predictor variables for each response variable and have
bolded them in Fig. 3. We identified the top predictors
by repeating the analysis with several random seeds, as
the top-ranked variables should remain unchanged from
each run (Strobl et al. 2007), and using inflection points
in variable importance plots. To determine whether our
results were influenced by the relatively few wetlands
sampled by the EPA, we ran RF analysis on a subset of
data that included just 400 each of randomly selected
lakes and streams and compared the results to those
found when using the whole data set (Appendix S1:
Fig. S2).
For each biotic and abiotic response variable, we

determined the broad-scale spatial structure for lakes,
wetlands, and streams individually. We then compared
the spatial structure of the response variables to the spa-
tial structure of the top drivers from the RF analysis to
determine how well abiotic and biotic variables reflect
the scale of the dominant drivers. We used semivari-
ogram analysis to quantify spatial structure because it
provides a dissimilarity measure where c(h) is the vari-
ance between point pairs for a particular Euclidean lag
distance h (Legendre and Fortin 1989). Euclidean rela-
tionships reveal lateral connectivity between a water-
body and the landscape, indicate landscape influences,
and show spatial dependence at broad scales (McGuire
et al. 2014). To determine broad-scale spatial structure
with semivariograms, we used a bin size of 20 km (rela-
tively small scale) for each variable that maintained at
least 50 point-pairs per bin (Rossi et al. 1992, Turner
et al. 2001).
We report the range (Appendix S2), which is the dis-

tance at which spatial autocorrelation ends and the mea-
sure of variance asymptotes, as well as semivariogram
shape as either single-scale or nested structures (one or
multiple ranges, respectively; McGuire et al. 2014).
Although standard practice for semivariance analysis is
to calculate semivariance up to one-half of the largest
Euclidean distance between point pairs (Rossi et al.
1992), we report semivariogram results up to 2,500 km

(0.6 the maximum distance) because this distance was
useful for visualization purposes and the resulting statis-
tics were the same for both distances. Spherical or expo-
nential models were fit to the semivariograms to
estimate ranges of spatial autocorrelation using the gstat
package (Pebesma 2004) and visual adjustment. For
nested semivariograms, we determined the second range
of spatial autocorrelation visually, as the goal of our
analysis was not for prediction but to compare semivari-
ogram shapes, which does not require fitting a model
(sensu McGuire et al. 2014).

RESULTS

Drivers of abiotic and biotic properties across lakes,
wetlands, and streams

Random forest models, one for each ecosystem prop-
erty across all three freshwater types, show that freshwa-
ter type (lake, wetland, stream) was not one of the most
important predictor variables for the two abiotic proper-
ties (TP and TN). These properties were best explained
by watershed percent forest cover, followed by watershed
agriculture and ecoregion membership (Fig. 3a, b).
Watershed mean elevation was also a top driver of TN
(Fig. 3b). In contrast, freshwater type was the most
important predictor variable of the two biotic properties
(CHL and aquatic vegetation; Fig. 3c, d). Both biotic
properties were also driven by depth and CHL was dri-
ven by watershed percent forest cover (Fig. 3c, d). The
overall variation explained by models was greater for
abiotic properties (R2 = 0.62 for TN and R2 = 0.50 for
TP) than for abiotic properties (CHL R2 = 0.44 and
aquatic vegetation R2 = 0.41).
Supplemental analysis of equal numbers of ecosys-

tems across freshwater types generally corroborated
these findings. However, equal sample size models
pointed to summer temperature as an additional driver
of CHL and both depth and freshwater type as addi-
tional drivers of TP (Appendix S1). The overall varia-
tion explained by models was similar regardless of the
number of ecosystems sampled (Appendix S1).

Spatial structure of biotic and abiotic properties and
drivers across lakes, wetlands, and streams

Spatial structures were more different between biotic
and abiotic variables than among freshwater types. For
example, TP and CHL exhibited similar nested spatial
structure (multi-scale), regardless of freshwater type
(Fig. 4), and the first ranges of abiotic properties were
generally larger than those of biotic properties across all
freshwater types (except aquatic vegetation in wetlands
and CHL in streams; Fig. 4; Appendix S2). Ecosystem
properties that exhibited a nested spatial structure
(Table 3) showed a second range at approximately
1,500–2,000 km (Appendix S2), regardless of freshwater
type.
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Despite these similarities in regional spatial structure
across freshwater types, we also detected some interest-
ing differences across types. For example, aquatic vegeta-
tion in lakes and wetlands had single-scale structures
(albeit wetlands had a very large range), whereas in
streams there was a nested spatial structure (Fig. 4). For
TP and TN, the first range of spatial autocorrelation was
largest for lakes (757 and 1,195 km, respectively), fol-
lowed by wetlands (605 and 789 km, respectively), and
then streams (271 and 389 km, respectively; Appendix
S2). Finally, TN in lakes displayed a nested spatial struc-
ture, wetlands a single spatial structure, and streams a
nested spatial structure with no second plateau (Fig. 4,
Table 3), which suggests a broad-scale gradient and no
end to spatial autocorrelation of TN across the study
area.
We found that the spatial structure of the top drivers

reflected the structure of the associated ecosystem prop-
erty (Fig. 5). For example, the spatial structures of
watershed percent forest and agriculture are multi-scaled
and look similar to the structure of TP and CHL
(Figs. 4 and 5). Depth shows single-scale structure with
a small range of spatial autocorrelation, which is similar
to the small ranges found for aquatic vegetation in lakes
and streams and CHL in lakes and wetlands (Figs. 4 and
5). There was no plateau for elevation, which resembles
the broad-scale TN gradient (Figs. 4 and 5). These
results indicate that landscape context drivers acting at

multiple spatial scales are likely shaping patterns of
ecosystem properties across freshwater types at the
macroscale.

DISCUSSION

For the first time, we integrated data from three fresh-
water types to ask do lake, wetland, and stream biotic
and abiotic properties respond to similar ecosystem and
watershed drivers and have similar spatial structure at
the national scale? We found that drivers and spatial
structure differed more between biotic and abiotic
response variables than among freshwater types (lakes,
wetlands, and streams). The similar response of nutrients
to drivers acting at multiple spatial scales (i.e., watershed
land use/cover and ecoregion membership), regardless of
freshwater type, suggests that classifying an ecosystem
as lentic or lotic may not be necessary for nutrient moni-
toring at the national scale. In contrast, classifying by
freshwater types is likely important for monitoring,
managing, and predicting biotic properties at such broad
scales.
The intent of this study was not to best understand

the variables driving differences among ecosystems
within a freshwater type; rather, it was to look for simi-
larities and differences in drivers and spatial structure
across freshwater types. Therefore, we included in mod-
els only response and predictor variables that were
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FIG. 3. Variable importance plots from random forests of (a) total phosphorus (R2 = 0.50), (b) total nitrogen (R2 = 0.62),
(c) chlorophyll a (R2 = 0.44), and (d) percent aquatic vegetation cover (R2 = 0.41). More important predictor variables have higher
values of mean decrease in accuracy, which is the unscaled difference between the observed minus the randomly permuted out-of-
bag estimates. Important predictor variables are bold. See Table 2 for abbreviations of predictor variables.
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consistent across freshwater types. These decisions may
have implications for the interpretation of our results;
we did not include some high-interest ecosystem
response variables nor drivers that likely contribute to
some of the unexplained variation in ecosystem proper-
ties. For example, future macroscale research across
freshwater types may gain important insights by consid-
ering community composition in addition to biotic
abundance metrics. Because our goal was also to better
understand macroscale patterns rather than local

patterns in ecosystem properties, we used relatively
course-grain data and techniques appropriate for regio-
nal analyses. Although these facts preclude us from
capturing fine-scale patterns, our research demonstrates
the potential utility of such macroscale, inter-ecosystem,
and integrative research, and suggests that nutrient con-
centrations of lakes, wetlands, and streams may respond
similarly to future global change at macroscales.
Macroscale understanding of the spatial patterns and

drivers of wetlands requires more scientific attention for
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these ecosystems. At the national scale, only 400 fresh-
water wetland sites were sampled, as compared to thou-
sands of lakes and streams. In addition, wetland
watersheds have not been delineated at the national scale
(or for the NARS wetlands). Because EPA land use/
cover metrics were quantified using 1,000-m buffers
around a center point, watershed areas do not vary and
an uncertain and highly variable part of these estimates
inevitably contains the focal wetland. Although previous
studies at the national scale have used wetland buffers to
characterize the landscape (e.g., Moon et al. 2017,

Stapanian et al. 2018), the use of buffers may have
affected our study results and their interpretation. Thus,
we have identified a gap in macroscale characterization
and study of freshwater wetlands that warrants further
attention.

Macroscale drivers of abiota across lakes, wetlands, and
streams

Scientists have long known that lakes, streams, and
wetlands are not isolated from the surrounding land-
scape, that agricultural lands contribute nutrients to
freshwaters via surface runoff and atmospheric deposi-
tion, and that riparian forests and wetlands can serve as
sinks for those nutrients (e.g., Peterjohn and Correll
1984, Frissell et al. 1986, Johnston 1991, Matson et al.
1997). However, we demonstrated that concentrations of
TP and TN had similar drivers regardless of freshwater
type. Therefore, future land use intensification is likely
to similarly negatively impact nutrients in all three fresh-
water types.
The nested spatial structure of TP and TN across all

freshwater types (except TN in wetlands) (Fig. 4) sup-
ports the idea that drivers operating at multiple scales
act on ecosystem properties, regardless of freshwater
type. Previous studies of individual freshwater types
have shown that regional variables such as precipitation,
elevation, and regional land use/cover drive abiotic prop-
erties such as dissolved organic carbon, TP, and alkalin-
ity (e.g., Stendera and Johnson 2006, Sobek et al. 2007,
Cheruvelil et al. 2013). Another study demonstrated
that although the spatial structure of the ecosystem
properties generally reflects the top drivers, multiple dri-
vers and complex interactions between scales can alter
the structure of the ecosystem properties (Lapierre et al.
2018). The fact that we found similar spatial structures
for TP and TN and their main predictor variables
(Fig. 4 compared with Fig. 5) provides further support
that land use/cover are drivers of nutrients and demon-
strates the importance of understanding multi-scaled

TABLE 3. Summary results from RF models and semi-
variogram analysis across freshwater types and response
variables.

Response
variable

Freshwater
type

Variable
type

Spatial
structure

Top
driver

Total
phosphorus

lake abiotic nested % forest

Total
phosphorus

wetland abiotic nested % forest

Total
phosphorus

stream abiotic nested % forest

Total nitrogen lake abiotic nested % forest
Total nitrogen wetland abiotic single % forest
Total nitrogen stream abiotic nested % forest
Chlorophyll a lake biotic nested freshwater

type
Chlorophyll a wetland biotic nested freshwater

type
Chlorophyll a stream biotic nested freshwater

type
Aquatic
vegetation

lake biotic single freshwater
type

Aquatic
vegetation

wetland biotic single freshwater
type

Aquatic
vegetation

stream biotic nested freshwater
type

Note: Spatial structure indicates a single or nested (i.e.,
multi-scale) spatial structure; top driver indicates the predictor
variable with the highest importance measure.
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spatial structure in order to interpret ecosystem relation-
ships.
We also found several cases where drivers and spatial

structure varied by freshwater types, three of which we
describe here. First, when accounting for sample size dif-
ferences, freshwater type emerged as a driver of TP
concentrations, which were higher in wetlands than in
lakes and streams in the central United States (Fig. 2).
This result is supported by studies that show wetlands
perform as a TP in agricultural regions (Johnston 1991,
Fergus et al. 2011). Second, the spatial structure of TN
varied across freshwater types (i.e., nested for lakes, sin-
gle for wetlands, and nested with no second plateau for
streams). Regional differences in various types of TN
input (e.g., fertilizer, atmospheric deposition) at the
national scale may alter the effects of drivers on TN con-
centrations (Bellmore et al. 2018). Therefore, differences
in nutrient inputs or processing at the ecosystem scale
(Saunders and Kalff 2001) can interact with landscape
context variables (e.g., land cover, ecoregion, precipita-
tion) and cause differences in spatial structure among
freshwater types. Third, contrary to our expectations, we
found that streams had the shortest range of spatial
autocorrelation for TP and TN as compared to lakes
and wetlands. This result may be due to the longitudinal
form and flow of a stream, the fact that streams run
through landscapes of different land use/cover, and the
patchy physical structure of streams (i.e., riffles and
pools), all of which may result in more local heterogene-
ity for streams (Peterson et al. 2006, McGuire et al.
2014) than for lakes or wetlands. Therefore, we advocate
the use of hydrologic distance (rather than Euclidean),
which is restricted to the stream network, to better repre-
sent spatial autocorrelation of nutrients within stream
networks (Peterson et al. 2006, McGuire et al. 2014) for
future study.

Macroscale drivers of biota across lakes, wetlands, and
streams

We found that the drivers of biotic properties
depended on freshwater type, likely due to large differ-
ences in ecosystem form and function among lakes, wet-
lands, and streams. For example, nutrient processing
differs between lentic and lotic ecosystems, whereby the
algal abundance per unit phosphorus increases with resi-
dence time (streams < lakes) (Soballe and Kimmel 1987).
Aquatic vegetation studied across ponds, rivers, and
streams found ponds to be most diverse due to freshwa-
ter-type-specific properties such as permanence, depth,
and flow (Williams et al. 2003). Interestingly, we found
that CHLwas driven by a mix of predictor variables that
were important for both aquatic vegetation and freshwa-
ter nutrients. Although CHL is a measure of algal open-
water biomass (i.e., it is a biotic property) and it is used
as an indicator of primary productivity, this property is
determined from water column samples and is often
highly correlated with TP and TN (Dillon and Rigler

1974, Smith 1982). Therefore, it follows that our models
of CHL had similar drivers to both nutrients (e.g., per-
cent forest) and aquatic vegetation (e.g., depth, type).
As with the abiotic response variables, we found that

predictor variables at multiple spatial scales were impor-
tant for shaping biotic ecosystem properties. For exam-
ple, the nested spatial structure of CHL across all
freshwater types (Fig. 4) implies that this property is
likely shaped by drivers acting at both relatively local
and regional scales (i.e., 382 km and 1,800 km for lakes,
respectively). Although this spatial structure most clo-
sely resembles that of watershed percent forest (land-
scape scale, multi-scale), the shorter first range of spatial
autocorrelation may be indicative of the importance of
ecosystem depth for primary production (ecosystem
scale, single-scale; Fig. 5). In addition, summer tempera-
ture (broad-scale spatial structure; Fig. 5) can interact
with landscape and ecosystem scale drivers to influence
CHL concentrations (e.g., Flanagan et al. 2003, Wagner
et al. 2011).
The presence of a multi-scaled spatial structure for

aquatic vegetation depended on freshwater type (Fig. 4).
The spatial structure was single-scaled for lakes and wet-
lands, likely influenced by depth (ecosystem scale, single-
scale), which further supports the idea that processes
driving biotic properties vary by freshwater type. Unfor-
tunately, we are unable to infer further drivers shaping
these patterns across freshwater types because freshwa-
ter type was the only other driver that explained aquatic
vegetation percent cover. Although our study is an
important first step in the integrated research of lakes,
wetlands, and streams that shows local and regional dri-
vers likely shape CHL across freshwater types, more
research is needed across freshwater types to understand
regional drivers of aquatic vegetation.

CONCLUSION

Broad-scale studies of lakes or wetlands or streams
have improved scientists’ ability to make predictions
about how freshwater biotic and abiotic properties may
respond to changes in climate and land use intensifica-
tion. However, by studying lakes and wetlands and
streams, we elucidated drivers and spatial structure of
abiotic and biotic properties that were previously
unknown. For example, we found that drivers and spa-
tial structure of nutrients occur at multiple spatial scales
and that undisturbed watersheds (those with high per-
cent forest cover) drive ecosystem properties, regardless
of freshwater type. Freshwater type was an important
driver of biotic variables, which exhibited both single
and nested spatial structures. This is the first time that
these broad-scale patterns have been quantified across
freshwater types and our results lend support to the idea
that both abiota and biota have multi-scale spatial struc-
ture, which can inform landscape-scale management and
conservation efforts. Our research also demonstrates
that national and multi-national ecosystem assessments
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(e.g., EPA NARS, Canada lake-PULSE; European
Water Framework Directive; EC 2000) can provide a
valuable source of data to extend the study of multiple
ecosystem types to build macroscale knowledge and
inform land use management and policy at macroscales.
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