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Abstract—Predictive modeling of nested geospatial data is
a challenging problem as the models must take into account
potential interactions among variables defined at different spatial
scales. These cross-scale interactions, as they are commonly
known, are particularly important to understand relationships
among ecological properties at macroscales. In this paper, we
present a novel, multi-level multi-task learning framework for
modeling nested geospatial data in the lake ecology domain.
Specifically, we consider region-specific models to predict lake
water quality from multi-scaled factors. Our framework enables
distinct models to be developed for each region using both its local
and regional information. The framework also allows information
to be shared among the region-specific models through their
common set of latent factors. Such information sharing helps
to create more robust models especially for regions with limited
or no training data. In addition, the framework can automatically
determine cross-scale interactions between the regional variables
and the local variables that are nested within them. Our experi-
mental results show that the proposed framework outperforms all
the baseline methods in at least 64% of the regions for 3 out of 4
lake water quality datasets evaluated in this study. Furthermore,
the latent factors can be clustered to obtain a new set of regions
that is more aligned with the response variables than the original
regions that were defined a priori from the ecology domain.

I. INTRODUCTION

Predictive modeling of geospatial data is an important

problem in many domains. For example, scientists seek to

develop models from geospatial data that can help explain

natural and anthropogenic factors influencing environmental

variability [1]–[3]. However, building a robust geospatial pre-

diction model can be challenging as the underlying processes

of the system may interact at different spatial scales. In the lake

ecology domain, previous studies have found strong evidence

for cross-scale interactions between geospatial driver variables

quantified at local and regional spatial scales for predict-

ing lake nutrient concentrations [4]. Cross-scale interactions

(CSIs) [5] refer to the coupling between the local and regional

variables and their joint effect on the focal response variable.

For example, interactions between local wetland cover around

a lake and regional agricultural land use have been shown to

affect the performance of models predicting total phosphorus

concentrations in lakes [6]. Nested geospatial data, containing

variables measured at multiple spatial scales, are needed to
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Figure 1: Example of nested lake ecology data with cross-scale

interactions between the local and regional predictor variables.

detect such patterns. For modeling lake nutrients, the predictor

variables used include local drivers such as lake depth, lake

type, and amount of wetland areas surrounding the lake as well

as regional drivers such as climate and land use (see Fig. 1).

In this example, the values of the local predictor variables may

vary from one lake to another but the values of the regional

predictor variables are the same for all lakes within the same

region. The nature of such nested data makes it challenging to

effectively incorporate both local and regional variables into

the model formulation. On one hand, the local and regional

variables can be concatenated to form a multi-scale feature

vector from which a global regression model can be fitted

against the data. Unfortunately, such a strategy may not be

effective due to the complex relationship between the predictor

and response variables, making it difficult to construct an

accurate, one-size-fits-all model for all the regions. On the

other hand, a local regression model can be trained to fit the

data in each region separately. However, such a model would

ignore the regional variables altogether as their values would

be identical for all lakes in the same region.

Another challenge in the predictive modeling of nested

geospatial data is the unbalanced sample sizes across differ-

ent regions. If the underlying relationships in the geospatial

domain are complex, the predictive models developed for

data-poor regions are likely to be inferior compared to those



developed for data-rich regions. Finally, the original set of

regions from which the nested data were obtained may not be

ideal for predictive modeling as they were often defined for

other purposes such as political boundaries and management

policies. Indeed, it is possible that the lakes from the same

region may not share the same relationship between their

predictor and response variables. It would be desirable to

develop a framework that can identify a set of regions that

better capture the relationship between the predictor and

response variables of the data.

To address the above challenges, this paper presents a novel

multi-level multi-task (MLMT) learning framework for the

predictive modeling of nested geospatial data from the ecology

domain. The framework enables a distinct prediction model to

be trained for each region using both its local and regional

predictor variables. The framework assumes that the nested

geospatial data are characterized by a set of low-rank latent

factors, which relates the dependencies between the local and

regional predictor variables to the response variable. Instead of

building the models for each region independently, the models

are jointly trained by inferring their local and regional latent

factors. The shared latent factors provide several advantages

for our framework. First, they enable the data-poor regions to

leverage information from other regions in order to construct

more robust models. Second, the latent factors can be used

to identify CSIs in the nested geospatial data. Finally, they

provide a new feature representation for each lake, which

allows us to cluster the lakes into a new set of regions based

on the similarity of their local latent factors. Empirical results

using four lake water quality datasets from the LAGOS-NE

database [7] showed significant performance improvement in

the local prediction models when trained on the new set of

regions instead of the original, pre-defined regions of the data.

II. PRELIMINARIES

We consider a two-level nested geospatial data set, D =
{Xi,yi, zi}

r
i=1, where r is the number of regions. Let Xi ∈

R
ni×d be the design matrix containing the local predictor

variables in region i, yi ∈ R
ni be the corresponding values of

response variables, and zi ∈ R
k be the corresponding regional

predictor variables. Here d is the number of local predictors,

k is the number of regional predictors, and ni is the number

of geospatial objects (e.g., lakes) in region i.
The goal of geospatial predictive modeling is to learn a

target function f(x, z) that maps the local and regional pre-

dictor variables of a geospatial object (x ∈ R
d, z ∈ R

k) to its

response value y with minimal prediction error. A trivial way

to model nested geospatial data is by fitting a single, global

model fglobal to the entire data set D. Unfortunately, the global

model may not provide a good fit to the data especially if the

relationship between the predictor and response variables may

vary by region. Alternatively, one could train an independent,

local model flocal for each region, but this approach is also

not as effective especially for regions that have very few

training examples available. Furthermore, the local models

will not be able to utilize the regional variables since their

values are the same for all the training examples in the

same region. Alternative techniques are therefore needed for

modeling nested geospatial data.

Multi-level modeling [8] is a widely-used statistical tech-

nique for assessing the influence of multi-scale variables on

the response variable of interest. For a two-level model, the

relationship between the response and predictor variables for

a geospatial object (xi, zi) in region i is given as follows:

yi = wT
i xi + ǫ1, ǫ1 ∼ N(0, σ2

1)

wi = GT zi + ǫ2, ǫ2 ∼ N(0,Σ2), (1)

where G ∈ R
k×d is a matrix that captures the CSIs between

the local and regional predictors. Specifically, the (i, j)-th
element of G corresponds to the cross-scale interaction term

between the i-th regional predictor and the j-th local predictor.

It can be shown that the maximum likelihood estimation

(MLE) of G can be found by minimizing the following

loss function: L(G) =
∑r

i=1 ‖ yi − XiG
T zi ‖22. Several

variants of the formulation have also been proposed in the

literature. For example, Zhao et al. [9] presented a multi-

level modeling approach for hierarchical multi-source event

forecasting. Lozano et al. [10] presented the following multi-

level lasso formulation for multi-task regression:

min
G

1

2

∑r

i=1
‖ yi −XiG

T zi ‖
2
2 +ρ1 ‖ G ‖1 (2)

Since the {zi} is given, the optimization problem can be

solved by using the proximal gradient descent method. During

the prediction step, the value of the response variable for a test

instance (x∗, z∗) can be predicted as follows:

ŷ = z∗TGx∗ = G11 +
∑d

p=2
G1px

∗

p +
∑k

q=2
Gq1z

∗

q

+
∑

p,q>1
z∗qGqpx

∗

p (3)

In the preceding equation, x∗

1 = z∗1 = 1 and G11 is the

intercept term of the model. The second term measures the

effect of the local predictors on the response variable whereas

the third term measures the effect of the regional predictors.

The last term of the equation quantifies the influence due

to joint coupling of the local and regional predictors on the

response variable y. A non-zero value in Gqp, where p, q > 1,

can thus be regarded as evidence for a CSI between the p-th

local and q-th regional predictors.

III. MULTI-LEVEL MULTI-TASK LEARNING (MLMT)

FRAMEWORK

This section presents the proposed MLMT framework for

modeling CSIs in nested geospatial data.

A. Objective Function

The traditional multi-level model formulation shown in

Equation (1) restricts the regression coefficients for all the

regions to lie in the column space of GT . In contrast, our

proposed formulation assumes that the regression coefficients

for all the regions share a common set of latent factors.

Specifically, each wi is decomposed into a product of two



terms: a latent factor matrix U ∈ R
d×m that is shared by

all the regions and a vector vi ∈ R
m that is shared by all

the geospatial objects in region i, where d is the number of

local predictors and m is the number of latent factors. Instead

of regressing wi directly against the regional variables zi,

we regress the latent factor vi against zi, which leads to the

following optimization problem:

min
U,V,R

1

2

r
∑

i=1

‖ yi −XiUvi ‖
2
2 +

ρ1
2

r
∑

i=1

‖ zi −Rvi ‖
2
2

+ ρ2 ‖ U ‖1 +ρ3 ‖ V ‖1 +ρ4 ‖ R ‖1, (4)

where V = [v1v2 · · ·vr] and r is the number of regions.

The first term in Equation (4) corresponds to the squared

loss prediction error of the model while the second term

corresponds to the error in fitting the regional predictors Z

to V. The last 3 terms of the objective function controls the

sparsity of the model by enforcing L1-regularization to the

latent factors U, V, and R. ρ1, ρ2, ρ3, and ρ4 are the user-

specified parameters. In this formulation, U represents the

latent factors for the local predictors while R represents the

latent factors for the regional predictors.

B. Parameter Estimation

We employ the block coordinate descent approach to mini-

mize the objective function given in Equation (4). Since there

are three latent factors (U, V, and R) to be estimated, the

algorithm iteratively estimates one of the three latent factors

while keeping the other two latent factors fixed. The update

formula for each latent factor is given below.

a) Update formula for V: Assuming U and R are

given, the optimization for V is obtained by minimizing the

following objective function:

L(V) = 1
2

∑r

i=1
‖ yi −XiUvi ‖

2
2 +ρ1

2 ‖ ZT −RV ‖2F

+ ρ3 ‖ V ‖1 (5)

Since L(V) is not a smooth function, we solve the optimiza-

tion problem using the proximal gradient descent algorithm.

Specifically, V is iteratively updated by solving the following

problem:

V(s) = proxλ(V
(s−1) − λ∇g(V(s−1))), (6)

where g(V) is the smooth part of the objective function given

in Equation (5) and proxλ(x) is a soft thresholding function

on x defined as follows: proxλ(x) = sign(x) max(x− λ, 0).
The gradient for g(V) is given by: ∇g(vi) = −(XiU)T (yi−
XiUvi) − ρ1R

T (zi − Rvi) which can be plugged into

Equation (6) to obtain the new V(k).

b) Update formula for U: Assuming V and R are given,

the latent factors U are estimated by minimizing the following

objective function:

L(U) =
1

2

∑r

i=1
‖ yi −XiUvi ‖

2
2 +ρ2 ‖ U ‖1 (7)

Once again, since L(U) is not a smooth function, we apply

proximal gradient descent to update U as follows:

U(s) = proxλ(U
(s−1) − λ∇g(U(s−1))) (8)

The gradient of the smooth part of the objective function given

in Equation (7) is ∇g(U) =
∑r

i=1 1m×1(yi−XiUvi)
TXi⊙

vi11×d

c) Update formula for R: Assuming U and V are fixed,

the latent factor R is updated by minimizing the following

terms in the objective function that depend on R:

L(R) =
ρ1
2

‖ ZT −RV ‖2F +ρ4 ‖ R ‖1 (9)

The update formula for R is derived using the proximal

gradient descent approach as follows:

R(s) = proxλ(R
(s−1) − λ▽ g(R(s−1))) (10)

where the gradient of the smooth function ∇g(R) is given by:

∇g(R) = −ρ1(Z
T −RV)VT

The MLMT algorithm updates the model parameters itera-

tively as follows. First, W(0) is initialized by applying existing

methods such as lasso regression or multi-task learning [11]

on the local predictors only. We then factorize W(0) into

a product of U(0) and V(0). The initial value for R(0) is

then obtained by solving Equation (9). After initialization, the

latent factors are iteratively updated using the formula given in

Equations (6), (8), and (10) until one of the the following two

stopping conditions are met: (1) if the maximum number of

iterations is reached, or (2) the value of the objective function

does not change significantly.

C. Cross-scale Interactions (CSIs)

The CSIs identified by the MLMT framework are found

by examining the regression coefficients that relate the local

and regional predictors of the data, analogous to Equation

(3). To illustrate this, we consider a variation of the multi-

level modeling method given in Equation (1) by casting its

formulation into the following optimization problem:

min
G,W

1

2

∑R

i=1
‖ yi −Xiwi ‖

2
2 +

ρ1
2

∑R

i=1
‖ wi −GT zi ‖

2
2

(11)

In this relaxed multi-level modeling approach, the first term of

the objective function penalizes the regression error for each

region while the second term fits the regression coefficient

to the regional predictors. Taking the partial derivative of the

objective function with respect to W and setting it to zero

yields the following solution:

wi = (XT
i Xi+ρ1I)

−1XT
i yi+ρ1(X

T
i Xi+ρ1I)

−1GT zi (12)

Observe that the first term of the regression coefficient is

equivalent to the solution for ridge regression using only the

local predictor variables. The second term, on the other hand,

is a correction factor due to the regional variables. Given a test

example (x∗, zi) from region i, we can predict its response

value as follows:

ŷ = x∗wi = x∗(XT
i Xi + ρ1I)

−1XT
i yi + x∗ĜT

i zi

where Ĝi = ρ1G(XT
i Xi + ρ1I)

−1. The predicted value can

thus be decomposed into a local prediction term and a cross-

scale interactions term involving x∗ and zi. Therefore, Ĝi is



a modified CSI term for the multi-level modeling formulation

given in Equation (11). Using the same strategy, the CSI term

for MLMT is given by the following theorem.

Theorem 1: Let U be the latent factors associated with

the local predictors and R be the latent factors associated

with the regional predictors for the multi-level multi-task

learning framework given in Equation (4). The CSI term for

the formulation is

Ḡi = ρ1R(UTXT
i XiU+ ρ1R

TR)−1UT . (13)

Proof: Ignoring the L1-regularization terms, the objective

function can be re-written as follows:

1

2

∑r

i=1
‖ yi −XiUvi ‖

2
2 +

ρ1
2

‖ ZT −RV ‖2F

Taking the partial derivative of the objective function with

respect to V and setting it to zero yields the following:

vi =

[

(XiU)T (XiU) + ρ1R
TR

]

−1[

UTXT
i yi + ρ1R

T zi

]

Thus, the predicted value for a test example (x∗, zi) can be

computed as follows:

ŷ = x∗Uvi = x∗Syi + x∗ḠT
i zi,

where S = U
[

UTXT
i XiU + ρ1R

TR
]

−1
UTXT

i and Ḡi =
ρ1R(UTXT

i XiU + ρ1R
TR)−1UT . The first term corre-

sponds to the value predicted using the local predictors only

whereas the second term x∗ḠT
i zi corresponds to the CSIs

between the local and regional variables.

At first glance, it appears that the CSI term Ĝi may

vary from one region to another based on the covariance

matrix XT
i Xi. The varying Ĝi is the result of our modeling

assumption that ρ1 is fixed for all the regions (see Equation

(4)). As ρ1 is related to the covariance structure of the noise

levels for all the tasks, it can be calibrated separately for

different regions to obtain a common G. Alternatively, explicit

calibration techniques for multi-task learning, such as those

proposed in [12], [13] can be implemented for this purpose.

However, such techniques require modification to the objective

function, and thus, will be a subject for future research.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed MLMT frame-

work using nested datasets from the lake ecology domain.

A. Datasets

The lake water quality datasets used for our experiments

were obtained from the LAGOS-NE database [7]. We selected

four water quality metrics as response variables, including total

phosphorus (TP), total nitrogen (TN), chlorophyll-a (chla) and

Secchi depth (Secchi). The sampling years for the variables

span from 2000 to 2013. For each lake, we extracted the

sample data from the summer months of June, July, and

August, and took their average values over all the sampling

years to represent the true values for each response variable.

We also selected 13 variables, including lake hydrogeomorphic

variables and land cover/use data from 2001, as the local

predictors. Ecological Drainage Units (EDUs) [14] were used

to define the spatial regions of the study. We extracted 8

regional predictors, including the hydrogeomorphic and land

cover/use variables measured at the coarser EDU-level. All

the local and regional predictors are standardized to have zero

mean and unit standard deviation while the response variables

are log-transformed similar to the approach used in [15]. As

shown in Table I, the number of instances (lakes) in each

region (EDU) with ground truth data available varies from

one response variable to another.

Table I: Summary statistics for 4 lake water quality data.
Response variable TP TN Chla Secchi

# regions (EDUs) 86 83 87 88
# instances (lakes) 4352 1946 5592 5796
# instances/region 1 - 369 1 - 236 1 - 575 1 - 583
mean value 37.58 739.25 17.19 2.78
standard deviation 66.75 1015.99 29.56 1.87

B. Experimental Setup

We compare the performance of our framework against the

following four baseline methods:

• Global-L: This method trains a global, lasso regression

model to the local predictors of the training data from all

regions, while ignoring the regional predictors.

• Global-LR: This method trains a global, lasso regression

model to fit both the local and regional predictors of the

training data from all regions.

• STL: This method applies lasso regression independently to

each region using only the local predictors of the regions.

• MLM: This method applies L1-regularization to the multi-

level modeling formulation (see Equation (1)) to build a

separate model for each region [10]. It assumes that the

regression coefficients for each region are related to the

regional variables via the CSI term, G.

The source code for MLMT and other baselines are available

at https://github.com/shuaiyuan-msu/csi-mlmt.

We employ two metrics to evaluate the performance

of the different methods: root-mean square error (RMSE)

and predicted R-squared. RMSE measures the deviation be-

tween the observed and predicted values, i.e., RMSE =
√

∑N

i=1(yi − ŷi)2/N , where ŷi is the predicted value and N
is the number of predicted instances. The predicted R-squared

measures the variance in the predicted values of the response

variable explained by the model and is calculated as follows:

R2 = 1 −
∑

i
(yi−ŷi)

2

∑
i
(yi−ȳ)2 , where ȳ is the mean of the observed

response variable values.

C. Experimental Results

1) Performance Comparison for All Regions: We parti-

tioned each dataset into separate training and test sets, using

2/3 of the data for training and the remaining 1/3 for testing.

We further divide the training set into two halves, one for

training and the other for validation (hyperparameter tuning).

We repeated this 10 times with different training and test

partitions and reported the average and standard deviation of



Table II: Results for 4 lake water quality data.
TP TN Chla Secchi

GlobalL 0.330±0.003 0.231±0.007 0.426±0.013 0.274±0.019
GlobalLR 0.310±0.004 0.214±0.006 0.413±0.018 0.258±0.022
STL 0.564±0.475 0.546±0.033 0.529±0.195 0.260±0.015
MLM 0.302±0.005 0.210±0.006 0.423±0.044 0.242±0.011
MLMT 0.286±0.004 0.203±0.006 0.381±0.014 0.231±0.010

(a) RMSE results

TP TN Chla Secchi

GlobalL 0.414±0.009 0.515±0.018 0.359±0.031 0.351±0.093
GlobalLR 0.485±0.014 0.584±0.023 0.399±0.044 0.421±0.101
STL 0.095±0.075 0.011±0.035 0.056±0.033 0.275±0.021
MLM 0.511±0.016 0.599±0.020 0.364±0.140 0.494±0.046
MLMT 0.560±0.010 0.624±0.024 0.489±0.030 0.540±0.044

(b) R2 results

RMSE and R2 values in Table II. The results in this table

suggest that single task learning (STL) performs the worst

among all five competing methods on 3 of the 4 datasets.

We also observe that global-L is worse than global-LR, which

suggests the value of incorporating regional predictors into

the predictive modeling framework. Nevertheless, the perfor-

mances of the global models are inferior compared to the

multi-level modeling (MLM) approach since both global-L and

global-LR apply the same model to all the regions. Finally, the

proposed MLMT framework consistently outperforms all the

baseline methods on all four datasets.

Figure 2: Percentage of regions in which MLMT performs

better than baseline methods.

We also compare the number of regions in which MLMT

outperforms the baseline methods. As can be seen from the

results shown in Figure 2, MLMT outperforms all the baseline

methods in more than 64% of the regions in 3 of the 4 datasets.

The percentage increases to over 70% of the regions when

compared against STL. For the TN dataset, which has fewer

instances available, MLMT still performs better than MLM in

more than 55% of the regions.

2) Performance Comparison for Data-Poor Regions: We

also compare the performance of all the methods for regions

with small training set sizes. To identify such regions, we

define a maximum sample size threshold τ and calculate the

RMSE values for the test examples located in regions that have

less than τ training examples. We vary τ from 10 to 150 and

plot the results in Figure 3. The results suggest that MLMT

has consistently lower RMSE compared to all the baseline

(a) TP (b) TN

(c) Chla (d) Secchi

Figure 3: Performance comparison for regions with limited

number of training data.

methods in the data-poor regions. This validates our assertion

that the shared latent factors enable the data-poor regions to

leverage information from other regions in order to construct

more effective models.

3) Cross-scale Interactions: We examine the CSIs found

by MLMT that contribute to the prediction of the lake water

quality variables by visualizing the Ḡi matrices given in

Equation (13). We plot both median pattern and the pattern

that is least correlated with the median pattern. As noted

in Section III-C the variability observed in Ḡi is due to

the covariance matrices observed for different regions. For

TP, there appears to be no significant difference between

the median pattern (Figure 4(a)) and the region with least

correlated CSI pattern (Figure 4(b)). All 86 regions appear

to follow a similar CSI pattern, as evidenced by the high

average correlation (0.991) between the Ḡ matrices of all

the regions. The median CSI pattern for TP can be compared

against previous results reported in the literature. Our analysis

showed that the interaction term in Ḡ for regional agriculture

and local wetland (wooded) is negative, which agrees with

previous findings reported in [4], [6]. The CSI pattern suggests

that when the proportion of agricultural land use in a region is

low, the wetland-TP relationship is positive. In contrast, when

the proportion of agricultural land use in a region is high, the

wetland-TP relationship is negative. An explanation to this is

that in regions with little agriculture, wetlands may be the

source of phosphorus to lakes (positive slope), but when agri-

culture increases, wetland effects on lake phosphorus becomes

negative since the wetlands may be retaining phosphorus from

getting into lakes. The median pattern also indicates there

are other potential CSIs (e.g., negative relationship between

proportion of wetland cover and max depth) affecting TP in

a region. These CSIs can be used to develop new hypotheses

for scientists to further explore and validate.

The median CSI pattern for Secchi depth is shown in Figure

4(c). Many regions have CSI patterns that are very similar to



(a) Median pattern for TP (b) CSIs for Region #11

(c) Median pattern for Secchi (d) CSIs for Region #88

Figure 4: CSIs between local and regional predictors for the

prediction of total phosphorous (a)-(b) and Secchi depth (c)-

(d). The horizontal axis in each plot denotes local predictors

while the vertical axis denotes regional predictors.

Table III: RMSE comparison for original and new regions.
Response variable TP TN Chla Secchi

Original regions (EDUs) 0.564 0.546 0.529 0.260
New regions 0.403 0.519 0.487 0.267

the median pattern. However, there are a few regions with CSI

patterns that are considerably different than the median pattern.

For example, Figure 4(d) shows the CSI pattern for region

#88. For this region, some relationships such as those between

regional base flow and local max depth and between regional

wetland and local max depth have the opposite sign compared

to the relationships shown by the median CSI pattern.

4) Comparison Between the New and Original Regions:

Since the original regions (EDUs) were created for other

purposes, we hypothesized that a better set of regions can

be derived for predictive modeling using the latent factors

associated with the lakes. To do this, we first compute the

latent feature representation of each lake, which is given by

XU. We then apply k-means clustering to generate the new set

of regions. For a fair comparison, we set the number of clusters

to be the same as the number of regions (EDUs) in the original

data. A lasso regression model is independently trained for

each new region using only their local predictor variables.

Similarly, we also train lasso regression models for each of

the original regions. We then compare the performances of

the models for the new regions against those for the original

regions. Table III summarizes their RMSE values. The results

in this table suggest that the local models trained on the new

regions have a lower RMSE compared to the local models

trained on the original (EDU) regions in 3 out of the 4 datasets.

This supports our hypothesis that the new regions created by

MLMT can be used to build more accurate local prediction

models compared to the original regions.

V. CONCLUSIONS

This paper presents a novel framework called MLMT for

modeling nested geospatial data. The framework jointly trains

a set of models that can incorporate both the local and regional

predictors into a unified formulation. We also show how cross-

scale interactions can be derived using the proposed frame-

work. Experimental results suggest that MLMT outperforms

four other baseline methods on the lake water quality datasets

evaluated in this study. The latent factors of MLMT can also be

used to create a new set of regions for building more accurate

local prediction models compared to the original regions that

were defined a priori from the domain.
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