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Does freshwater connectivity influence phosphorus retention in lakes?
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Abstract
Lake water residence time and depth are known to be strong predictors of phosphorus (P) retention. How-

ever, there is substantial variation in P retention among lakes with the same depth and residence time. One
potential explanatory factor for this variation is differences in freshwater connectivity of lakes (i.e., the type and
amount of freshwater connections to a lake), which can influence watershed P trapping or the particulate load
fraction of P delivered to lakes via stream connections. To examine the relationship between P retention and
connectivity, we quantified several different measures of connectivity including those that reflect downstream
transport of material (sediment, water, and nutrients) within lake-stream networks (lake-stream-based metrics)
as well as those that reflect transport of material from hillslope and riparian areas adjacent to watershed stream
networks (stream-based metrics). Because it is not always clear what spatial extent is appropriate for determining
functional differences in connectivity among lakes, we compared connectivity metrics at two important spatial
extents: the lake subwatershed extent and the lake watershed extent. We found that variation in P retention
among lakes was more strongly associated with connectivity metrics measured at the broader lake watershed
extent rather than metrics measured at the finer lake subwatershed extent. Our results suggest that both connec-
tivity between lakes and streams as well as connectivity of lakes and their terrestrial watersheds influence P
retention.

Lake phosphorus (P) retention is an important characteris-
tic of lakes that can be used to predict P concentrations and to
evaluate lake sensitivity to nutrient loading and eutrophica-
tion (Alexander et al. 2008; Milstead et al. 2013). Specifically,
P retention is an integrated measure of internal P losses
including permanent sedimentation, biological uptake, and
other processes that remove P from the water column (Chapra
2008). P retention has been well studied in lakes because P
determines lake trophic status and downstream watershed
yields (i.e., export to terminal lakes and coastal estuaries).
Although previous studies have shown that lake P retention
is related to water residence time (Vollenweider 1975),
large uncertainties exist around this relationship (Brett and
Benjamin 2007; Milstead et al. 2013). These uncertainties can
be large in lakes with intermediate water residence times, par-
ticularly compared to lakes with either extremely short or
extremely long water residence times (Supporting Information
Appendix Fig. A1). For example, lakes with very long water
residence times (on the order of a decade or longer) have com-
plete or near complete P retention, while lakes with very short
water residence times (on the order of days) have almost no P
retention (Brett and Benjamin 2007). The reason for the

substantial uncertainty in lake P retention between these two
extremes may be that predicting retention solely on the basis
of water residence time does not capture many of the other
factors and processes that affect P retention (Fig. 1).

One well-studied factor that has been shown to influence
lake P retention is lake depth through its influence on internal
processing of P loads (Vollenweider 1975; Søndergaard et al.
2013). The mechanism for such an influence is that lake depth
controls thermal stratification and material resuspension from
the benthos. As a result, shallow lakes have a tendency to mix
throughout the summer causing redistribution of sedimented
phosphorus throughout the mixed zone (Fee et al. 1996). This
mixing and redistribution of sedimented P often leads to tigh-
ter benthic-pelagic coupling and increased P recycling (Cha
et al. 2013). Thus, depth is one example of a lake characteristic
that is likely to influence P retention in concert with water res-
idence time (Cheng et al. 2010).

A primary tool for evaluating the influence of specific lake
characteristics, like lake depth, on P retention is statistical
phosphorus retention modeling. Although the form of such
models is variable, many models estimate P retention as a
function of water residence time and a parameter k that repre-
sents in-lake P decay (Vollenweider 1975; Chapra 2008). Many
studies treat k as a constant global parameter (i.e., it has the
same value for all lakes), which may be valid only for studies
that consider small numbers of lakes in a limited geographic
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region, with similar characteristics. Few studies have modeled
different k values based on lake or watershed characteristics,
despite the many differences among lakes that likely influence
their ability to process P (Cheng et al. 2010).

For example, there is evidence that the relative proportion
of particulate vs. dissolved P loads (hereafter, particulate load
fraction), influences P retention in stream and wetland ecosys-
tems (Kronvang 1992; Russell et al. 1998; Vanni et al. 2001;
Jarvie et al. 2011). However, evidence for particulate load frac-
tion controls on P retention in lakes remains limited because
of difficulties in tracking the fate of particulate loads after
entering a lake (Dillon and Molot 1996; Brett and Benjamin
2007). Therefore, there is potential to further study particulate
load fraction using proxies that may be closely related to it,
such as the relative amounts of point and nonpoint nutrient
sources to a lake subwatershed.

In general, point source inputs to lakes are associated with
increased dissolved P loads (Kronvang 1992; Russell et al.
1998), whereas nonpoint source inputs to lakes, such as those
in lake watersheds with high agricultural land-use cover, typi-
cally have higher particulate P loads (Sharpley et al. 1994;
Carpenter et al. 1998). Exceptions to these generalizations
have been observed in areas where increased dissolved P load-
ing occurs not as a result of point source nutrient inputs but
rather as a result of nonpoint source runoff due to P saturated
soils or legacy P release (Bennett and Carpenter 2001; Powers
et al. 2015). Despite the fact that particulate loads are usually
related to nonpoint source inputs, the fraction of nonpoint
source inputs that are in particulate form is highly variable
and may depend on intra-annual flow variations as well as

watershed erosion characteristics (Jarvie et al. 2011). Further-
more, quantifying nonpoint source inputs at broad spatial
scales is not commonly done due to logistical and sampling
constraints (Guy et al. 1994). As a result, studies often infer
the relative amounts of particulate and dissolved loading from
other available proxy data such as land-use cover (Ellison and
Brett 2006; Djodjic and Markensten 2018).

Apart from land-use cover, another potential proxy for partic-
ulate load fraction entering lakes is the type and amount of fresh-
water connections to a lake, which we argue is easier to measure
than other proxies, and could help to improve estimates of lake P
retention, especially in lakes for which we lack P loading data
(Fig. 1). Although freshwater connectivity may be easy to mea-
sure from a logistical standpoint, there are still many ways to
measure connectivity that likely represent different mechanisms
of water and material flow (Fig. 2). We broadly define and study
two types of freshwater connectivity that correspond to either
stream-based metrics or lake-stream-based metrics. First, lake-
stream-based metrics measure the connections between a lake,
other upstream lakes, and streams in their watershed. This type
of connectivity can be quantified by measuring the closest dis-
tance to an upstream stream-connected lake (Fig. 2A), or by mea-
suring the total upstream lake area (Fig. 2B). Second, stream-
based metrics measure the connections between inflowing
streams and their surrounding land whereby increasing stream
connections lead to a greater abundance of land–water interfaces
and greater transport of material from hillslope and riparian areas
adjacent to watershed stream networks (Fig. 2C–E).

In addition to variation among connectivity metrics and
connectivity metric types, it is also not always clear which
spatial extent is appropriate for determining functional differ-
ences in connectivity among lakes (Soranno et al. 2015). Such
information is needed to inform the design of regulatory
frameworks balancing controls on cumulative nutrient trans-
port along stream networks and controls on localized nutrient
transport (Carpenter et al. 1998; Alexander et al. 2008; With-
ers and Jarvie 2008). To test the importance of different spatial
extents, we examined connectivity metrics measured for both
the lake subwatershed extent and the lake watershed extent
(Fig. 3). Here, the lake subwatershed extent includes the ele-
ments of the immediate watershed in the direct drainage of a
lake whereas the lake watershed extent includes all of the ele-
ments in the entirety of the lake-stream network up to and
including headwater streams (Fig. 3).

We propose that measures of freshwater connectivity are
related to P retention in the following ways. First, some connec-
tivity metrics reflect the proximity of terrestrial watershed areas
to the stream network (Covino 2017). For example, lakes with a
high watershed stream density should have increased particu-
late matter loading from terrestrial hillslope and riparian areas
adjacent to watershed stream networks because particulate mat-
ter export is limited by overland distance (Gomi et al. 2002).
Second, connectivity metrics can reflect the configuration of
lakes within lake-stream networks. For example, lakes with
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Fig. 1. Major lake and watershed factors affecting lake P retention.
Shaded symbols indicate factors typically considered in P retention models
whereas open symbols indicate additional factors specific to the present
study. Dashed lines indicate inferred relationships, which cannot be tested
with available data, but are otherwise discussed herein.
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upstream lakes in close proximity may receive P loads that have
previously undergone in-lake processing whereby labile frac-
tions have already been trapped in upstream lakes (Cardille
et al. 2007). In contrast, lakes with more distant upstream lakes
are more likely to receive the more labile fractions from terres-
trial runoff that serve to increase P retention as opposed to
receiving the more recalcitrant fractions that are resistant to
biological uptake and are thus not retained. Although some
connectivity metrics have an intuitive relation to P retention, it
is not clear which specific measures of freshwater connectivity
are important for transport of particulate matter. Therefore, our
study is designed to examine and compare which measures of
connectivity are more related to lake P retention.

We addressed the above knowledge gaps by quantifying
and comparing a range of freshwater connectivity measures at
multiple spatial extents. Taken together, our suite of connec-
tivity metrics reflect both freshwater connectivity in the direct
drainage of lakes (i.e., the lake subwatershed extent) and fresh-
water connectivity of the entirety of the stream network up to
and including watershed headwater areas (i.e., the lake water-
shed extent, Fig. 3). Our motivation for measuring connectiv-
ity so many ways is that it is easy to measure connectivity of
lakes with small watersheds situated at the beginning of lake
chains but it is much more challenging to identify the type
and extent of connectivity in larger, more complex lake net-
works. Another reason we examined relationships between P
retention, multiple measures of connectivity, and multiple

Fig. 2. Connectivity metric definitions along with simplified examples of high and low value lakes that might arise from a binary classification. Both lake-
stream-based and stream-based metrics are associated with restrictions on in-stream transport whereas stream-based metrics are associated with differ-
ences in transport of P from terrestrial runoff to streams. We use the term “first order stream” to describe a headwater stream. [Color figure can be
viewed at wileyonlinelibrary.com]
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spatial extents is that many commonly used connectivity met-
rics merely reflect watershed size (spatial extent) rather than
types of material transport or particulate load fraction
(Leibowitz et al. 2018). Although lakes in larger watersheds
have both a greater potential area from which to source partic-
ulate runoff and total phosphorus export from the watershed,
we expect that delivery of sediment-bound phosphorus is
dependent on connectivity-mediated trapping in the
upstream watershed (Prairie and Kalff 1986).

We asked two questions in this study: (1) Which measures
of freshwater connectivity influence lake phosphorus reten-
tion? (2) What spatial extent of connectivity most strongly
influences P retention? To answer these questions, we fit sta-
tistical P retention models in a Bayesian hierarchical frame-
work following Cheng et al. (2010) where two separate values
of the k processing parameter were estimated for lakes with
either high or low values of each connectivity metric. Using
this approach, higher k values for a specific lake connectivity
class indicates more extensive in-lake processing and higher P
retention. We applied this model to a dataset of 129 lakes
across a wide range of hydrologic, geologic, and climatic set-
tings. We fit separate models using each combination of con-
nectivity metric and spatial extent in an effort to determine
whether P retention is more strongly controlled at the lake
subwatershed extent or the lake watershed extent.

Methods
Dataset description

We used data on P retention, maximum depth, and water
residence time from 129 lakes in the National Eutrophication

Survey (USEPA 1975; Stachelek et al. 2018). Mean annual P
loading, P discharge, and P retention values in the National
Eutrophication Survey (NES) dataset were calculated based on
monthly sampling for P in tributary and outlet discharge
points as well as any municipal waste discharges from 1972 to
1975. Here, P retention is a unitless value representing the
fraction of incoming P loads. Sampling frequency for water
discharge and residence time varied among lakes but details of
these variations were not provided in the source dataset
(USEPA 1975; Stachelek et al. 2018). Estimates of water dis-
charge and residence time in the NES dataset represent nor-
malized mean flow estimates expected to occur during a
period of average precipitation and hydrology (USEPA 1975).
Water residence time for our study lakes ranged from 1 week
to 17 yr with an interquartile range of 3 months to 1.8 yr
while P retention ranged from 0.06 to 0.99 with an interquar-
tile range of 0.24 to 0.59 (Table 1).

We supplemented the NES dataset with boundaries for lake
subwatersheds, as well as estimates of stream density, upstream
lake area, upstream lake connection(s), baseflow (an index of
groundwater inputs), land-use cover, and other water quality
measurements from the LAGOS-NE dataset (Table 1; Soranno
et al. 2017). Our study lakes encompassed a wide range of land-
use cover types and nutrient levels (Table 1). Although, lake
subwatersheds were variable with respect to agricultural land-
use cover, we did not observe a strong relationship with lake P
retention (Supporting Information Appendix Fig. A2). On aver-
age, the water quality (total phosphorus, chlorophyll concen-
tration, and Secchi depth) of the lakes in our study are similar
to other U.S. lakes as measured by the stratified random sam-
pling design of the National Lakes Assessment (NLA) lake
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Fig. 3. Diagram showing the lake subwatershed and lake watershed of three lakes. Here the lake subwatershed of lake 3 encompasses the lake subwatershed of
lake 2 because it is smaller than 10 ha but it does not encompass the lake subwatershed of lake 1 because it has an area of at least 10 ha. In contrast to the lake
subwatershed boundaries, the lake watershed boundaries extend to the headwaters of the lake chain. [Color figure can be viewed at wileyonlinelibrary.com]
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population (USEPA 2016). However, our lakes are substantially
larger and deeper than most NLA lakes (Supporting Informa-
tion Appendix Fig. A3).

We restricted the lakes in the study to those located within
the footprint of LAGOS-NE which includes lakes located in
17 northeastern and midwestern U.S. states (Soranno et al.
2017). We excluded lakes from our analysis if they had a sur-
face area of greater than 1000 km2 or a surface area of less
than 0.1 km2. We also excluded lakes if they had a maximum
depth of greater than 70 m, lacked upstream surface water
connections, or had one of the North American Great Lakes in
its upstream watershed. A total of 129 out of 236 NES lakes
met each of these selection criteria.

Connectivity metrics and spatial extents
In addition to data from the NES and LAGOS-NE datasets,

we calculated several connectivity metrics that we expected
would be related to lake P retention (Fig. 2). Some of these met-
rics were stream-based with the goal of capturing aspects of the
configuration of each lakes’ upstream surface water network
(Fig. 2C,D). In particular, we chose metrics that would quantita-
tively approximate network complexity under the assumption
that highly complex networks are also low connectivity net-
works. This assumption is supported by the findings of stream
network simulations where increased network complexity leads
to increased network resistance and ultimately decreases in net-
work connectivity (Rodriguez-Iturbe and Rinaldo 2001). In
addition to stream-based metrics, we calculated lake-stream-
based metrics that we expected would reflect the likelihood of P
trapping in upstream lakes prior to arriving at a given focal lake
via tributary flow (Fig. 2A,B). A simple metric that captures this
likelihood is the presence (or absence) of an upstream lake
(greater than 4 ha) which we define as “lake connection”
(Fergus et al. 2017). In addition to lake connection, we calcu-
lated related metrics such as total upstream lake area and the
network distance to the closest upstream lake.

To examine the importance of spatial extent relative to our
connectivity metrics, we calculated each metric at multiple

extents (Fig. 3). First, we calculated connectivity metrics at the
scale of individual lake subwatersheds. We defined a lake sub-
watershed as the area draining into a particular lake exclusive
of any upstream areas that drain into a lake greater than or
equal to 10 ha (0.1 km2). Next, we calculated connectivity
metrics at the scale of entire upstream lake networks (lake
watershed extent). We defined a lake watershed as the area
draining into any part of the upstream network irrespective of
the presence or absence of upstream lakes (Fig. 3).

All connectivity metrics were calculated using the high-
resolution National Hydrography Dataset (NHD) as a primary
input (USGS 2018). Average link length was calculated as the
total stream length in a given watershed divided by the num-
ber of stream reaches after dissolving (removing) any network
points that do not occur at a stream junction. Stream density
was calculated as the length of all streams in the watershed
(minus artificial lines through lakes) expressed in units of
meters per hectare. Upstream lake area was calculated as the
sum of the lake area in the upstream watershed expressed in
square meters. Stream order ratio was defined as the number
of headwater (first-order) streams in the upstream watershed
of the focal lake divided by the total number of higher order
(> 1) streams (Barbera and Rosso 1989). Closest distance to an
upstream lake was defined as the shortest path-distance (rather
than the straight-line distance) to a lake upstream from the
focal lake.

We calculated all connectivity metrics and lake watershed
extents using the streamnet and nhdR R packages, respectively
(Stachelek 2018a,b). The algorithms in the streamnet package
use the sf R package (Pebesma 2018) as well as the v.net and v.
stream.order modules (Jasiewicz and Metz 2011) included in
GRASS GIS (GRASS Development Team 2017). All processed
connectivity data and code are available at https://doi.org/10.
5281/zenodo.2554212.

Modeling lake P retention
We modeled lake total phosphorus retention (hereafter, P

retention) using the Vollenweider equation that models P

Table 1. Minimum, median, maximum, and interquartile range of selected characteristics of the study lakes (N = 129).

Minimum Median Maximum IQR

Total phosphorus (ug/L) 4 43 1380 20–111

Chlorophyll (ug/L) 1 12 381 6–21

Secchi depth (m) 0.2 1.5 19.3 0.9–2.4

P loading (kg/yr) 204 6041 418,485 2035–24,370

P retention 0.06 0.46 0.99 0.24–0.59

Residence time (yr) 0.03 0.63 17.4 0.2–1.8

Lake area (km2) 0.25 6.54 453.26 2.93–21.88

Maximum depth (m) 1.1 12.9 96.3 9.2–21.3

Agricultural landuse (%) 0.11 53.27 94.74 17.68–74.05

Subwatershed area (km2) 5 88 4018 21–410

Watershed area (km2) 120 143 18,641 54–550
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retention as a function of water residence time and a parame-
ter (k) conceptually representing in-lake P decay (Vollenweider
1975; Chapra 2008). Although there are several variants of
this basic equation, we selected a two-parameter form (Eq. 1)
that has been shown to have good performance in multiple
cross-sectional studies (Brett and Benjamin 2007; Cheng
et al. 2010):

Ri = 1−
1

1+ ktxi
ð1Þ

where Ri is P retention as a fraction of P inputs, τ is water resi-
dence time, k is a unitless parameter representing in-lake P
decay, and x is a unitless parameter representing P export via
hydrologic flushing. Here, higher values of k are associated
with greater integrated P losses from sedimentation and bio-
logical uptake resulting in greater P retention. Note that Eq. 1
does not include a recycling term. Therefore, our results repre-
sent net P retention (as opposed to gross P retention) under a
steady state assumption where lakes are at equilibrium with
respect to recycling (Vollenweider 1975). Note that although
some forms of the Vollenweider equation use P loading as a
predictor variable, it does not appear in Eq. 1. The reason for
this is twofold. First, estimates of P loading are more difficult
to obtain than estimates of water residence time and our aim
was to develop a model than can be widely applied to lakes
for which we lack detailed data on P loading. Second, loading
based model forms have been shown to be mathematically
equivalent to water residence time based model forms (Brett
and Benjamin 2007).

We used the model described by Eq. 1 to compare lake P
retention in lakes with different connectivity by fitting the
model in two ways. First, we modeled the overall relationship
between P retention and water residence time for all lakes in
our dataset (global model). Second, we fit hierarchical versions
of Eq. 1 where k was modeled separately (kj) as a function of a
binary subpopulation indicator gi denoting membership in
one of two lake classes formed on the basis of specific connec-
tivity metrics (or lake depth) and specific spatial extents:

Ri = 1−
1

1+ kjtxi
ð2Þ

kj = gi

where greater differences in k between the two groups indicate
greater support for a connectivity effect on P retention. Prior
to model fitting, we examined the bivariate relationships
between each connectivity metric, water residence time, P
loading, and other factors related to P retention using Pear-
son’s correlation coefficients. The purpose of this exercise was
twofold, to determine the potential for collinearity among
any of the variables in Eq. 2 and to identify any relationships
between P retention, water residence time, and other

watershed and lake characteristics that were not included in
our model. As only one connectivity metric was used to define
g for each model we did not use the results of this exercise to
exclude variables from further investigation. We quantified
the relative support for an effect of each connectivity metric
on P retention in more detail by calculating the difference in
the median value of the P decay parameter k between groups
(i.e., Δk). We used these median k values along with median
estimates of x to determine how differences in k translated to
differences in P retention (Eq. 2). We judged significance by
whether or not differences in group-wise P retention were
greater than the measurement precision of P retention
(> 0.01).

We fit all models in a Bayesian framework using the non-
linear extension to the brms package to interface with the Stan
statistical program (Burkner 2017; Stan Development Team
2017). In both models, we set a semi-informative prior on
k and x of N(1.3, 0.1) and N(0.45, 0.1), respectively. These
priors were based on the confidence intervals presented in
Brett and Benjamin (2007) and qualitatively matched those
used by Cheng et al. (2010). We used the default settings of
brms and rstan to generate posterior estimates using four
chains of 4000 iterations each with no thinning and initial
parameter values drawn from a uniform distribution bounded
between −2 and 2. We also used the brms package for model
evaluation by computing a Bayesian R2 following the method
of Gelman et al. (2017).

Lake connectivity classes
Our lake connectivity classes were formed by dividing the

lake dataset into two classes for each connectivity metric based
on the bivariate relationship between each metric and P reten-
tion. Prior studies have used a similar binary splitting
approach to examine the effect of various exogenous factors
on lake P retention (Cheng et al. 2010; Shimoda and
Arhonditsis 2015). We determined splitting criteria for each
metric from the results of a random forest procedure incorpo-
rating conditional inference trees (ctree, Hothorn and Zeileis
2015). This procedure creates binary splits of the independent
variables (i.e., each of the connectivity metrics), which are
recursively repeated to find the split that maximizes associa-
tion with the dependent variable (P retention). The advantage
of the ctree technique over the more typical classification-
regression tree (CART) technique is that tree growth stopping
rules are prespecified (Hothorn et al. 2006). As a result, some
of subjectivity associated with post hoc tree pruning is
avoided.

Results
Interactions between connectivity, hydrology, and P
loading

We examined the bivariate relationships between connec-
tivity, water residence time, P loading and other factors related
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to P retention to determine the potential for strong relation-
ships among any of the variables which were not accounted
for by our model structure (Eq. 2, Fig. 4). We found evidence
for some relationships among these variables, but none that
suggest either redundancy among connectivity metrics or that
otherwise limit our ability to infer relationships with P reten-
tion (Fig. 4). For example, the Pearson correlation (r) between
water residence time and stream density, which is implicitly
accounted for in our model structure, was 0.29 (p < 0.05). In
contrast, the correlation between water residence time and
upstream lake area, which is unaccounted for in our model
structure, was only 0.10 (p > 0.05). Note that interactions
between connectivity metrics and water residence time are
accounted for in our hierarchical model structure because
Eq. 2 uses a global coefficient x for water residence time that is
estimated separately from the hierarchical and connectivity-
dependent P decay coefficient k. This is conceptually similar
to fitting the k-connectivity-P retention relationship to the
residuals of the water residence time to P retention relation-
ship. Perhaps surprisingly, we did not observe strong correla-
tions between P loading and water residence time (r = 0.13,
p > 0.05) or between lake depth and most connectivity metrics
(r < 0.17). This suggests that our P retention results are not
confounded by variations in lake depth, by interactions

between connectivity and P loading, or by interactions
between water residence time and P loading.

A secondary purpose of examining the bivariate relation-
ships between connectivity, water residence time, P loading
and other factors related to P retention was to determine if
our connectivity metrics were related to each other such that
they provide similar information. With the exception of
stream density and baseflow (r = −0.52, p < 0.05), correla-
tions among connectivity metrics were low and of a similar
magnitude as the correlations between connectivity metrics
and water residence time (0.10 < r < 0.29). The strongest cor-
relation between any connectivity metric or lake characteris-
tic was upstream lake area and lake watershed area
(r = 0.77, p < 0.05).

We observed notably strong correlations between P loading
and several lake characteristics not accounted for in Eq. 2.
These include the correlation between P loading and lake
watershed area (r = 0.62, p < 0.05) as well as the correlation
between P loading and lake subwatershed area (r = 0.76,
p < 0.05). In addition, the correlation between P loading and
upstream lake area was quite strong (r = 0.52, p < 0.05).
Despite strong correlations between P loading, watershed area,
and upstream lake area, we did not observe a strong correla-
tion between P loading and P retention (r = 0.15, p > 0.05).
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Notably, this correlation was much weaker than the correla-
tion between water residence time and P retention (r = 0.44,
p > 0.05). Our observation that the correlation between P
retention and P loading was not appreciably stronger than cor-
relations between P retention and our connectivity metrics
suggests that our estimates of connectivity metric effects on P
retention are not confounded by interactions between water
residence time and P loading.

Although we did not observe strong correlations among
connectivity metrics, we found that lakes with similar connec-
tivity metric values, were spatially clustered (Fig. 5). In particu-
lar, we found that lakes were concentrated in either the
southern or northern portions of our study area depending on
their connectivity metric value (Fig. 5). This observation is
consistent with the findings of Fergus et al. (2017) that lakes

in the northern portion of our study area have distinct fresh-
water connectivity as compared to lakes in the southern por-
tion of our study area.

Effects of connectivity on P retention
We found that freshwater connectivity metrics were associ-

ated with lake P retention (Figs. 6–7). Across all connectivity
metrics except stream order ratio, we found that the P decay
coefficient k and thus P retention was associated with whether
a lake had a high or low value of each connectivity metric.
These findings matched our expectations in several ways. Most
notably, lakes with shorter average link lengths had higher P
retention relative to lakes with longer average link lengths. In
addition, lakes with less upstream lake area had higher P reten-
tion than lakes with more upstream lake area (Figs. 6–7).

A SWS

B WS

Average 

 link length

Closest

 lake distance

Stream

 density

Baseflow Stream

 order ratio

Average 

 link length

Closest

 lake distance

Stream

 density

Upstream

 lake area

Baseflow Stream

 order ratio

Fig. 5. Locations of lakes of with different connectivity metric values at the (A) lake subwatershed and (B) lake watershed extent. Low valued lakes are
represented by lighter (green) symbols, and high values lakes are represented by darker (purple) symbols. WS is the lake watershed extent. SWS is the lake
subwatershed extent. Connectivity metrics are defined in Fig. 2. [Color figure can be viewed at wileyonlinelibrary.com]
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We found that some connectivity metrics were more
strongly related to P retention than others. For example, the
model R2 for network average link length was higher
(R2 = 0.41) than the global model (R2 = 0.34). For other con-
nectivity metrics, such as network stream order ratio,
goodness-of-fit (R2 = 0.36) was very similar to the global
model (R2 = 0.34). Model fit for other connectivity metrics
was in between these two extremes (0.36 < R2 < 0.41). Overall,
we found that all hierarchical models had at least a marginally
better fit to the water residence time vs. P retention relation-
ship than a global model which does not account for connec-
tivity (Fig. 6). Although we found a discernable effect of
connectivity metrics on lake P retention, the somewhat mod-
est improvements in model fit may be due to the fact that
water residence time remains a dominant effect even after
accounting for freshwater connectivity.

Comparison across connectivity metrics and spatial extent
Differences in P retention among lakes with different con-

nectivity metric values was reflected in differences among con-
nectivity class-specific values of the P decay parameter
k (Fig. 7). The connectivity metric that had the most effect on
k was average link length (Table 2). For instance, hierarchical
models fit with the average link length metric had a median
effect size of 0.23 and 0.05 for k and P retention respectively
(Table 2), which means that for this metric, lakes with shorter
average link lengths retained 4.7–4.9% more P than lakes with
longer average link lengths. The influence of lake-stream-
based connectivity metrics on lake P retention was similar to
stream-based connectivity metrics (Fig. 7). This suggests that
both lake-stream-based connectivity between lakes and
streams as well as stream-based connectivity of lakes and their
terrestrial watersheds influence P retention (Fig. 2).

We found that connectivity metrics measured at the lake
watershed extent were more strongly associated with P reten-
tion than metrics measured at the lake subwatershed extent
(Table 2; Fig. 7). Specifically, the metrics that had the strongest
association with P retention such as average link length (Δk =
0.23), closest lake distance (Δk = 0.22), and stream density
(Δk = 0.20) also had a stronger association at the lake water-
shed extent rather than at the lake subwatershed extent
(Table 2; Fig. 7). An exception to this pattern was observed
with the baseflow connectivity metric where although greater
differences at the lake subwatershed extent were more
strongly associated with P retention, the sign of the effect was
variable depending on measurement extent (i.e., the value of
the P decay parameter was positively related to connectivity
metric values at the subwatershed extent but was negatively
related at the watershed extent). For several connectivity met-
rics, we judged that differences in P decay among lakes with
either low or high connectivity metric values were not signifi-
cant because they translated to differences in P retention that
were less than measurement precision (Table 2).

Discussion
Although prior studies have found that lake P retention

is related to water residence time (Brett and Benjamin 2008,
Vollenweider 1975; Cheng et al. 2010), there is substantial
variation around this relationship, particularly at intermediate
water residence times. We found that some of this remaining
variation could be explained using a hierarchical modeling
framework that accounts for differences in freshwater connec-
tivity among lakes. Although we found that the magnitude of
this effect depends on the specific connectivity metric, our
results are consistent with the findings of previous studies
showing that connectivity metrics are associated with
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Fig. 6. Residence time (yr) vs. P retention for the NES dataset and the global model fit to the data (R2 = 0.34, n = 129) where the solid line and shaded
interval represents the median and central 95% interval estimates respectively (A). As above except that solid lines and shaded interval estimates repre-
sent hierarchical model fits to the data (R2 = 0.41, n = 129) based on watershed average link length, which had the strongest association of any connec-
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[1 + 1.32 τ0.4]) and Rp = 1 − (1 / [1 + 1.08 τ0.4]), respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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differences in lake carbon input fluxes and differences in lake
nitrogen output fluxes (Cardille et al. 2007; Schmadel et al.
2018). We also found important differences in the association
between connectivity metrics and P retention at different
measurement extents. Specifically, we found that P retention
was more strongly associated with connectivity measured at
the broader lake watershed extent rather than connectivity
measured at the finer lake subwatershed extent.

Connectivity and P retention
We found that differences in P retention among lake con-

nectivity classes was influenced by specific connectivity met-
rics including average link length, closest lake distance, and
stream density (Table 2; Fig. 7). Indeed, these metrics were
more strongly associated with P retention than covariates typi-
cally used in statistical P retention models (e.g., lake depth,
Fig. 1). Note that we were able to examine the influence of
specific metrics as separate effects apart from water residence
time because our model structure treats them as hierarchical
coefficients on the P decay parameter k. As a result, although
water residence time remains the dominant effect on lake P
retention, we were able to estimate the specific influence of
each metric in a way that is not possible using integrated
water residence time and connectivity metrics such as water-
shed transport capacity (Fraterrigo and Downing 2008).

Several of the connectivity metrics that were most strongly
associated with P retention were weakly correlated with water-
shed size (Fig. 4). The weak nature of these correlations are

consistent with the mixed results of prior studies linking
watershed size to lake processes. For example, Zimmer and
McGlynn (2018) found that carbon export was related to
watershed size, but Smith et al. (2003) found that the nitrogen
flux was not strongly related to watershed size. Taken
together, our results and the results of prior studies suggest
that watershed size and lake depth alone may not always
reflect functional differences in potential material transport.
One consequence of a correlation between connectivity met-
rics and watershed size is that metrics derived from watershed
size, such as catchment to lake area ratio, are also likely to be
associated with connectivity. Catchment to lake area ratio in
particular has been previously used as an approximation or
proxy of water residence time (Rasmussen et al. 1989; Sobek
et al. 2007). Although our results differ from those of Soranno
et al. (2015) who found that the presence of an upstream lake
connection was not strongly associated with catchment to
lake area ratio, our results suggest that catchment to lake area
ratio likely incorporates some connectivity information and
caution is needed before using it as a proxy for water
residence time.

Another lake characteristic that was strongly related to
watershed size was P loading. In particular, positive correla-
tions between P loading and watershed size are consistent
with the idea that lakes in larger watersheds receive greater P
loading (Prairie and Kalff 1986). A related observation is that
the correlation between P loading and upstream lake area was
positive. This can be explained by the fact that larger

Global

Stream order ratio*

Baseflow*

Max depth*

Upstream lake area*

Lake connection*

Stream density

Closest lake distance

Link length*
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Lake Subwatershed

Global

Stream order ratio

Baseflow*

Max depth*

Upstream lake area*

Lake connection*

Stream density*

Closest lake distance*

Link length*

0.8 1.0 1.2 1.4 1.6

k Value
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Fig. 7. Distribution of the k parameter from Eq. 1 in lakes of differing connectivity, depth, or baseflow at the (A) lake subwatershed and (B) lake water-
shed extents. Lighter (green) lines indicate lakes with lower connectivity metrics values while darker (purple) lines indicate lakes with higher connectivity
metrics values. For lake connection, lighter colored lines indicate lakes without upstream lakes. Connectivity metrics are defined in Fig. 2. Labels associ-
ated with models where differences in k translated to significant differences in P retention are bolded and starred. [Color figure can be viewed at
wileyonlinelibrary.com]
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watersheds often have greater numbers of lakes nested within
them (Zhang et al. 2012). Another notable result is that we
observed a weaker correlation between P loading and water-
shed area relative to the correlation between P loading and
subwatershed area. One explanation for this result is that
land-use cover at the finer lake subwatershed extent has more
of an influence on P loading than land-use cover at the
broader lake watershed extent (Soranno et al. 2015).

Relative importance of connectivity spatial extent
One of the challenges in quantifying the effect of freshwa-

ter connectivity on lake P retention is that it is not always
known what spatial extent of the watershed is functionally
connected to a lake. We found that connectivity at the
broader lake watershed extent rather than connectivity at the
finer lake subwatershed extent was more strongly associated
with differences in lake P retention. In addition, we found
that individual characteristics such as lake depth (or more dis-
crete measures of connectivity such as the presence of an

upstream lake) were more strongly associated with P retention
than any of the other connectivity metrics measured at the
lake subwatershed extent (Table 2). These findings contrast
with Soranno et al. (2015) who examined the association
between lake nutrient concentrations (as opposed to reten-
tion) and land-use measured at varying spatial extents and
found that measurements at the finer lake subwatershed
extent rather than measurements at the broader lake water-
shed extent were more strongly associated with lake nutrient
concentrations. One explanation for the difference between
our results and those of Soranno et al. (2015) is that connec-
tivity metrics may reflect long-range watershed processes to a
greater degree than land-use cover. An alternative explanation
is that controls of lake P retention may differ compared to
controls on lake P concentration.

How connectivity metrics may influence P retention
Prior studies at regional extents have shown that P reten-

tion in streams and rivers is largely determined by the fate of
the particulate load fraction (Kronvang 1992; Cushing et al.
1993; Russell et al. 1998; Vanni et al. 2001). For instance, the
findings of Jarvie et al. (2011) show that riverine P loads can
be controlled by nonpoint-source P delivery of particulate
P. Therefore, it stands to reason that P retention in lakes may
also be largely determined by the fate of the particulate load
fraction. However, in the context of our broad-scale study it is
difficult to examine this relationship because although we
have estimates of nonpoint vs. point source loading we do not
have explicit estimates of particulate load fraction for large
numbers of lakes. Unfortunately, we cannot use nonpoint
source loading as a direct proxy for particulate load fraction
because the two quantities do not have a consistent relation-
ship. For example, Russell et al. (1998) report that the particu-
late phosphorus fraction of nonpoint source loads can be
anywhere between 62% and 90% while Djodjic and Marken-
sten (2018) report that this fraction can be anywhere between
33% and 80%. This may explain why prior broad scale studies
that estimate lake P retention have not attempted to estimate
separate effects of particulate vs. dissolved loading (Alexander
et al. 2008; Brett and Benjamin 2007).

We developed a conceptual model that places particulate
load fraction in context with other processes affecting P reten-
tion (Fig. 1). We expected that both land-stream and stream-
lake connectivity influences how much particulate P is trans-
ported into lakes, which in turn affects their P retention. This
expectation is supported by the findings of Cushing et al.
(1993) as well as Guy et al. (1994) showing that particulate P
can be transported beyond the direct drainage from stream-
adjacent hillslopes.

Despite our inability to test such differential transport pro-
cesses across many lake watersheds at broad scales, we note
that such processes are indirectly supported by our finding
that connectivity metrics are associated with lake P retention.
For example, differential transport of particulate matter

Table 2. Connectivity class split values and samples sizes for
connectivity metrics and lake depth ranked according to the dif-
ference in median k (P decay parameter, 5k) values. Differences
in 5k that translate to differences in P retention greater than
measurement precision are marked with an asterisk. Here, WS is
the lake watershed extent whereas SWS is the lake subwatershed
extent. Lakes with metric values above or equal to the split value
were assigned to a separate connectivity class relative to lakes
below the split value. N is sample size. Connectivity metrics are
defined in Fig. 2.

Split
value

Low High
Metric Scale Δk N N

Average link length

(m)

WS 0.23* 2380 33 96

Closest lake distance

(m)

WS 0.22* 3774 26 103

Stream density WS 0.20* 13.84 96 34

Lake connection Focal 0.17* 27 102

Upstream lake area

(ha)

WS 0.16* 154 62 67

Maximum depth (m) Focal 0.15* 19.81 87 42

Average link length

(m)

SWS 0.14* 2177 36 93

Upstream lake area

(ha)

SWS 0.13* 279 69 60

Baseflow SWS 0.12* 63.76 113 16

Stream order ratio SWS 0.10* 0.67 87 42

Baseflow WS 0.08* 53.43 65 64

Closest lake distance

(m)

SWS 0.05 3274 16 113

Stream order ratio WS 0.04 0.4 17 112

Stream density SWS 0.03 4.43 24 105
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whereby barriers to flux and differences in drainage path con-
figuration only become apparent beyond fine spatial extents
may explain why we observed stronger association of P reten-
tion with metrics measured at the broader lake watershed
extent rather than metrics measured at the finer scale lake sub-
watershed extent. Another finding consistent with differential
transport of particulate P is our observation that average link
length, which approximates stream network structure and
along-stream transport potential (Barbera and Rosso 1989),
was one of the more strongly associated metrics with lake P
retention. Finally, it is notable that our stream density metric
was influential at the lake watershed extent but not at the lake
subwatershed extent. Given that the stream density metric
captures the average distance or drainage potential between
any streams in the network and their adjacent hillslopes,
floodplains, and wetlands (see Leibowitz et al. 2018), this sug-
gests that differences in terrestrial runoff of particulate matter
from hillslope and riparian areas are likely to be important for
P retention.

Taken together, our findings are consistent with the idea
that both connectivity between lakes and streams as well as
connectivity of lakes and their terrestrial watersheds affect lake
P retention. This conclusion matches that of prior studies
showing that aquatic transport of phosphorus and nitrogen at
the subcontinental scale is strongly controlled by processes
affecting along-stream flux such as reservoir trapping
(Alexander et al. 2008; Schmadel et al. 2018).

Conclusion
We provide evidence that freshwater connectivity has an

effect on lake P retention and that connectivity metrics mea-
sured at the broader lake watershed extent more strongly cap-
tures functional differences in the effect of connectivity on P
retention among lakes compared to connectivity metrics mea-
sured at the finer lake subwatershed extents. Furthermore, our
results suggest that lake P retention is related to both connec-
tivity of lakes and streams as well as connectivity of lakes and
their terrestrial watersheds. Taken together, our findings sug-
gest that a broader network perspective would be useful for
the design of regulatory frameworks and the development of
best management practices focused on eutrophication, given
the importance of lake P retention in determining the trophic
state of lakes. Specifically, our findings highlight the need to
consider cumulative network effects of P transport in addition
to localized transport mechanisms.
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