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Abstract

Although spatial and temporal variation in ecological properties has been well-studied, crucial
knowledge gaps remain for studies conducted at macroscales and for ecosystem properties related
to material and energy. We test four propositions of spatial and temporal variation in ecosystem
properties within a macroscale (1000 km’s) extent. We fit Bayesian hierarchical models to thou-
sands of observations from over two decades to quantify four components of variation – spatial
(local and regional) and temporal (local and coherent); and to model their drivers. We found
strong support for three propositions: (1) spatial variation at local and regional scales are large
and roughly equal, (2) annual temporal variation is mostly local rather than coherent, and, (3)
spatial variation exceeds temporal variation. Our findings imply that predicting ecosystem
responses to environmental changes at macroscales requires consideration of the dominant spatial
signals at both local and regional scales that may overwhelm temporal signals.
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INTRODUCTION

Variation in ecological properties has been well studied by
ecologists, with much interest in the topic emerging in the
1970s and 1980s (Steele 1978; Meentenmeyer & Box 1987;
Wiens 1989) and continuing today (Jackson & Fahrig 2015;
Cohen et al. 2016; Vidal et al. 2017; Walter et al. 2017).
Although past research has increased our understanding of
ecological variation, three knowledge gaps remain. First,
because the majority of past studies focused on either spatial
or temporal variation, or individual components of variation,
the relative amounts and controls of spatial versus temporal
variation and their component parts are not well known
except for within individual systems or scales (Lewis 1978;
Matthews 1990; Collins et al. 2018a). Second, few studies con-
sider variation at macroscales (1000 km; Fraschetti et al.
2005), and few studies consider variation at more than one
scale that includes both local (i.e. single ecosystems or sites;
hereafter referred to as local) and regional (i.e. 100’s km)
scales (Ricklefs 2004; Wickham et al. 2005; Park et al. 2010;
Read et al. 2015). Third, because the majority of studies on
ecological variation have been conducted on biotic properties,
there is less evidence for the amounts and controls on varia-
tion in ecosystem properties such as materials and energy
(Wiens 1989; Horne & Schneider 1995; Cohen et al. 2016).

The importance of these three knowledge gaps can be best
clarified when put within the context of macrosystems ecology,
which considers ecological systems and their many interactions
at both fine and broad spatial scales (Heffernan et al. 2014;
Fei et al. 2016; Rose et al. 2017). Ecosystems play an impor-
tant role in continental and global cycles of key elements, such
as carbon and nitrogen (Vitousek et al. 1997; Falkowski et al.
2000; Tranvik et al. 2018). In addition, ecosystems are facing a
host of stressors, such as land use and climate change, that dif-
fer across regions (Peters et al. 2011). Strong regional patterns
in these stressors can interact with local drivers to influence
responses of local ecosystem properties, such as nutrients and
productivity (Fergus et al. 2011; Soranno et al. 2014). Such
multi-scaled interactions can lead to unpredictable spatial pat-
terns of variation in ecosystem materials that need to be
accounted for in studies that scale up ecosystem material
stocks and rates to continental and global scales. An important
step in such efforts is to better understand how variation of
ecosystem materials and energy is partitioned across space (lo-
cal to macroscale) and time (annual to decadal).
At macroscales, spatial and temporal variation is made up

of several parts. Spatial variation can be decomposed into two
components: regional and local. The local component is
defined as observations from a sampling site or from a loca-
tion within a well-defined ecosystem, such as a lake, which
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can be easily observed at the scale of an ecosystem (i.e.
local = ecosystem). Regional spatial variation describes the dif-
ferences across regions in the regional–average ecosystem
state, whereas local spatial variation describes variation of
average ecosystem state across all ecosystems (Wagner et al.
2007). Temporal variation can be decomposed into two com-
ponents: coherent temporal variation (also called spatial syn-
chrony), which describes the variation in ecosystem state
across all ecosystems that is synchronous through time (Wal-
ter et al. 2017; Shestakova et al. 2018); and local temporal
variation, which describes temporal variation where ecosys-
tems vary independently through time (Kincaid et al. 2004;
Wagner et al. 2009; Vidal et al. 2017). Past studies have quan-
tified some of these variance components and their drivers.
However, no study has quantified all components of variation
in a single analysis at macroscales, which is needed to provide
a deeper understanding of the relationship between spatial
and temporal variation and their drivers at broad scales.
The past extensive research on ecological variation of spe-

cies distributions and abundances provides a rich starting
point to study ecosystem material and energy at macroscales.

Table 1 describes key propositions (i.e. confirmed generalisa-
tions, sensu Scheiner & Willig 2011) of spatial and temporal
variation and its controls that are well-accepted in ecology,
labelled as ‘assumed’. For example, spatial variation increases
as the spatial extent of the study increases, and is controlled
by different processes at different spatial extents. Temporal
variation increases following perturbation and prior to regime
shifts. Coherent variation can result from synchronous tempo-
ral responses to broad-scaled drivers, such as regional weather
patterns; and local temporal variation can result from ecosys-
tem-specific characteristics mediating how individual ecosys-
tems respond to drivers over time.
Here, we test four propositions of variation in ecosystem

properties (labelled as Pr1–Pr4, with supporting citations in
Table 1) that are specific to the temporal and spatial scales of
this study – annual estimates of ecosystem properties over two
decades (temporal) and estimates of ecosystem properties in
tens to hundreds of ecosystems nested within 63 regions at the
macroscale (spatial). (Pr1) Spatial variation includes both local
and regional components, which is based on past studies that
have found variation at both local and regional scales. (Pr2)

Table 1 Propositions defined as confirmed generalisations (sensu Scheiner and Willig 2011) for ecological spatial and temporal variation at macroscales and

the annual temporal scale. We include propositions that are most relevant to this study, those that have extensive evidence from the literature (labelled as

‘assumed’), and those that have less support from the literature and that we evaluate in this study. Scale refers to both grain and extent. Macroscales are

spatial extents at the range of sub-continent to continent (i.e. 1000’s of km’s)

Proposition

Evaluated

in study? Evidence to date (selected sources)

Spatial variation at macroscales

a. Observed patterns of spatial variation in ecosystem

properties are dependent on the scale of observation

Assumed Sawyer (1989) and Horne & Schneider (1995)

b. As spatial extent increases from regional to macroscales, the

total spatial variation of ecosystem properties increases

Assumed Meentenmeyer & Box (1987), Wiens (1989) and Horne & Schneider

(1995)

c. Spatial variation in ecosystem properties includes both local

and regional components

Yes (Pr1) This study; Wickham et al. (2005), Park et al. (2010), Fergus et al.

(2011), Cheruvelil et al. (2013), Read et al. (2015) and Lapierre et al.

(2018)

Temporal variation at macroscales

d. Observed patterns of temporal variation in ecosystem

properties are dependent on the scale of observation

Assumed Horne & Schneider (1995)

e. Coherent temporal variation in ecosystem properties among

ecosystems should decrease as spatial extent increases, and

so should be lower at macroscales than finer spatial extents

Assumed Stoddard et al. (1998), Liebhold et al. (2004), Huttunen et al. (2014),

O’Reilly et al. (2015), Lottig et al. (2017) and Oliver et al. (2017)

f. Annual temporal variation is dominated by local (site-

specific) variation relative to coherent temporal variation.

(i.e. it takes a large and sustained perturbation to move a

system in a directional way)

Yes (Pr2) This study; Odum et al. (1979), Underwood (1991), Kincaid et al.

(2004), Lottig et al. (2017), Oliver et al. (2017) and Shestakova et al.

(2018)

Relative amounts of spatial and temporal variation at macroscales

g. Spatial variation (local plus regional) exceeds annual

temporal variation

Yes (Pr3) This study; Larsen et al. (2001), Lottig & Carpenter (2012), Cheruvelil

et al. (2013), Oliver et al. (2017) and Vidal et al. (2017)

Controls of spatial and temporal variation at macroscales

h. Similarity in the spatial structure of ecological properties

and their drivers may indicate common spatial scaling and

the possibility of linkages

Assumed Grieg-Smith (1979), Schneider & Piatt (1986), Legendre & Fortin

(1989), Wiens (1989), Horne & Schneider (1995), Broitman & Kinlan

(2006) and Lapierre et al. (2018)

i. Coherent temporal variation (i.e. synchrony) can be a result

of broad-scale exogenous drivers, such as climate, and so

can be thought of a measure of ‘regional temporal

variation’

Assumed Liebhold et al. (2004), Rusak et al. (2008), Vogt et al. (2011), Walter

et al. (2017) and Shestakova et al. (2018)

j. Local temporal variation is a result of site-specific

characteristics that influence an individual site’s response to

drivers through time

Assumed Kincaid et al. (2004) and Vidal et al. (2017)

k. Each component of spatial and temporal variation is

controlled by different drivers

Yes (Pr4) This study; Meentenmeyer & Box (1987), Wiens (1989), Smithwick et al.

(2005), Gotelli et al. (2010), Bell et al. (2015) and Collins et al. (2018a)
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Annual temporal variation is dominated by local variation,
which is based on studies that have suggested that large and
sustained perturbations are required to move the average state
of a system in a directional way, thus it is more likely that
ecosystems will vary independently through time. (Pr3) Spatial
variation exceeds annual temporal variation, which is based on
studies that find variation in ecological properties across
ecosystems or sites is larger than temporal variation of ecosys-
tems or sites. (Pr4) Each component of spatial and temporal
variation is controlled by different drivers, which is based on
evidence from prior studies conducted at individual spatial or
temporal scales or studies that consider some components of
variation, but not others.
We evaluated evidence for these four propositions at macro-

scales using observations across both space and time in thou-
sands of ecosystems (i.e. lakes) in a 1 800 000 km2 study
extent in the Northeastern and Midwestern US. This study
extent includes a wide range of lakes and broad gradients in
climate, geomorphology, hydrology and land use. We quanti-
fied four components of variation in five ecosystem properties
of lakes and examined the drivers of that variation. We found
support for all four propositions; and, our study informs
future work to scale up local-scaled observations to regional
and continental scales, to extrapolate from well-studied to
unstudied ecosystems, and to design effective monitoring pro-
grams that considers both spatial and temporal variation.

MATERIAL AND METHODS

Overview of analytical approach

We fit Bayesian hierarchical models to thousands of observa-
tions to: quantify four components of spatial and temporal
variation as proportions of the total variation in ecosystem
properties, quantify the effects of ecological drivers on each
component of variation and calculate the proportion of varia-
tion explained by the drivers. We fit separate models for each
ecosystem property. The four components of variation that we
quantified are two spatial variance components (regional and
local) and two temporal components (coherent and local). We
also estimated a residual component that is variation unac-
counted for by the other sources, including measurement errors.
We selected candidate drivers a priori based on understanding
about the controls on lake ecosystem properties for each type of
variance component. Our model explicitly accommodates the
hierarchical structure of our data, where observations are
nested within lakes, lakes are nested within regions, and obser-
vations are also nested within years. The random effects in our
models (i.e. the model error structure) help to accommodate
this data structure and the dependencies (e.g. the lack of statisti-
cal independence) that may result from this structure.

Study area

The study area is a lake-rich zone of the US including 17
upper Midwest and Northeastern US states. It includes a total
of 51 101 lakes and reservoirs ≥ 4 ha in a north temperate cli-
mate zone (Soranno et al. 2017). There is a wide range of eco-
logical, geological, climatic, hydrologic and land use

characteristics and a wide range of lake types (Fergus et al.
2017); lake watershed land-use ranges from all forested to
almost all agricultural. There is a large regional variation in
lake and geographic features (Wagner et al. 2011; Cheruvelil
et al. 2013; Lapierre et al. 2018). In this study, we delineate the
study area into 63 regions using 4-digit hydrologic units (U.S.
Geological Survey 2013; hereafter, regions), which have been
found to capture the above observed regional spatial variation
similarly well compared to other regionalisation frameworks in
a subset of our study lakes (Cheruvelil et al. 2013).

Ecosystem data

We used a curated lake ecosystem database called the Lake
Multi-scaled Geospatial and Temporal Database of the
Northeast US (LAGOS-NE; Soranno et al. 2017). Lake nutri-
ent, primary productivity, and clarity data were obtained from
LAGOS-NELIMNO v1.087.1.
We analysed five common measures of lake ecosystem prop-

erties: two total nutrient measures (total phosphorus, TP and
total nitrogen, TN); one dissolved nutrient measure (nitrate,
NO3); one surrogate for pelagic primary production in lakes
(chlorophyll a concentration, Chl); and one measure of the light
environment in lakes, water clarity, as measured by Secchi
depth (clarity). The lakes were sampled at least once per year
from 1990 to 2011 during the summer stratified season (15
June–15 September). This time period is the season of maxi-
mum primary and secondary production in lakes and the time
of dominant ecological interactions in lakes. The number of
lakes with any measurement for one of these five properties
range from 3560 (NO3) to 7601 (clarity) lakes (Fig. 1;
Table S1). Lakes differed in the frequency of sampling through
time, ranging from being sampled only one year to up to
22 years (Table S1). Our analytical approach is designed to
accommodate such an imbalanced design to make full use of all
available data (see below). Further, a prior study of this data
set has shown that known biases, such as the fact that larger
lakes are over-sampled relative to smaller lakes, did not sub-
stantially change statistical distributions of the lake response
variables (Stanley et al. 2019). Nevertheless, biases are inherent
in any data compilation and may influence the outcomes. How-
ever, with large sample sizes such as ours, the effect of such
biases on outcomes is likely to be less than for smaller data sets.

Ecological drivers

Lake ecological driver data were obtained from LAGOS-
NEGEO v1.05 (Soranno & Cheruvelil 2017), except for
monthly climate data, which are available from Collins et al.
(2018b). Data are described in Soranno et al. (2015, 2017).
We selected potential ecological drivers based on evidence
from past studies of lakes (Table 2). For example, because
coherent temporal variation may be more sensitive to seasonal
climate signals, we included seasonal climate drivers for coher-
ent temporal variation, whereas, we included monthly climate
drivers for local temporal variation. We selected candidate
ecological drivers and their appropriate scales of quantifica-
tion a priori based on ecological knowledge and evidence that
a driver controls a component of variation, particularly from
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published studies (Collins et al. 2017; Lottig et al. 2017; Oliver
et al. 2017; Lapierre et al. 2018). Table 2 describes four cate-
gories of ecological drivers to explain lake variation that were
made up of multiple metrics, often measured at different
scales suited to the variance components: climate, atmospheric
deposition, hydrology and land use/cover. For climate data,
because we were modelling interannual variation, we used
monthly and seasonal data.

Analytical approach and methods

Variance decomposition
We used a Bayesian hierarchical model to decompose the total
variation in each of the five ecosystem properties into their four
components, as well as a residual. The model was as follows:

yijkl ¼ b0 þ l1j þ l2k þ l3jk þ l4l þ εijkl ð1Þ

(a) TP

(c) Clarity

(e) NO 3

(b) Chl

(d) TN

Figure 1 The median values by lake for all response variables, including TP (a), Chl (b), clarity (c), TN (d), and NO3 (e).
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εijkl �N 0; r2
ε

� �

l1j �N 0; r2
local

� �

l2k �N 0; r2
coherent temporal

� �

l3jk �N 0; r2
local temporal

� �

l4l �N 0; r2
region

� �
;

where yijkl is the loge-transformed observation i, from lake j,
in year k, and region l, for an ecosystem property response
variable. The parameter b0 is the intercept and µ1j, µ2k, µ3jk,
µ4l are the random effect for each variance component and
εijkl is the residual error, that are assumed normally distributed
with a mean of zero and variance r2

x. Diffuse priors were used for
all parameters: b0 ~ N (0, 1000) and rx ~ U(0, 5). Three parallel
Markov chains were run, each starting with a random value. Each
chain was run for 10 000 iterations, discarding the first 5000 sam-
ples. This resulted in 15 000 samples used to summarise posterior
distributions. We assessed convergence using the Brooks–Gel-
man–Rubin statistic (Brooks & Gelman 1998) and trace plots. We

estimated the posterior means and 95% credible intervals for all
estimated sigma parameters (Fig. S1), and we examined the model
fit by examining diagnostic plots and calculating the RMSE for
each model (Fig. S2).

Modelling the controls of variation
We included covariates in the variance decomposition model
as follows:

yijkl ¼ b0 þ l1j þ l2k þ l3jk þ l4l þ εijkl ð2Þ
εijkl �N 0; r2

ε

� �

l1j �N b1 � X1j þ . . .bp � Xpj; r
2
local

� �

l2k �N a1 � X1k þ . . .an � Xnk; r
2
coherent temporal

� �

l3jk �N c1 � X1jk þ . . .cm � Xmjk; r
2
local temporal

� �

l4l �N w1 � X1l þ . . .ww � Xwl; r
2
region

� �
;

where yijkl and b0 are as defined above and bz, az, cz and wz

are regression slope parameters for covariates (X) quantified
at each spatial and temporal scale. Diffuse priors, as described

Table 2 Hypothesised ecological drivers of the four variance components

Variance component Category Predictor (units)

Spatial, regional Climate, normals Precipitation, 30-year normal (mm)

Climate, normals Temperature, 30-year normal (°C)
Atmospheric deposition N deposition in 1990, region (mean, kg ha�1)

Atmospheric deposition N deposition in 2010, region (mean, kg ha�1)

Atmospheric deposition N deposition difference (1990–2010), region (kg ha�1)

Freshwater, hydrology Runoff, region (mean, mm year�1)

Freshwater, hydrology Baseflow, region (mean, %)

Freshwater, hydrology Lake area, region (mean, ha)

Freshwater, hydrology Lake area-isolated and headwater lakes, region (%)

Freshwater, hydrology Wetland area, region (%)

Land use/cover Urban area, region (%)

Land use/cover Agricultural area, region (%)

Land use/cover Forest area, region (%)

Spatial, local Freshwater, hydrology Lake depth, maximum (m)

Freshwater, hydrology Lake area (ha)

Freshwater, hydrology Watershed area: lake area ratio

Freshwater, hydrology Stream density, watershed (km ha�1)

Freshwater, hydrology Wetland-woody, watershed (%)

Freshwater, hydrology Wetland-emergent, watershed (%)

Land use/cover Urban, watershed (%)

Land use/cover Agriculture-total, watershed (%)

Land use/cover Agriculture-row crop, watershed (%)

Land use/cover Agriculture-pasture, watershed (%)

Land use/cover Forest-total, watershed (%)

Land use/cover Forest-deciduous, watershed (%)

Land use/cover Forest-coniferous, watershed (%)

Land use/cover Forest-mixed, watershed (%)

Land use/cover Road density, watershed (km ha�1)

Temporal, coherent Climate, seasonal Precipitation, winter and spring (mm)

Climate, seasonal Temperature, mean of summer months (°C)
Climate, seasonal Palmer hydrologic drought index, spring (unitless)

Temporal, local Climate, monthly Precipitation, previous November (mm)

Climate, monthly Precipitation, previous December (mm)

Climate, monthly Precipitation, previous January (mm)

Climate, monthly Precipitation, previous winter (mm)

Climate, monthly Precipitation, previous May (mm)

Climate, monthly Temperature, previous May (°C)
Climate, monthly Temperature, June (°C)
Climate, monthly Palmer hydrologic drought index, spring (unitless)
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above were used for b0 and rx. We performed predictor vari-
able selection using the horseshoe shrinkage prior on regres-
sion slope parameters (bz, az, cz and wz; Carvalho et al. 2010).
We used a half-Cauchy prior on both the slope parameter-
specific and global (across all slope parameters) variance
parameters for the horseshoe prior (slope parameteri|ki, s ~ N
(0, k2i s

2), where ki and s are the slope-specific and global vari-
ance parameters, respectively, and ki ~ half-Cauchy(0, 1) and
s ~ half-Cauchy(0, 1). Predictor variables measured as pro-
portions were logit-transformed and standardised, while con-
tinuous predictors were loge-transformed and standardised.
Three parallel Markov chains were run, each starting with a

random value. Each was run for 80 000 iterations, discarding
the first 60 000 samples. The remaining 60 000 samples were
used to summarise posterior distributions. All models were fit-
ted using the program JAGS (Plummer 2003) using the jags
UI function (Kellner 2017) called from within the program R
(R Core Team 2018), and are available at Wagner (2019). We
assessed convergence using the Brooks–Gelman–Rubin statis-
tic (Brooks & Gelman 1998) and trace plots.
We used several metrics to evaluate model fit and covariate

importance. First, we examined plots of residuals versus fitted
values, histograms of residuals, quantile–quantile plots and we
calculated the RMSE for each model (Fig. S3). Second, we
calculated the approximate percentage of the total variation
explained (approximate R2) for each spatial and temporal
component, which was determined using the unconditional
variances from eqn 1 and the conditional variance from
eqn 2. For example, calculating the approximate R2 of the
local spatial level l was as follows: r2

local Eqn1ð Þ�
�

r2
local Eqn2ð ÞÞ

.
r2
local Eqn1ð Þ (Raudenbush & Bryk 2002). This

approximate R2 calculation provides an intuitive and simple
measure of the variance explained; however, it is possible to
obtain negative approximate R2 if the conditional variance is
larger than the variance of the data. This result may happen
because the between-group variances are a function of vari-
ance that occurs at multiple levels of the model (LaHuis et al.
2014). Third, we determined covariate significance by evaluat-
ing whether or not the 90% credible interval of the coefficient
overlapped with zero. Fourth, we conducted a 10-fold cross-
validation and report the plots of residuals versus fitted val-
ues, histograms of residuals, quantile–quantile plots and we
calculated the RMSE for each model (Fig. S4).
Although we have included spatial (i.e. local, region) and

temporal (i.e. year and local 9 year) random effects in our
models that accommodate the hierarchical structure of these
data – i.e. the lack of statistical impendence that may exist
across space and time– we acknowledge that because these
models do not explicitly model spatiotemporal dependencies
that may exist, posterior uncertainty may be underestimated.

RESULTS

Proposition 1: Spatial variation includes both local and regional

components

Spatial variation included both local and regional components
that were roughly equal, in terms of proportion of the total
variation (Fig. 2). On average, 31% of the total variation was

regional, and 33% was local, with only small differences
across ecosystem properties. For example, the more biological
reactive NO3 had the lowest regional variation (25%) as
might be expected; whereas, TP and clarity had the highest
(36% and 35%, respectively). Local spatial variation was
more similar across ecosystem properties, although TN was
the lowest (29%) and TP and clarity were the highest (35%).

Proposition 2: Annual temporal variation is dominated by local

variation

On average, the proportion of temporal variation was small
(Fig. 2) and ranged from 2% (for TP and clarity) to 14% (for
NO3). Local temporal variation was made up from 10 to 14%
of the total variation, which was 2–5 times higher than coher-
ent temporal variation. These results suggest that at macro-
scales and for the inter-annual scale across two decades,
temporal variation is ecosystem-specific rather than coherent.

Proposition 3: Spatial variation exceeds annual temporal variation

For all five ecosystem properties, the proportion of combined
spatial variation was four times larger than the proportion of
combined temporal variation (Fig. 2). The proportion of total
spatial variation ranged from a minimum of 58% of the total
variation for NO3, to about 70% for TP and clarity. How-
ever, the proportion of total temporal variation ranged from
a minimum of 11 and 13% for TP and clarity, to a maximum
of 20% for NO3 and TN. Residual variation was on average,
20% of the total variation across all of the ecosystem proper-
ties, but was highest for Chl and NO3 and lowest for TP and
clarity. The differences that we document are supported by an
analysis of the posterior uncertainty of the differences among
each pair (Fig. S5).

Proposition 4: Each component of spatial and temporal variation is

controlled by different drivers

For all ecosystem properties, one or more ecological drivers
accounted for variation in all variance components except
coherent temporal; however, the exception was for regional
spatial variation for Chl and TN (Fig. 3). In addition, for the
clarity model, we could not include drivers to model coherent
temporal variation because there was so little coherent varia-
tion that adding predictors led to a conditional variance near
zero that led to failed model convergence. This lack of drivers
for coherent temporal variation was not surprising because it
was the lowest variance component for all models. Although
local temporal variation was also relatively small, five to seven
climatic driver variables accounted for some of that variation,
as shown by their small but non-zero effect sizes. For the two
spatial components of variation, there were numerous ecologi-
cal drivers that had non-zero effect sizes for the local spatial
variation, and 1–2 drivers that had non-zero effect sizes for
the regional spatial variation. It is beyond the scope of this
paper to discuss the ecological implications of each driver,
however, the sign of the effects and the drivers themselves are
consistent with well-established ecological relationships.
Uncertainty around the effects for the regional variation was
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substantially larger than for the local-scale variation, as were
the number of non-zero coefficients, reflecting the smaller
number of regions in the dataset compared to the number of
ecosystems.
The percent variation explained by the spatial drivers was

much larger than for the temporal drivers (Table 3). Most of
the approximate R2 values for the drivers of the two temporal
components of variation were zero, meaning that the drivers
could not explain any of the temporal variation. Exceptions
to this result are TN and NO3. However, because the credible
intervals overlap zero, we interpret these approximate R2 val-
ues as zero. The approximate R2 values for the drivers of
regional spatial variation were larger (81–94%) than those for
the drivers of local spatial variation (32–51%). Thus, regional
variation was better explained by its spatial drivers despite the
larger uncertainty of estimated effects and a fewer number of
significant variables compared to the local scale.
For each of the five models, we also calculated an approxi-

mate total variation explained by the combined drivers by
weighting the approximate R2 values of each of the variance
components (Table 3) by its proportion of total variance from
Fig. 2 (and assuming the negative R2 values are zero). Models
for TP and clarity had the highest estimated total R2 values
and we were able to explain nearly half of the variation across
thousands of lakes. These variables also have the lowest tem-
poral components of variation. We were only able to explain
33, 36, and 39% of the variation in NO3, Chl and TN, respec-
tively. For Chl, it is likely that we explained less variation due
to it being a biological variable, which has been shown to be

subject to more extreme events (Batt et al. 2017), and so is
likely more difficult to predict.

DISCUSSION

Our results help to fill knowledge gaps of the major sources
and drivers of spatial and temporal variation in ecosystem
properties at macroscales. The four propositions held across
all ecosystem properties that we studied, although we
observed some differences in dissolved nutrients and Chl com-
pared to total nutrients, which were expected given the labile
nature of dissolved nutrients, and the biological nature of
Chl. Next, we consider the strength of support for the four
propositions based on our results and past studies of ecologi-
cal variation.

Proposition 1: Spatial variation includes both local and regional

components

Both local and regional spatial variation are relevant to
macroscales. Some past studies emphasise local variation
(Kincaid et al. 2004; Fraschetti et al. 2005; Wickham et al.
2005; Read et al. 2015); and others emphasise regional varia-
tion (Latham & Ricklefs 1993; Cheruvelil et al. 2013). How-
ever, spatial variation in ecosystem properties likely results
from a combination of locally and regionally structured geo-
graphic drivers that induce both local- and regional-scale spa-
tial structure (Park et al. 2010; dal Bello et al. 2017; Lapierre
et al. 2018), an idea supported by our result of equally large
local and regional variances. An important next step is to test
this proposition in data sets that span increasingly broader
spatial extents and that include a wider range of ecological
properties from conservative chemical constituents to biotic
properties (Kincaid et al. 2004; McGuire et al. 2014).

Proposition 2: Annual temporal variation is dominated by local

variation

Our data support the proposition that most annual temporal
variation at decadal and macroscales is local (i.e. ecosystem-
specific) rather than coherent, as was also found in a study at
a smaller spatial extent for fewer lakes (Kincaid et al. 2004).
This result is also supported by a trend analysis of these data
that showed the majority of lake nutrients showed no trends
over two decades, nor did they change synchronously (Oliver
et al. 2017). Despite the size of our data set, it is possible that
our study lacked power to detect coherent temporal variation.
For example, analyses of time series of air temperatures found
that datasets that are 10–20 years long have small signal-to-
noise ratios and so have trouble detecting trends (Santer et al.
2011). However, the measured amount of annual temporal
variation in our data was low, a result confirmed by studies
with adequate power (Santer et al. 2011). Thus, even with
more data, any coherent variation may still be small and may
not be ecologically relevant. Many recent studies conducted
within individual regions have found evidence for synchrony
in a wide range of biotic and abiotic ecological properties
(Ranta et al. 1997; Rusak et al. 2008; Shestakova et al. 2016;
Walter et al. 2017; Defriez & Reuman 2017). However, at

Figure 2 The proportion of total variation for each of the variance

components of each of the ecological properties estimated from the

unconditional variance component models. The white dots are posterior

means and the rectangles are the 95% credible intervals. SR = spatial,

regional; SL = spatial, local, TC = temporal, coherent, TL = temporal,

local, R = residual. Colours are as for Fig. 3.
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increasing spatial extents, synchrony likely breaks down, and
the importance of non-coherent variation likely increases.
Although we detected low to no coherent variation in our
study, we expect that it would be higher if we increased the
temporal extent of our study to many decades or centuries.
Thus, temporal coherent variation needs to be assessed speci-
fic to the spatial and temporal footprint of the study and mea-
sured at a wide range of scales to help illuminate underlying
drivers of temporal variation (Walter et al. 2017; Shestakova
et al. 2018).

Proposition 3: Spatial variation exceeds annual temporal variation

The proportion of total spatial variation was 2–5 times greater
than the proportion of annual temporal variation. These pat-
terns make sense given the large and heterogeneous study area
and the fact that the minimum and maximum values for lake
nutrients or productivity across thousands of lakes is generally
larger than the minimum and maximum value in an individual
lake through time. The variation we have measured at the
annual scale is supported by evidence that ecological properties

in most ecosystems fluctuate around a relatively stable average
state and mostly deviate as a result of rare and large perturba-
tions (Carpenter & Brock 2006; Fraterrigo & Rusak 2008). Due
to data limitations, we were not able to quantify within-year
variation in individual lakes, which could increase temporal
variation. An important future research direction will be to
quantify spatial versus temporal variation in macroscale studies
that have temporal data that are either finer-resolution or for a
longer temporal extent (i.e. many decades or centuries).

Proposition 4: Each component of spatial and temporal variation is

controlled by different drivers

We show that different ecological drivers were related to dif-
ferent components of spatial and temporal variation, support-
ing past theoretical and empirical work (Schneider & Piatt
1986; Wiens 1989; Horne & Schneider 1995). Despite the
equal amounts of local and regional spatial variation, the eco-
logical drivers explained a much larger proportion of regional
versus local variation. This result could be due to our mea-
sures of regional drivers being better able to capture

Figure 3 The estimated effects of driver variables on each of the four components of variation for five response variables. Filled symbols represent effect

sizes whose 90% credible intervals (error bars) do not overlap zero. Symbols with very small effect sizes, but that are filled, do not overlap zero and only

appear to do so due to the size of the symbol. Colours as are for Fig. 2.
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ecologically relevant processes compared to our measures of
local drivers that are either poor proxies of processes that we
know matter (such as nutrient loading or runoff), or that were
missing entirely because of lack of data at macroscales, such
as lake water residence time, groundwater connections, biotic
interactions or watershed soils. Further, although we could
not explain much of the small amount of annual temporal
variation across several decades in our study area, our results
suggest that predicting temporal variation at the scale of dec-
ades and thousands of ecosystems will be challenging with the
commonly available data sets at macroscales. In sum, we were
able to explain the most regional spatial variation, followed
by local spatial variation, and only some of the small amounts
of coherent temporal variation. This type of analysis on the
major types of ecological variation and their controls helps to
identify gaps in our understanding of ecological variation
across broad scales of space and time.

Implications for macroscale studies of ecosystem materials and

energy

Biological properties at macroscales have been well-studied in
biogeography and macroecology and scaling laws have been
developed that describe controls on species and organisms at
regional to macroscales. Ecosystem properties (i.e. materials
and energy) have not been similarly studied at macroscales,
but are equally important, particularly for quantifying the
contribution of terrestrial and aquatic ecosystems to continen-
tal and global carbon cycles (DelSontro et al. 2018; Mitchard
2018; Seekell et al. 2018). Our study describes the importance
of capturing adequate spatial variation in ecosystem proper-
ties, and that at increasingly broader spatial extents, spatial
variation will likely be more important than temporal varia-
tion, at least at the temporal extent of several decades.
Nevertheless, we were not able to include two important con-

siderations in our study. First, our annual estimates are based on

summer values, which is commonly done because it is the period
of maximum productivity in most ecosystems, but also because
of a lack of data from other seasons (Stanley et al. 2015; Hamp-
ton et al. 2017). Second, we were only able to study ecological
variation in ecosystem states, as opposed to ecosystem rates or
fluxes, which are critical for assessing ecosystem roles in global
cycles. Unfortunately, data are also lacking for these measures at
macroscales and until they are available, we can assume that spa-
tial and temporal patterns that we have identified for ecosystem
state will apply similarly to ecosystem flux.
Our ability to accurately capture spatial and temporal varia-

tion in the critical ecosystem properties influencing global
cycles will depend on the accumulation of observations across
broad gradients in space and time. Such observations will be
compiled in large and complex databases, and there is evi-
dence that ecology is increasingly becoming more data-
intensive, particularly compared to its historical roots
(Hampton et al. 2013; Peters et al. 2014; Elliott et al. 2016;
Cheruvelil & Soranno 2018). There is an increasing availabil-
ity of large publicly accessible data sets that include estimates
of ecosystem materials and energy in a range of freshwater,
marine and terrestrial systems across a range of spatial and
temporal scales (O’Reilly et al. 2015; Henson et al. 2016; Sor-
anno et al. 2017; Anderson-Teixeira et al. 2018; Smith et al.
2018). In our study, we used a modelling approach that com-
bines spatial and temporal observations in a single frame-
work, which could be applied to most, if not all of the above
databases to further explore the potentially complex relation-
ships among spatial and temporal variation in ecosystem
materials and energy. This framework that standardises the
measurement of variation into their component parts can
allow for the comparison across vastly different ecosystem
types, variables and spatial scales and can lend new insight
into mechanisms explaining ecological variation from regional
to global scales.

CONCLUSIONS

When, where and how ecological properties respond to
anthropogenic stressors can often be obscured by ecological
variation. Understanding the effect of broad-scale stressors
such as climate change on ecological properties at macroscales
is difficult because the system is multi-scaled through both
space and time, yet we rarely consider multiple components of
variation. Our study provides insight into both spatial and
temporal variation in ecosystem properties at annual and
macroscales. We support much past research that suggests
that different drivers control ecological variation at different
scales. We also provide evidence that at macroscales, spatial
variation will exceed decadal interannual temporal variation.
Thus, to effectively extrapolate findings from one site to
another, or to scale up ecological properties to continental or
global scales, it will be essential to collect observations across
many ecological settings to capture the full range of spatial
variation in ecosystem states and processes. Doing so for
other properties and ecosystems will be especially important
to improve our understanding of the role of ecological sys-
tems in global cycles, such as carbon and nitrogen, and how
they are likely to respond to global change.

Table 3 The percentage of variation explained (approximate R2) for each

spatial and temporal component by the driver variables (posterior mean,

followed by 95% credible intervals in parentheses). Negative % variance

explained is possible with these models and they reflect poor predictive

capability and are reported as zero. The estimated total variation is calcu-

lated by weighting the approximate R2 values of each variance compo-

nents by its proportion of total variance from Fig. 2, and assuming the

negative approximate R2 values are simply zero. For clarity, coherent

temporal covariates were not included in the model due to convergence

issues, so values of NA are reported

Variance component

Approximate R2

TP Chl Clarity TN NO3

Spatial, regional, % 86 81 90 94 85

(77, 93) (67, 90) (81, 95) (90, 97) (68, 93)

Spatial, local, % 51 38 51 48 32

(44, 51) (34, 42) (48, 54) (43, 52) (26, 39)

Temporal,

coherent, %

0 0 NA 20 0

(�115, 70)

Temporal, local, % 0 0 0 0 5

(�7, 16)

Estimated total

variation, %:

49 36 49 39 33
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