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Abstract
Growth of macroscale limnological research has been accompanied by an increase in secondary datasets com-

piled from multiple sources. We examined patterns of data availability in LAGOS-NE, a dataset derived from
87 sources, to identify biases in availability of lake water quality data and to consider how such biases might
affect perceived patterns at a subcontinental scale. Of eight common water quality parameters, variables indica-
tive of trophic state (Secchi, chlorophyll, and total P) were most abundant in terms of total observations, lakes
sampled, and long-term records, whereas carbon variables (true color and dissolved organic carbon) were scarc-
est. Most data were collected during summer from larger (≥ 20 ha) lakes over 1–3 yr. Approximately 80% of data
for each variable is derived from ~ 20% of sampled lakes. Long-term (≥ 20 yr) records were rare and spatially
clustered. Data availability is linked to major management challenges (eutrophication and acid rain), citizen sci-
ence, and a few programs that quantify C and N variables. Resampling exercises suggested that correcting for
the surface area sampling bias did not substantially change statistical distributions of the eight variables. Fur-
ther, estimating a lake’s long-term median Secchi, chlorophyll, and total P using average record lengths had
high uncertainty, but modest increases in sample size to > 5 yr yielded estimates with manageable error.
Although the specific nature of sampling biases may vary among regions, we expect that they are widespread.
Thus, large integrated datasets can and should be used to identify tendencies in how lakes are studied and to
address these biases as part broad-scale limnological investigations.

Environmental research in the 21st century increasingly
includes investigations conducted at broad spatial scales. This
growth has been motivated by a need to address environmen-
tal problems unfolding at regional and continental scales as
well as by the growing availability of data at these scales
(Heffernan et al. 2014; Estes et al. 2018). Datasets with spatial
extents of thousands to millions of hectares are being gener-
ated via both remote sensing tools and ground-based measure-
ments, allowing researchers and managers to see and
understand patterns and processes in ways that had not previ-
ously been possible (Heffernan et al. 2014).

Emblematic of this trend in environmental research, the
rise of broad-scale limnological studies has been rapid

(Soranno et al. 2010; Seekell et al. 2018). Several hydrologic
and water quality datasets have become publicly available over
the last decade and are now routinely being used to ask ques-
tions about limnological patterns and their drivers
(e.g., Filstrup et al. 2014; O’Reilly et al. 2015; Dugan et al.
2017a; Huser et al. 2018) or in upscaling exercises to estimate
aquatic contributions to biogeochemical cycles at regional,
continental, and global scales (e.g., Lapierre et al. 2017; Men-
donça et al. 2017; DelSontro et al. 2018). While many broad-
scale water quality datasets are generated by national agencies
using standardized protocols (e.g., Hamill and Lew 2006;
Fölster et al. 2014; US EPA 2016), others are compilations of
smaller datasets that use a variety of sampling designs or ana-
lytical protocols (e.g., Sobek et al. 2007; Hartmann et al. 2014;
Sharma et al. 2015; Dugan et al. 2017b; Read et al. 2017).

Motives for sampling and logistical realities dictate what
data are generated by a research group or monitoring program,
and these inevitably differ among projects (Hughes and Peck
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2008; Behmel et al. 2017). There is an old joke that limnology
is the study of eutrophic lakes within driving distance of
major college campuses (derived from Vallentyne [1969]). This
facetious definition provides an obvious example of how such
a logistical constraint (or motive) can lead to a biased and lim-
ited dataset; in this case, extrapolating from a single produc-
tive lake to a set of surrounding lakes of varying trophic states
would be patently unwise. Indeed, the possibility of arriving
at inaccurate conclusions about broader scale patterns because
of limits or biases in available data inspired the implementa-
tion of probability-based lake sampling designs by the
U.S. Environmental Protection Agency (EPA). These statisti-
cally representative approaches are intended to overcome sam-
pling biases and ensure accurate assessment of ecosystem
conditions by programs responsible for monitoring status and
trends of aquatic ecosystems (Paulsen et al. 1998; Peterson
et al. 1999; Hughes and Peck 2008).

In contrast to systematic designs required for water quality
assessments, integrated datasets by definition incorporate mul-
tiple sampling approaches. Yet, despite their haphazard com-
position, this latter type of dataset is increasingly being used
as a means of expanding spatial and/or temporal extents of
study and increasing overall data availability. This raises the
question: Are we again opening ourselves up to drawing unre-
liable conclusions when using these integrated datasets? The
answer to this question may be “yes” if there are consistent,
unrecognized biases in how monitoring and research groups
sample lakes. Thus, the goal of this study was to address two
general questions: Are there sampling biases in the monitoring
or studying of lakes? If so, what are they and how might they
affect perceived patterns among lakes at broader spatial scales?

To consider these two questions, we examined data avail-
ability for eight common limnological variables in the
LAGOS-NE database (Soranno et al. 2017). LAGOS-NE is a
multiscaled lake and reservoir database that integrates 87 inde-
pendent datasets from 17 northeastern and north–central
U.S. states, and its construction included the resolution of
practical challenges that arise when harmonizing diverse data-
sets (as described in Soranno et al. [2015] and Sprague et al.
[2017]). We used this database as a representative of the grow-
ing collection of integrated lake datasets that span multiple
regions, countries, or continents to search for collective ten-
dencies in lake sampling. To identify biases in sampling that
may persist or emerge, and how such biases might affect the
determination of patterns or conditions across larger spatial
extents, we decomposed the problem into four specific
questions:

1. What do we measure? (How are data distributed among
variables?)

2. When do we sample? (How do data vary within and among
years?)

3. Where do we sample? (How are data distributed across the
region and among lake types?)

4. What are the implications of these biases? (Do sampling
tendencies influence estimates of lake state at large spatial
scales and if so, how?)

Our answers reveal the existence of sampling biases along
the three axes of what, when, and where. Yet, they also sug-
gest that not all biases are problematic, and there may be ways
of managing biases to arrive at robust understanding of broad-
scale limnological patterns.

Methods
We addressed our questions by examining water quality,

morphometric, and geographic data for lakes and reservoirs in
the “LIMNO,” “LOCUS,” and “GEO” modules of LAGOS-NE
version 1.087.1 (Soranno and Cheruvelil 2017a,b,c; Soranno
et al. 2017). Data in LAGOS-NE are derived from 87 different
sources across a 17-state region of northeastern and north–
central United States—an area that includes 141,265 lakes
with surface areas > 1 ha. Database construction and content
are described in detail by Soranno et al. (2015, 2017). Version
1.087.1 modules were acquired using the LAGOS R package
(Stachelek et al. 2017), and data in the LAGOS-NELIMNO mod-
ule were supplemented with additional information from the
State of New Hampshire. LAGOS-NE excludes chlorophyll
uncorrected for phaeophytin and thus the majority of New
Hampshire records for this variable. We chose not to discrimi-
nate between the two methods (following Stich and Brinker
[2005]) and acquired chlorophyll data from the New Hamp-
shire Department of Environmental Services. The updating
process also brought in some additional information for other
variables due to recent database improvements that led to
greater data availability in 2016 when the request was made.
Other modifications to the downloaded LAGOS-NELIMNO data
included removal of duplicate entries of Secchi disc depth for
several lakes in Minnesota and correcting entries from one
Wisconsin monitoring program in which concentrations of N
species had not been converted to standard LAGOS-NE units.
We also excluded lakes described as “out of county state” (the
Laurentian Great Lakes and lakes that span the U.S.–Canada
border). Finally, we truncated the dataset at 2010, because
data availability reached a peak in 2010 then declined sharply
in subsequent years, likely reflecting the time frame over
which information was gathered from data sources during the
construction of LAGOS-NE (Soranno et al. 2015).

LAGOS-NELIMNO includes 17 in-lake variables (Soranno
et al. 2017) derived from epilimnetic sample collection at a
single point per lake. For the purposes of examining patterns
of data availability, we narrowed our scope to focus on a core
group of eight parameters: chlorophyll a (hereafter abbrevi-
ated as Chl a), true color (Color), dissolved organic carbon
(DOC), ammonium-N (NH4), nitrate+nitrite-N (NO3), water
clarity measured as Secchi disk depth (Secchi), total nitrogen
(TN), and total phosphorus (TP). We included both direct and
indirect (calculated as TKN + NO3) measurements for TN, and
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used the direct measurement if both were available. We refer
to these variables in three groups as: trophic (Secchi, Chl a,
and TP), nitrogen (TN, NH4, and NO3), and carbon (Color and
DOC) groups. In some cases, Chl a, TN, and DOC are used to
represent each group in presentation of results, with details
for all variables reported in the Supporting Information. To
address Question 1 (What do we measure: How are data distrib-
uted among variables?), we determined data availability in
terms of total data points and the types and amounts of data
per lake for all variables. Temporal aspects of data availability
(Question 2: When do we sample: How do data vary within and
among years?) were examined in terms of within-year sam-
pling, the changes in overall data availability through time,
the length of sampling records, and the availability of long-
term datasets. We used a criterion of data from 20 different
years per lake to identify long-term records, although we did
not require that sampling years be consecutive.

LAGOS-NEGEO includes geographic information for all lakes
and reservoirs > 1.0 ha (hereafter referred to as the census
lakes or the census population), which allowed us to compare
attributes of the subset of lakes that have been sampled to the
entire population to identify sampling biases (Wagner et al.
2008) to address Question 3 (Where do we sample: How are
data distribute across the region and among lake types?). For
each water quality variable, we compared the percent of cen-
sus lakes within each state to the percent of data each state
contributed to LAGOS-NE and surface areas and depths of
lakes with data relative to the census population.

For Question 4 (What are the implications: Do sampling ten-
dencies influence estimates of lake state at large spatial
scales?), we undertook two analyses to explore possible conse-
quences of uneven data distribution. First, we considered the
case of potential biases associated with lake surface area
because of the availability of data for this attribute coupled
with the expectation of a lake size sampling bias based on
prior studies (Peterson et al. 1999; Wagner et al. 2008). Follow-
ing a similar analysis by Hanson et al. (2007), we compared
1000 random samples drawn from LAGOS-NELIMNO for each
water quality variable to a second set of 1000 samples selected
using a stratified random approach that accounted for the dis-
tribution of lake surface areas in the census population. While
this approach incorporates a range of random effects associ-
ated with multiple data sources and locations in LAGOS-NE, it
provides a relatively straightforward and objective means of
determining if conspicuous differences in averages or vari-
ances are associated with biased sampling of lakes based on
their size. The proportion of lakes within each of 16 bins was
determined from the log-normalized distribution of lake area
of the census population. Lakes with data were randomly
resampled within bins, and bins were sampled in proportion
to the census lakes distribution to generate the set of 1000
samples. Observed (uncorrected for sampling bias) and cor-
rected (for lake size bias) distributions were then compared
using violin plots and associated summary statistics.

Because lakes are often not well-sampled or evenly sampled
through time, our second resampling exercise considered how
record length might influence estimation of a lake’s long-term
median value of a given variable. The general approach was to
identify lake records composed of samples that were well-
distributed through time, and then to resample these records
to simulate scenarios of varying levels of sampling effort and
to compare the results to the long-term (“true”) median from
the entire dataset. Originally, we attempted to use lakes with
observations from all seasons of a year over 20 or more years.
The within-year requirement proved to be too stringent rela-
tive to data availability, so we focused on summer months
and stipulated the presence of observations in the second and
third quarters (April–June and July–September) of each year.
We also required that at least 100 lakes meeting these criteria
must be available to include a variable in the analysis. Records
from lakes that met these requirements were subsampled to
generate secondary datasets by randomly selecting: a single
weekly sample, a single monthly sample from the weekly sam-
ples, and finally, a single quarterly sample from the monthly
samples for each year. This process produced a collection of
secondary lake records, each of which was made up of 40 or
more measurements that were well-distributed across the
entire 20+ yr period. We then randomly resampled each sec-
ondary dataset 1000X using sample sizes of 1, 2, 3, 5, 10, 20,
30, and 40 and calculated a lake’s median for each sample size.
The difference between each sample size median and the
lake’s “true” median was then expressed as a relative “error”:

Percent error =
samplemedian−truemedian

truemedian
×100

� �����
����

so that results were comparable across all lakes and among all
variables regardless of the absolute value of the medians.
Finally, the distributions of the percent errors for the eight
sample sizes were evaluated using violin plots and associated
summary statistics. All analyses were conducted in R (R Core
Team 2018); data files and code used to generate results are
available through the Environmental Data Initiative (Stanley
et al. 2019).

Results
Q1—what do we measure?

Trophic variables—Secchi, Chl a, and TP—dominate the set
of eight variables considered here, both in terms of number of
lakes sampled and total data points (Table 1). Secchi is most
abundant, representing over 50% of all data in our LAGOS-NE
subset. N species, led by NO3, were quantified more frequently
and in more lakes than carbon variables (Color and DOC).
Each of the eight variables were sampled in an average of
5.8% of the census lakes, and at least one variable has been
quantified in just over 10% of the region’s 141,265 lakes. Most
lakes that have been sampled have information on multiple
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variables; 13.6% of lakes have only one variable quantified,
whereas > 55% have data for five or more variables.

Q2—when do we sample?
On the annual time scale, limnological data are dominated

by measurements made between 01 June (day 152) and
30 September (day 273), with an average of 77%, 61%, and
56% of data collected in this window for trophic, N, and C
groups, respectively (Fig. 1). A second peak is apparent for the
C and N groups during the fall (October–December). Data for
DOC are the most evenly distributed throughout the year,
and along with Color, are characterized by a regular monthly
pattern of data production outside the summer window.

Although the earliest record in LAGOS-NE is from 1933,
proliferation of water quality data began in earnest in the
1970s (Fig. 2). The notable peak for most variables in 1984
corresponds to the EPA’s Eastern Lakes Survey, which included
over 1500 lakes. A similar, though much smaller, peak can
also be seen for EPA’s 2007 National Lakes Assessment. The
Adirondack Long-Term Monitoring Program also began in
1984, adding an additional ~ 350 lakes. Despite the striking
accumulation of data over the past five decades, the number
of lakes sampled per year has increased slowly or not at all for
variables in the N and C groups since the early-mid
1990s (Fig. 2).

Long-term datasets are relatively sparse, ranging from 1229
lakes with 20 or more years of data for Secchi to a low of only
53 lakes for TN (Table 2). Not surprisingly, most long-term
datasets fall within the trophic group and are much scarcer
within the N and C groups. At the other end of the spectrum,
most lakes with water quality data were sampled over a period
of 1–3 yr, leading to few observations per lake (Table 2). The
percentage of lakes that have data from only a single date over
the entire 77-yr span of LAGOS-NE ranged from 17% (Chl a)
to 65% (DOC; Table 2). Overall, well-sampled variables are
well-sampled both within and among lakes, whereas poorly

Table 1. Distribution of data among variables in terms of the
percent (and number) of lakes > 1.0 ha within the LAGOS-NE
region (i.e., the “census” population of lakes) with data for each
variable and the total number of data points for the dataset con-
sidered in this study.

Group Variable
% of census lakes

with data (n)
% of all data

(n data points)

Trophic Secchi 9 (12,377) 54 (708,172)

Chl a 6 (8525) 15 (197,868)

TP 7 (10,490) 11 (148,759)

Nitrogen TN 5 (6553) 4 (56,970)

NH4 5 (6502) 4 (47,525)

NO3 6 (8173) 5 (68,478)

Carbon Color 4 (5636) 3 (43,542)

DOC 4 (4997) 2 (29,287)

Fig. 1. Within-year data availability for the trophic (top), nitrogen
(middle), and carbon (bottom) variables. Dashed vertical lines represent
01 June and 30 September. Note difference in y-axis scales.

Fig. 2. The number of lakes with data in each year for the eight focal var-
iables. The timeline was truncated at 1945 to highlight major trends,
although earlier records are present in LAGOS-NE.
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sampled variables typically have one or a few measurements per
lake drawn from a limited number of lakes. The effect of sam-
pling many lakes rarely and few lakes consistently over time is
that roughly 80% of LAGOS-NELIMNO data for each variable are
derived from ~ 20% of sampled lakes (Fig. 3; Supporting Infor-
mation Fig. S1). Color represents the extreme case with just 9%
of the sampled lakes accounting for 80% of the data.

Q3—where do we sample?
Limnological data are unevenly distributed across the

LAGOS domain. For trophic variables, there is a reasonable

concordance between the percent of lakes in any one state
and the percent of sampled lakes from that state that are in
the database (Fig. 4). For example, Minnesota, which contains
more lakes than any other state (21% of all lakes in the
17-state area), also has the largest fraction of lakes with Chl
a and Secchi data in LAGOS-NE (29–32% respectively). This
concordance is weaker for the N and C groups, however. New
Hampshire, Maine, and New York are responsible for a dispro-
portionately large percentage of the lakes with N data, whereas
Wisconsin, New York, and Maine similarly overcontribute to
the carbon group. Individual research and monitoring pro-
grams can have a major influence on these patterns, as was
the case for N and C groups, in which a substantial fraction of
data was generated by the Adirondack Long-Term Monitoring
Program in New York.

The geographic unevenness of data is particularly acute for
long-term records. As of 2010, 7 of the 17 states (Connecticut,
Illinois, Indiana, Iowa, Massachusetts, New Jersey, and Ohio)
had no lakes with 20 yr of data for any of the eight variables,
whereas Pennsylvania had one lake with long-term data
(Fig. 5; Supporting Information Table S1). Trophic records are
most abundant in Missouri and the northern half of the study
region. Long-term data availability is progressively rarer for N
and C variables; such records for any of the three N variables
are present in nine states and in just five states for C variables.
DOC represents the extreme case; long-term lake data occur in
three geographic clusters across four states (Maine, New York,
Wisconsin, and Michigan), with approximately 75% of all
records derived from lakes in the Adirondack region of
New York.

With respect to lake attributes, our analysis confirmed the
preferential sampling of larger lakes, with the extent of this
departure varying by both state and variable type (Fig. 6; Sup-
porting Information Fig. S2). Surface area is positively associ-
ated with an increased likelihood that a lake is sampled,
reaching the point where 40–87% of all census lakes between
1,000 and 10,000 ha have data for all eight variables

Table 2. Analysis of sampling intensity per lake for the eight focal variables, including number and percent of lakes with single site
visits, lakes with long-term data records, average (and maximum) number of observations (n) per lake, and the average (and maximum)
number of distinct years individual lakes were sampled.

Group Variable
Number of lakes sampled 1X

(% of all sampled lakes)

Number of lakes with 20+ yr
of data (% of all sampled

lakes)
Median n/
lake (max)

Median number of years
with observations (max)

Trophic Secchi 3148 (25) 1229 (10) 7 (3434) 3 (41)

Chl a 1434 (17) 271 (3) 3 (3075) 3 (33)

TP 3662 (35) 386 (4) 3 (2861) 2 (34)

Nitrogen TN 1920 (29) 53 (1) 3 (489) 2 (27)

NH4 3080 (47) 60 (1) 2 (395) 1 (29)

NO3 3507 (43) 109 (1) 2 (1055) 1 (27)

Carbon Color 3576 (63) 95 (2) 1 (432) 1 (30)

DOC 3256 (65) 62 (1) 1 (361) 1 (27)

Fig. 3. Cumulative frequencies of data accumulation as a function of the
percent of lakes contributing to the dataset for variables representing tro-
phic (Chl a), nitrogen (TN), and carbon (DOC) groups.
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(Supporting Information Fig. S3). The tendency to sample
larger lakes was related to an undersampling of abundant
hydrologically isolated lakes and oversampling of drainage
lakes low in the landscape (Supporting Information Fig. S4).
Finally, we were unable to make a reasonable comparison
between lake depths of the subset of sites that were sampled
for water chemistry and depths for the entire population of
census lakes. Depth data were available for < 10% of all lakes
(10,363 lakes), and most lakes with depth information (93%)
have also been sampled for chemistry. Thus, the two datasets
were virtually identical.

Q4—how do sampling tendencies influence estimates of
lake conditions?

Resampling the LAGOS-NE data in a stratified random fash-
ion to correct for the surface area bias led to relatively small
changes in data distribution for most variables. For trophic
variables, the overall shapes of observed and corrected sample
distributions had varying degrees of divergence but did not
result in significant changes (Fig. 7; Supporting Information -
Table S2). Median Secchi for corrected samples was slightly
shallower (1.8 m) relative to observed data (2.3 m), which is
marginally larger than reported differences in simultaneous

measurement of Secchi by two different samplers (15%
[Häkanson 1992] or 0.2 m [Obrecht et al. 1998]). Chl a and TP
medians were just slightly higher for the corrected dataset (1.3
and 3 μg L−1 for Chl a and TP, respectively) although there
was substantial overlap in the first to third quartile ranges of
observed and corrected datasets for all three variables. The Chl
a and TP differences are smaller than those reported in an
intercomparison of simultaneous sampling by university
researchers and citizen scientists (3.8 μg L−1 for Chl a and 5 μg
L−1 for TP; Obrecht et al. 1998). There was a small shift toward
higher Color and DOC values among corrected samples,
although this effect was modest for DOC (corrected median of
6.70 mg L−1 with first to third quartiles of 4.5–9.9
vs. observed median of 5.60 mg L−1 and first to third quartiles
of 3.9–8.4; Supporting Information Table S2) compared to the
corrected Color data (corrected median of 35 Platinum Cobalt
Units [PCU], with first to third quartiles of 16–80 vs. observed
median and interquartile range of 20 PCU and 10–40). The
slight shift toward higher concentrations for corrected samples
was absent for all three N variables, as medians for NH4 were
identical (18 μg L−1) and the median and maximum values
were lower for corrected TN and NO3 datasets relative to
observed (Supporting Information Table S2).

Fig. 4. The proportion of all lakes present in each state (census) present in the census population and the proportional contribution of lakes in each state
to LAGOS-NE (i.e., proportion of lakes in the sample) for each of the eight selected variables.
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With respect to effects of sample size on estimates of “true”
lake medians, only the three trophic variables met our criteria
for inclusion in the analysis (100 or more lakes with observa-
tions from the second and third quarters of the year from
20 or more years). As expected, increasing the sample size
decreased both the range and magnitude of the average

percent error of estimated medians for all variables (Fig. 8).
The average error of the “true” median based on a single sam-
ple varied from 18% (Secchi) to 38% (Chl a; Supporting
Information Table S3), with the average percent error drop-
ping below 10% for sample sizes of 20, 5, and 10 for Chl a,
Secchi, and TP, respectively. However, even as the average per-
cent error declined below 10%, the associated ranges varied
from 2.4–28% for Chl a to 0–21% for Secchi. The median
number of observations per lake for Secchi is 7 (Table 2), and
this corresponded to a median error of 7.5% (range = 0–34%).
Similarly, three observations per lake (the median sample size
for both Chl a and TP) corresponded to average errors of 24%
(11–66%) for Chl a and 16% (0–33%) for TP.

Discussion
Our examination of limnological data compiled from mul-

tiple sources demonstrated a collective water quality sampling
bias toward trophic state variables (Secchi, Chl a, and TP),
larger lakes positioned lower in drainage networks, summer,
and “snapshot data” (i.e., derived from one or a few lake
visits). Conversely, these tendencies are coupled with a scar-
city of multiyear records, limited data availability for nitrogen
and carbon variables, and spatial variation in the nature or
degree of all the above tendencies.

Fig. 5. Maps of the LAGOS-NE domain illustrating the location of all
lakes (gray) and lakes with 20 or more years of data (black) for representa-
tive variables. See Supporting Information Table S1 for counts of long-
term records for each state.

Fig. 6. Comparison of median surface area for all lakes present in each
state (census) and median surface areas of lakes with data for representa-
tive variables (Chl a, TN, and DOC) within each state in the LAGOS-NE
database.

Stanley et al. Biases in studying and monitoring lakes

1578

 19395590, 2019, 4, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.11136, W

iley O
nline L

ibrary on [03/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



What we measure
The dominance of trophic data, especially Secchi, is not

surprising given widespread and persistent concerns about
eutrophication in the United States and beyond (Dodds
et al. 2009; Smith and Schindler 2009) and the ease of mea-
surement and extensive citizen science programs that col-
lect water clarity data (Bigham Stephens et al. 2015). Similarly,
the strong preference for quantifying phosphorus but not
nitrogen (or carbon) reflects the long-standing identification
of phosphorus as the nutrient that limits primary produc-
tion and dictates trophic state (e.g., Dillon and Rigler 1974;
Schindler 1974; Correll 1998). We also saw an influence of
acid precipitation on variable choices. Among the N and C
groups, NO3 was the best quantified because of its inclu-
sion in research and monitoring programs that emphasized
acid–base chemistry. Some of these programs also measured
Color and/or DOC, and most acid rain monitoring focused
on regions with low acid neutralizing capacity (e.g., EPA’s
Eastern Lakes Survey, Adirondacks Long-Term Monitoring
Program in northeastern states). To a very large degree,
acid rain has shaped the geography of C and N data for
lakes.

Unfortunately, the focus on trophic variables combined
with the relatively narrow geography of acid rain impacts and
associated C and NO3 monitoring has put researchers and
managers in a weak position for addressing other known or
emerging water quality issues. As a case in point, it is now
clear that nitrogen can play a role in the occurrence of harm-
ful cyanobacterial blooms (Gobler et al. 2016) and can limit or
colimit phytoplankton growth in some places (Bergström and
Jansson 2006) or at some times of the year (Søndergaard et al.
2017). Similarly, although acid precipitation has abated in
many parts of northeastern United States and northern
Europe, N deposition has continued and expanded into new
areas, and some highly agricultural regions are now receiving
high atmospheric inputs of N in the form of NH4 rather than
NO3 (Du et al. 2014). Yet, in areas that were not historically
exposed to acid rain, there is little limnological context for
considering the consequences of such shifts in form and/or
amount of N inputs to lakes.

When we sample
Water quality data display conspicuous temporal biases

both within and among years. At the annual scale, the bias

Fig. 7. Empirical cumulative frequency distributions (ECDF) and violin plots of observed data (black) and data corrected for the actual distribution of lake
areas (gray) for representative trophic (Chl a), nitrogen (TN), and carbon (DOC) variables. See Supporting Information Table S2 for statistical summaries
of distributions for all variables.
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toward summer sampling is widespread and is particularly pro-
nounced for trophic variables. The more even within-year dis-
tributions of Color and DOC data result from the regular
sampling regime of the New York Adirondack Long-Term
Monitoring Program and, to a lesser degree, the North

Temperate Lakes Long-Term Ecological Research program
(Wisconsin), which account for 83% and 13%, respectively, of
all DOC data collected during the typically ice-covered
months of January, February, and March. Summer biases
undoubtedly reflect easier access to lakes and an expectation
of reduced productivity in colder months, especially for lakes
that freeze. However, recent meta-analyses have illustrated
that lakes remain metabolically active while ice covered and
argued that the focus on warm-season sampling limits both
the general understanding of winter dynamics and the capac-
ity to predict how lakes are likely to respond to unfolding
changes in climate (e.g., Bertilsson et al. 2013; Denfeld et al.
2016; Hampton et al. 2017).

The second conspicuous result regarding the temporal dis-
tribution of data is the surprisingly short duration of most lake
records. This brevity is evident from medians of 1–3 yr of data
per lake for all variables, as well as by the high percentages of
lakes with just a single observation per variable. The comple-
ment to very short data records is the small number and per-
cent of lakes with several years of observations. Even for
Secchi, the number of lakes with long-term (20+ yr) records is
surprisingly low (n = 1229). While this number represents a
healthy 10% of all lakes with Secchi data, it translates to < 1%
of census lakes in the LAGOS-NE region. Optimistically, our
accounting of long-term records should now be conservative,
as continued sampling since the 2010 cut-off will have
increased the number of sites with multiyear records. How-
ever, support for long-term monitoring has waned in recent
years (National Research Council 2004; Hughes et al. 2017),
including for water quality programs (Sprague et al. 2017),
and so the number of additional lakes that now meet this
20-yr criterion may be smaller than expected.

Our interest in the availability of long-term data is moti-
vated by the unique value of these records for documenting
and understanding change over time scales of years to decade,
for reconstructing large-scale historic changes in lake condi-
tions in concert with remote sensing imagery (Boucher et al.
2018), and the disproportionately large contribution that
long-term research and monitoring programs have made to
development of ecological ideas, natural resource manage-
ment activities, and environmental policy (Lindenmayer et al.
2010; Hughes et al. 2017). Unfortunately, limitations that are
already in place for studying long-term changes due to small
sample sizes are exacerbated by two additional realities. First,
while a 20-yr record is often sufficient for identifying trends or
generating robust predictions for some variables (Knowlton
and Jones 2006; Lottig and Carpenter 2012; Henson et al.
2016), in other cases, 30 or more years of data with multiple
samples per year and without gaps may be needed to detect
even strong directional change (Henson et al. 2016; Gray et al.
2018). As of 2010, such a threshold was not reached in any
lake for half of the eight variables. Second, the uneven geo-
graphic distribution of these sites provides a restricted view of
long-term dynamics in U.S. lakes at decadal time scales in

Fig. 8. Violin plots of the percent error of medians of Secchi (a), Chl a
(b), and TP (c) estimated from > 100 lakes using different sample sizes rel-
ative to a lake’s “true”(long-term) median. See Supporting Information
Table S3 for statistical summaries of distributions.
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general and for variables such as TN or DOC in particular.
Thus, current perceptions of how lakes vary and if they are
experiencing directional changes at these time scales are being
shaped by the dynamics of a small number of geographically
clustered sites. This same pattern also occurs at the global
scale, given high densities of long-term water quality datasets
in Canada and northern European countries and sparse infor-
mation elsewhere (e.g., see Hampton et al. 2017; Dugan et al.
2017b; McCrackin et al. 2017).

Despite the scarcity of lakes with long-term records, a
remarkable amount of limnological data has been collected
over the last three decades across the LAGOS-NE domain and
beyond. However, the variety of sampling dates and typically
small number of samples per site lead to questions regarding
the reliability of this information for characterizing lakes at
large spatial scales. Average errors in estimating a lake’s long-
term median based on the average number of observations per
lake varied from 7.5% (Secchi) to 24% (Chl a). Translating per-
centages to absolute values for Chl a, a lake with a long-term
median of 5.2 μg L−1 (the grand median Chl a for all LAGOS-
NE observations) that was sampled three times could produce
an estimate of 4.0 or 6.4 μg Chl a L−1. This appears to be a
moderate amount of error, although even this small difference
could result in a lake being placed into different trophic cate-
gories in some lake classification schemes (e.g., Carlson 1977).

Results of this sample size analysis should be interpreted
carefully given our underlying assumptions. We referred to a
lake’s long-term median for Secchi, Chl a, and TP as the “true”
median, and assumed that 40 or more observations from
20 different years are sufficient for determining this “true”
median. Built into this decision is the additional assumption
that all lakes have some persistent average condition for these
three variables. Clearly, this is unlikely to be the case. Our
rationale for including all lakes regardless of their long-term
dynamics was to mimic the use of data from different years in
large-scale studies (e.g., Filstrup et al. 2014; Collins et al. 2017;
DelSontro et al. 2018) and because of evidence that only a
small fraction of lakes (< 11%) with observations distributed
over several years in the LAGOS-NE region have changed sig-
nificantly over time for Secchi (Lottig et al. 2014), TP, and Chl
a (Oliver et al. 2017). Indeed, the modest percent errors calcu-
lated in our resampling exercise are consistent with observa-
tions of relatively static conditions in most of these systems
(Oliver et al. 2017) and suggest that an average summertime
state for these variables can be reasonably approximated from
> 5 temporally distributed observations per lake. Nonetheless,
these results should be used cautiously going forward, particu-
larly in the context of ongoing environmental change.

Where
The preference for sampling large lakes—or avoiding small,

hydrologically isolated lakes—has been described in prior
studies within (Peterson et al. 1999; Wagner et al. 2008) and
beyond (Hamill and Lew 2006) the LAGOS-NE domain. In the

United States, this well-known bias inspired the use of
probability-based surveys in which sampling efforts are strati-
fied by the distribution of lake surface areas (Peterson et al.
1999; Peck et al. 2013). Preferential oversampling of larger
lakes is driven by ease of sampling, greater human use of these
water bodies, and the corresponding interest and need to
monitor and manage widely used natural resources (Paulsen
et al. 1998)—motives that are notably distinct from evaluating
status and trends of a large population of lakes distributed
across a broad geographic area.

Given evidence of differences between small and large lakes
for a variety of attributes (see Downing 2010) and the empha-
sis that has been placed on matching survey designs to lake
surface area distributions to ensure the veracity of broad-scale
assessments, we were surprised to find that correcting for the
lake area bias produced only subtle differences in the statistical
distributions of the eight focal variables. We can imagine
three possible explanations for this result. First, differences in
lake surface area have been found to affect some measures of
lake water quality, but not others. Variation in DOC concen-
trations among lakes has been related to surface area differ-
ences in several studies (e.g., Xenopoulos et al. 2003; Hanson
et al. 2007; Kankaala et al. 2013), consistent with the slight
upward shift in median DOC and Color after we corrected for
lake area bias in the LAGOS-NE data. However, similar evi-
dence for other variables considered here is limited. For exam-
ple, Hanson et al. (2007) found a surface area effect for TN as
well as DOC but not for TP. Similarly, surface area was not a
significant predictor of N and P among lakes distributed across
New Zealand (Abell et al. 2011), of P among reference lakes in
Europe (Cardoso et al. 2007), or of TP, TN, or their ratio in
lakes of the LAGOS-NE study area (Collins et al. 2017). Sec-
ond, surface area effects may be weak or difficult to detect
among lakes > 1 ha. Significant relationships between surface
area and limnological attributes often include systems < 1 ha
(e.g., Xenopoulos et al. 2003; Hanson et al. 2007; Holgerson
and Raymond 2016), and these relationships can be particu-
larly steep at the smaller end of the size gradient
(e.g., Kankaala et al. 2013), where the distinction between
lakes and wetlands becomes blurred (Thornton et al. 2016).
Finally, other factors not taken into consideration
(e.g., geology and land use) may overwhelm a surface area
effect at the scale of the entire LAGOS-NE region. In this case,
the influence of surface area could be secondary or may in fact
have little capacity to explain observed variance in water qual-
ity parameters of interest here.

Regardless of the presence or absence of a lake area effect,
two points can be extracted from our comparison of observed
and corrected datasets. First, the rationale for incorporating
surface area in broad-scale surveys is that all else being equal,
this attribute accounts for some amount of the observed vari-
ance in water quality measurements. Several lake and land-
scape features can be robust predictors of water quality
(e.g., land use/land cover, lake depth, water residence time,
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and elevation), leading to the question of which of these
(if any) should be built into sampling designs? Some drivers
are easier to include than others, particularly those that can be
obtained from remotely sensed data (Hollister et al. 2016).
Unfortunately, other lake features that affect water quality
such as depth (e.g., Jeppesen et al. 2003; Taranu and Gregory-
Eaves 2008; Read et al. 2015) or water residence time
(e.g., Xenopoulos et al. 2003; Sobek et al. 2007) are sparsely
quantified and difficult to predict with certainty (Hollister
et al. 2011; Oliver et al. 2016). However, rather than exclude
these sorts of attributes, alternative strategies may be possible,
such as using surrogate metrics (e.g., ratios of watershed area
to lake area as an indicator of water residence time; Xenopou-
los et al. 2003; Sobek et al. 2007) or categorical approaches
(e.g., high- and low-latitude lakes or shallow and deep lakes;
Søndergaard et al. 2005; Hamill and Lew 2006).

The second lesson that can be gleaned from these analyses
is that while integrated datasets such as LAGOS-NE are not
derived entirely from probabilistic surveys, they can be used
to identify sampling tendencies, and in some cases, may allow
us to correct for these biases via statistical approaches such as
resampling. That is, resampling large integrated datasets can,
in some cases, provide a way to generate a representative set
of observations with which to make statistical and ecological
inferences.

Conclusion
As the availability of environmental datasets increases, we

expect the recent trend of synthesizing and analyzing infor-
mation on lakes and watersheds derived from a variety of
sources to accelerate. This reality inspired our questions about
patterns of data availability, and because it integrates multiple
independent datasets, LAGOS-NE provided a convenient
resource for addressing these questions. Nonetheless, the spe-
cific outcomes of our analyses were inevitably shaped by the
geographic context of LAGOS-NE. Sampling tendencies in
other countries—or even in other regions of the United
States—are likely to differ in some fashion. Heterogeneity in
data availability over both space and time in the LAGOS-NE
region can be connected to responses to specific management
challenges (in this case, eutrophication and acid rain), the
prominence of citizen science programs, and/or a small num-
ber of programs for specific variables and long-term datasets.
We expect these same tendencies to exist elsewhere, although
they may be driven by other or additional management priori-
ties or circumstances. It is encouraging that some regional-
and national-level programs have expanded their scope over
time to include a greater diversity of limnological variables
rather than focusing on issue-specific parameters (e.g., Peck
et al. 2013; Fölster et al. 2014). However, overcoming the lim-
ited amount, type, and geography of long-term data may be
particularly challenging for future investigations. Inconsis-
tencies in the availability of limnological data will inevitably

persist regardless of the type of dataset (integrated or probabi-
listic), and biased sampling can lead to biased or spurious con-
clusions about limnological pattern and process at
macroscales. Thus, a critical step in the use of broad-scale data-
sets, particularly those compiled from multiple sources that
often cross multiple political or organizational boundaries, is
to determine the what, where, and when of data being used to
discover or examine limnological trends and patterns at long
temporal and broader spatial scales.
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