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Abstract. Although ecosystems respond to global change at regional to continental scales
(i.e., macroscales), model predictions of ecosystem responses often rely on data from targeted
monitoring of a small proportion of sampled ecosystems within a particular geographic area.
In this study, we examined how the sampling strategy used to collect data for such models
influences predictive performance. We subsampled a large and spatially extensive data set to
investigate how macroscale sampling strategy affects prediction of ecosystem characteristics in
6,784 lakes across a 1.8-million-km2 area. We estimated model predictive performance for dif-
ferent subsets of the data set to mimic three common sampling strategies for collecting obser-
vations of ecosystem characteristics: random sampling design, stratified random sampling
design, and targeted sampling. We found that sampling strategy influenced model predictive
performance such that (1) stratified random sampling designs did not improve predictive per-
formance compared to simple random sampling designs and (2) although one of the scenarios
that mimicked targeted (non-random) sampling had the poorest performing predictive models,
the other targeted sampling scenarios resulted in models with similar predictive performance
to that of the random sampling scenarios. Our results suggest that although potential biases in
data sets from some forms of targeted sampling may limit predictive performance, compiling
existing spatially extensive data sets can result in models with good predictive performance that
may inform a wide range of science questions and policy goals related to global change.

Key words: data-intensive ecology; ecological context; extrapolation; interpolation; lakes; macroscale;
monitoring; prediction; sampling; sampling design.

INTRODUCTION

Scientific evidence from focused monitoring efforts
has been used since the 1990s to inform environmental
policy in response to broad-scale environmental stres-
sors such as acid rain and lake eutrophication (Olsen
et al. 1999), and there has been much interest in

knowing how different strategies used to select sample
ecosystems may affect inference (Janousek et al. 2019).
Previous work has been conducted primarily at local
to regional scales, often focusing on geographic areas
containing the most sensitive ecosystems. In recent
years, there has been a growing recognition of the need
to predict ecosystem responses to global change over
broader spatial extents that encompass scales from
regions to continents (Miller et al. 2004, Dietze et al.
2018, Peters et al. 2018; hereafter referred to as macro-
scales sensu Heffernan et al. 2014). To date, it is
unknown how sampling design affects our ability to
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understand and predict states and relationships in
unsampled ecosystems at macroscales.
Prediction at macroscales is complicated because it

requires integration of the multi-scaled spatial variation
that underlies temporal responses to drivers of global
change. Because spatial heterogeneity can be large and
can exceed temporal variation (Soranno et al. 2019), it is
a critical component to be accounted for when predict-
ing ecosystem states and relationships at the macroscale.
Further, prediction accuracy is strongly influenced by
the spatial variation of the data used to generate models,
which means that the strategy used to select sample
ecosystems plays a large role in predictive modeling suc-
cess (Thompson 2012).
There are two main ways to acquire data for predictive

models at the macroscale: coordinated national monitoring
programs and compilations of more localized (e.g., local or
regional) and disparate data sets. Examples of the first
approach include the U.S. Environmental Protection
Agency’s National Lakes Assessment program that samples
~1,000 lakes every five years, comprising ~1% of lakes ≥1 ha
(U.S. Environmental Protection Agency Office of Wetlands,
Oceans and Watersheds Office of Research and Develop-
ment 2017). Similarly, the U.S.D.A. Forest Service’s Forest
Health Monitoring Program samples ~12,500–25,000 plots
annually, comprising 10–20% of all forest plots (Smith
2002). A recent example of the second approach is a macro-
scale data set of lake observations created by compiling
almost 90 disparate local and regional data sets across 17
U.S. states resulting in ~12,000 lakes with at least one obser-
vation, comprising 24% of lakes ≥4 ha (Soranno et al.
2017). In both approaches, a small proportion of ecosystems
is sampled and the knowledge gleaned from them is conse-
quently applied to unsampled ecosystems.
Various strategies have been used to select ecosystems

for sampling in macroscale monitoring programs in the
past, each with their strengths and weaknesses in terms
of resources required, potential biases introduced, and
predictive power (Urquhart et al. 1998, Olsen et al.
1999, Thompson 2012, Sauer et al. 2013). At the macro-
scale, sample ecosystems are rarely selected using a sim-
ple random design but are sometimes selected using a
stratified random design. There has also been a long
history of sampling ecosystems for purposes such as
ecosystem management without using a probabilistic
sampling design that allows representation of the entire
population. In these cases, targeted sampling is con-
ducted for subsets of ecosystems or landscapes that are
of interest, such as regions that are of high conservation
interest or ecosystems that are at high-risk of human
perturbation (i.e., observational studies where there is
little to no control over which ecosystems are sampled;
Thompson 2012). None of these strategies result in a
data set that is a perfectly representative sample of the
entire population, particularly when using the sample
data for prediction of unsampled ecosystems. In prac-
tice, the majority of existing macroscale data sets are
likely to be biased in different ways, with some data sets

over- or others undersampling particular ecosystems or
those with particular characteristics (Webb et al. 2013,
Stanley et al. 2019, Zhao et al. 2019). For example,
when multiple disparate data sets are compiled, the
resulting data sets include data from a mixture of prob-
abilistic sampling designs and targeted sampling efforts,
the effects of which can only be quantified after the
database has been created (e.g., GBIF, LAGOS-NE;
Gaiji et al. 2013, Soranno et al. 2017).
When building a predictive model, it is a common

practice to train the model using a subset of the data set
(training data) and then test the model using data that
were withheld (out-of-sample or test data; Lohr 2019).
A fundamental assumption behind most predictive
empirical models is that the training and test data are
generated from the same distributions (i.e., predictions
made within the model space). Thus, the resulting pre-
dictions are thought of as interpolations. However, if the
training and test data are from different distributions,
then there is no guarantee that the model fitted to the
training data will perform well on the test data (i.e., pre-
dictions made outside the model space). For example,
predictions at unsampled ecosystems with predictor vari-
ables that exceed the range of predictors in the training
data and/or comprise a novel combination of predictors
may be unreliable and are commonly referred to as
extrapolations (Conn et al. 2015). Encountering such
novel settings may occur often in macroscale studies due
to the broad spatial extent associated with them and the
large gradients that exist at these extents for the many
characteristics that make up an ecosystem’s ecological
context (e.g., land use/cover, geology, climate). There-
fore, it is critical to assess how various sampling strate-
gies with different purposes may introduce biases that
affect distributions of training and test data sets and
could change interpolations to extrapolations, thus
influencing model predictive performance.
We used a large database compiled from local and

regional disparate data sets to ask: what is the effect of
sampling design on predictive models of ecosystem char-
acteristics in unsampled ecosystems at the macroscale?
We used 4,253–6,784 observations of lake nutrients and
productivity from a data set of 51,101 lakes and their
ecological contexts within a spatial extent of
1,778,100 km2 in the northeastern and midwestern Uni-
ted States to answer this question (Soranno et al. 2015,
2017). Although this database has its own inherent
biases (e.g., undersampling of small lakes; Stanley et al.
2019), it includes a wide range of lake types with large
gradients of ecosystem characteristics located across
many regions with large gradients of ecological contexts.
Therefore, it is an ideal database to create subsets of data
that represent known degrees of bias in order to quantify
the effects of sampling design on predictive models of
ecosystem characteristics.
We developed scenarios that mimic three common

strategies used for collecting observations on ecosystem
characteristics at macroscales: random sampling design,
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stratified random sampling design, and targeted sam-
pling. We used three measures of lake ecosystem charac-
teristics, total phosphorus, total nitrogen, and chlorophyll
a, to compare the predictive performance of models
across these scenarios and strategies. We expected models
to have highest predictive performance in cases of
assumed interpolation and lowest in cases of assumed
extrapolation (Conn et al. 2015). We also expected strati-
fied random designs to increase predictive performance of
the interpolation scenarios because the strata are chosen
based on underlying ecological processes that are more
likely to be related to spatial variation than strictly ran-
dom sampling. Therefore, we expected predictive perfor-
mance to be highest when using the stratified random
designs, moderate when using the random designs, and
lowest when using the targeted sampling. We also
expected better predictive performance when using a rela-
tively large proportion of lakes to train or build the pre-
dictive model. Finally, we expected nutrients, which are
directly linked with landscape context variables, to be bet-
ter predicted than lake productivity. Our results will
inform the design of macroscale ecosystem assessments,
lead to more robust understanding of macroscale varia-
tion among ecosystems, and result in better predictions of
unsampled ecosystems.

Conceptualizing the effect of sampling design on
predictive models of unsampled ecosystems

We created seven scenarios that fall within one of the
three common sampling strategies employed in macro-
scale studies, the data from which are used to develop
models used to predict at unsampled ecosystems. Fig. 1
depicts these strategies as columns with multiple scenar-
ios under each strategy labeled (a–g) and with training
data in orange and test data in blue.

Random sampling designs.—The scenarios depicted in
the left panel of Fig. 1a, b illustrate the rare cases when
ecosystems are selected at random at the macroscale,
called random sampling design. Fig. 1a depicts the best-
case scenario whereby a large proportion of the data are
used to train the model and a small proportion of data
are used to test the model. We use this scenario as a pre-
dictive baseline to compare with the other scenarios that
have smaller training data sets since having large data
sets to build predictive models is extremely rare in ecol-
ogy and those that are available often have been com-
piled from multiple (non-random) sources that are
question or problem driven. Fig. 1b shows the more
common scenario in which a smaller data set is available
for model training and the test data set is larger. If the
sample size of the training data set is sufficiently large,
model predictions in these cases are assumed to be
within the model space, resulting in interpolation.

Stratified sampling designs.—A second set of scenarios
demonstrate stratified random sampling designs that are

commonly used in macroscale ecosystem assessments
(Fig. 1c–d). In these cases, factors that are thought to be
important for driving ecosystem processes and patterns
are used to first stratify the entire population of ecosys-
tems and then ecosystems are randomly selected within
each stratum. Fig. 1c, d represents two common cases of
stratified random sampling design. Fig. 1c depicts sam-
ple selection using strata based on ecosystem type and
Fig. 1d depicts selection using strata based on spatial
location of the ecosystem, i.e., region. Species presence
and/or abundance are commonly estimated with strati-
fied sampling designs whereby the landscape is stratified
by ecologically important characteristics (e.g., moose
surveys across vegetation types or high/low quality habi-
tat or fish surveys in lakes stratified by depth and area;
Ver Hoef 2008, Rask et al. 2010). Stratified random
designs assume that the feature(s) used to define strata
are ecologically relevant for the response variables being
considered by the study (i.e., ecosystem type or regions
drive variation among ecosystems). Therefore, as long as
the sample size of the training data set is sufficiently
large, predictions for unsampled ecosystems are assumed
to be interpolations.

Targeted sampling designs.—The third common sampling
strategy is targeted sampling that happens when assess-
ments are question- or problem-driven. In these cases, par-
ticular ecosystem types or regions are targeted for
sampling in order to answer specific questions or to assess
specific populations of ecosystems. Two examples of this
design are giant sequoia trees sampled to reconstruct regio-
nal fire histories (Swetnam 1993) and lakes in the United
States sampled as part of the National Eutrophication Sur-
vey to study causes of eutrophication (U.S. Environmental
Protection Agency 1975). Fig. 1e–g depict examples of tar-
geted sampling that result in the training data sets being
based on particular ecosystem types (Fig. 1e), regions
(Fig. 1f), or regions with particular land uses (Fig. 1g). In
such cases of targeted sampling, when the data are used in
predictive models of unsampled ecosystem types or
regions, we assume that these ecosystems are not represen-
tative of all ecosystems. Therefore, we assume that these
may represent cases of extrapolation.

METHODS

Study site and data set

We used the LAGOS-NE database that spans the
lake-rich regions of the northeastern and midwestern
United States (Soranno et al. 2015, 2017) and includes
4,253–6,784 lakes depending on the response variable
(from a total population of 51,101 lakes ≥4 ha). The
study lakes include both shallow and deep lakes (in-
terquartile range of maximum depth = 4.6–13.7 m), nat-
ural lakes and reservoirs, and lakes with watersheds that
are entirely forested to entirely surrounded by agricul-
tural land use. The lakes in this database cover broad
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gradients in climate, geology, land use/cover, hydrology,
and topography. LAGOS-NE-GEO v1.05 includes lake,
local, and regional ecological context (Soranno and
Cheruvelil 2017a) and LAGOS-NE-LIMNO v1.087.1
includes at least one in situ observation of lake water
quality for 10,173 lakes (Soranno and Cheruvelil 2017b).
These lakes are nested within 65 regions defined by the
level 4 hydrologic units regionalization (Seaber et al.
1987; hereafter referred to as regions and HU4s; Fig. 1).
These regions with an average area of 43,500 km2 have
been shown to account for regional variation in nutri-
ents and productivity of this lake population (Cheruvelil
et al. 2013). Data and code are available (see Data Avail-
ability).

Lake response variables

We analyzed three ecosystem characteristics of lakes
that represent major nutrients and primary productivity:
total phosphorus (TP), total nitrogen (TN), and chloro-
phyll a (CHL). These variables are routinely measured
by a wide range of academic, governmental, and non-
governmental programs to assess water quality (Poisson
et al. 2019). We selected lakes and observations using the
following criteria. Lake nutrient and productivity obser-
vations were selected during the time of peak production
in these lakes (i.e., the summer stratified period of 15
June through 15 September) during the years 1980 to
2011. For lakes with multiple observations within a

FIG. 1. Conceptual figure depicting three types of sampling strategies (1–3) used for selecting ecosystems to sample at macro-
scales. Underneath each type is a description of the assumptions underlying the resulting models. In all seven depictions (a–g), there
are ecosystems that are used to build predictive models (training data set; blue circles) and ecosystems that are used to test the pre-
dictive models (test, orange circles). From left to right: 1. Random sampling designs whereby ecosystems are chosen completely ran-
domly from the sample extent; predictive models for unsampled ecosystems are assumed to be interpolation, if sample size is
sufficient. 2. Stratified random sampling designs whereby ecosystems are first stratified by ecosystem type (top) or their location
within ecological regions (regions depicted by dark lines, bottom) that are thought to drive variation among ecosystems and second,
ecosystems are selected randomly within those strata; predictive models for unsampled ecosystems are assumed to be interpolation,
if the strata are ecologically relevant and sample size is sufficient. 3. Targeted sampling whereby particular types of ecosystems
(top), particular ecological regions (middle), or regions with particular land uses (bottom) are targeted for sampling in order to
answer a particular question; predictive models for unsampled ecosystems are assumed to be extrapolation. Panel labels a–g relate
to the seven scenarios used in this study that are described and depicted throughout.
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summer or across multiple years, we selected a single
sample that contained the most response variables. The
resulting data came from lakes ranging from very nutri-
ent-poor and low productivity systems to very nutrient-
rich and high productivity systems that are distributed
across our study area (Table 1, Fig. 1).

Local and regional ecological context predictor variables

We selected 18 predictor variables a priori that are con-
sistently related to lake nutrients and productivity
(Table 2; Read et al. 2015, Collins et al. 2017, Lapierre
et al. 2018, Soranno et al. 2019). At the local scale, we
included six lake-specific characteristics: lake connectivity
type (defined as lakes that have either no stream connec-
tions or only outflowing stream connections (Isolated),
lakes with inflowing and outflowing stream connections
(DR_Stream), or lakes with connections to upstream
lakes (DR_LakeStream); lake water clarity (as measured
by Secchi disk depth); maximum lake depth; lake com-
plexity (a metric of lake shape that measures the deviation
of the shoreline from a circular shape); and, lake eleva-
tion. Lake water clarity was included because it is avail-
able for nearly all lakes in our study sample (Fig. 2) and
model predictions are more accurate when they are condi-
tional on water clarity (Wagner and Schliep 2018, Wagner
et al. 2020). We also included five watershed-specific char-
acteristics for the area of land draining directly into the
lake as well as the area that drains into upstream-con-
nected streams and lakes <10 ha (i.e., the inter-lake water-
shed; Soranno et al. 2017): watershed wetland cover;
watershed complexity (a metric of watershed shape that
measures the deviation of the watershed boundary from a
circular shape); watershed to lake area ratio; watershed
stream density; watershed forest cover; and watershed
road density. Finally, seven regional-scale characteristics
calculated for each HU4 were included in models: mean
percent baseflow (an index of regional groundwater con-
tribution); mean runoff; percent agricultural land use;
mean annual temperature; mean annual precipitation;
mean total nitrogen deposition in 1990; and the difference
in mean total nitrogen deposition from 1990 to 2010.
Details on the data sources for these variables are pro-
vided in Soranno et al. (2017).

Macroscale sampling scenarios

We created seven sampling scenarios that mimic com-
mon approaches used for collecting observations of
ecosystem characteristics at the macroscale (Fig. 1a–g).

In these scenarios, we assumed that the population of
LAGOS-NE lakes with TP (n = 5,896), TN (n = 4,253),
or CHL (n = 6,784) represent the census population
(but see Stanley et al. 2019) and that the training and
test data were subsets of this population. We fitted mod-
els to each of these seven scenario data sets and com-
pared predictive performance (see below for details) for
modeling the state of “unsampled” ecosystems in the test
data set.

Random sampling designs.—In these two scenarios, we
used a random sampling design and examined the effect
of sample size on predictive model performance
(Fig. 1a, b). First, we created a scenario that represents
an analytical predictive baseline with a large training
data set of 75% of sampled lakes (Fig. 1a). As a con-
trast, we created a scenario that uses a small training
data set of 25% of sampled lakes (Fig. 1b).

Stratified random sampling designs.—In these two sce-
narios, we stratified the sampling based on ecological
context measured at either the local scale (based on lake
type) or the regional scale (based on the region member-
ship of each lake; Fig. 1c, d). For the lake type strata,
we created four clusters of lakes based on watershed and
regional landscape context characteristics (Table 2) and
using hierarchical clustering using Ward’s method
(Ward 1963). Cluster 1 was characterized by lakes in
regions with above average number of and extent of
upstream lakes. For the remaining three clusters that
had below average regional upstream lake connectivity,
lakes were characterized by either high stream density in
the watershed (cluster 3), high percent of wetlands in the
watershed and around the lake perimeter (cluster 4,) or
by both low stream density and low wetland percent in
the watershed (cluster 2). For both stratified random
scenarios, we selected 25% of lakes within each strata
(lake type or region) to build the predictive models and
then predicted the values for the remaining 75% of lake
ecosystems as we did for the random sampling design
scenario that had a small training data set.

Targeted sampling designs.—We created three targeted
sampling scenarios by selecting lakes of particular types,
particular regions, or particular types of regions. First,
using the above four lake type clusters, we selected all
lakes in two of the four clusters to form the training data
set and tested the model on the lakes in the remaining
two of the four clusters. Second, we selected all lakes in
half of the regions to form the training data set and

TABLE 1. Summary of response variables (minimum, maximum, median, mean, 25th, and 75th percentiles).

Response variable Units n Minimum 25th Median Mean 75th Maximum

Total phosphorus µg/L 5,896 0 10 16 39.9 34 1,184
Total nitrogen µg/L 4253 0 380 600 944.3 990 2,0574
Chlorophyll a µg/L 6,784 0 2.6 5 16.3 13 553.4
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tested the model on lakes in the remaining half of the
regions. For these two targeted scenarios, we split the
sampled lake data ~50:50 and randomly selected the lake
type clusters or regions for training the models. For the
third targeted scenario, we deliberately selected one-half
of the regions with the lowest proportion of agricultural
land to form the training data set and tested the model
on lakes in the remaining regions with the highest pro-
portion of agricultural land. However, because lakes are
not distributed equally across regions, the number of
lakes was not 50:50 in the training:test data sets for this
scenario. The high-agriculture regions contain only 25%
of the sampled lakes in the study area, whereas the low-
agricultural regions are very lake rich and contain 75%
of the sampled lakes in the study area.

Predictive models of ecosystem characteristics

We used random forest models (Breiman 2001, Liaw
and Wiener 2002) to predict each of the three response
variables (TP, TN, CHL) based on the 18 local (lake-
specific and watershed) and regional predictor variables
described above that are related to lake nutrients and
productivity in the LAGOS-NE lakes (Tables 1, 2). Ran-
dom forest is an ensemble learning method that gener-
ates its prediction by averaging the outputs produced by

a set of regression trees; and, each regression tree is cre-
ated via bootstrapping by applying sampling with
replacement on the training data (Breiman 2001, Zhou
2012). There are no distributional assumptions for ran-
dom forests and the algorithm determines the best
model based on squared error between predictions and
true, out of sample, data (Breiman 2001).
We log-transformed the response variables after add-

ing 0.1 to the values to down-weight errors on lakes with
large data values so that our error terms are closer to
percent error than to absolute error. For predictor vari-
ables, there were a few cases of missing values (1.97% of
values). Those values were imputed with the mean value
for that variable so that all observations could be used in
the random forest models. The predictor variables were
standardized by subtracting the mean and dividing by
the standard deviation.
After these pre-processing steps, the data set was split

into training and test data sets based on the seven sce-
narios depicted and described above (Fig. 1). To mini-
mize the likelihood of chance selection affecting
modeling results, we randomly split the data set into
training and testing data sets 10 times for each scenario
possible (four of the seven scenarios). For the two sce-
narios that used four lake types, we could only create six
sets of training and testing data sets (all possible

TABLE 2. Summary of the predictor variables (minimum, maximum, median, mean, 25th, and 75th percentiles) at the local (lake
and watershed) and regional scales.

Predictor variable Units Minimum 25th Median Mean 75th Maximum

Local
Lake connectivity† NA NA NA NA NA NA NA
Lake water clarity† m 0 1.30 2.40 2.75 3.80 18.25
Lake max depth† m 0.30 4.60 8.53 10.84 14.02 198.4
Lake complexity† NA 1.00 1.40 1.75 2.11 2.35 30.27
Lake elevation‡ m 0 241.1 323.9 316.5 412.1 1,038.6
Watershed wetland§ % 0.00 2.42 7.23 12.28 17.77 93.08
Watershed complexity† NA 1.21 2.02 2.37 2.59 2.85 25.49
Watershed lake ratio† NA 0.01 3.88 8.31 42.63 21.03 53,517.4
Watershed stream density† m/ha 0 0 3.08 4.54 7.57 71.77
Watershed forest§ % 0 23.70 53.8 49.91 75.05 100
Watershed road density¶ m/ha 0 14.50 24.35 30.96 39.36 262.66

Regional
Baseflow mean# % 14.18 47.92 52.62 52.08 58.44 78.83
Runoff mean# in/yr 2.80 7.26 10.65 13.21 22.59 26.95
Agriculture§ % 1.79 5.67 26.33 28.64 34.07 78.66
Temperature mean|| °C 3.46 5.44 6.15 6.83 8.17 15.40
Precipitation mean|| mm 606.60 714 839.3 910.3 1,106.8 1,282.7
N dep mean†† kg/ha 2.68 4.37 5.36 5.27 5.99 8.67
N dep difference†† kg/ha -1.49 -0.11 1.47 1.30 2.47 4.66

Notes: Lake connectivity is a categorical variable with three categories (Isolated, DR_Stream, and DR_LakeStream). Lake and
watershed complexity refer to lake and watershed boundary complexity factor, respectively, which are measures of reticulation, N
dep refers to nitrogen deposition in 1990, and N dep difference refers to N deposition in 1990 minus that in 2010.
†National Hydrography Dataset (NHD) (2013) and Soranno et al. (2015).
‡USGS National Elevation Dataset (NED) (2013).
§National Land Cover Database (NLCD) (2006).
¶United States Census TIGER roads data (2013).
#United States Geological Survey (USGS) (1951–1980).
||PRISM climate group 30-yr normal (1981–2010).
††National Atmospheric Deposition Program (1990–2010).
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combinations of four types). For the targeted sampling
scenario that used regional land use, only one train/test
data set could be created. We then used the random for-
est method, building 189 total independent models, one
for each combination of response variable (3), sampling
design scenario (7), and train/test data set combination
(1, 6, or 10 as described above). Random forest has sev-
eral hyperparameters that need to be tuned with the
training data, including maximum tree depth and num-
ber of trees. We conducted a grid search, with both of
these hyperparameters allowed to range from 50 to 200.
We performed fivefold cross validation (Stone 1974) on
the training data to determine the optimal hyperparame-
ter setting. Specifically, we iteratively reserved four of
the five folds for model building and used the remaining
fifth fold as a validation set to select the best hyperpa-
rameters. We then re-trained the random forest model
on the entire training set using the best hyperparameter
values and applied the resulting model to the test data
set to predict the response variables. We trained our ran-
dom forest model using the Python scikit-learn Ran-
domForest package with Gini impurity as the splitting
criterion of the tree (Pedregosa et al. 2011).

Predictive performance.—We quantified model predic-
tive performance three ways for each of the 189

independent models to compare the effect of sampling
scenarios on model performance. First, we calculated
the root mean squared error (RMSE), which is a mea-
sure of average prediction error that is in the units of the
log-transformed response variable. Second, we calcu-
lated the median relative absolute error (MRAE;
e ¼ median by � yj j=yð Þ), which is a unitless measure of
relative error that can be useful for comparing model
performance across response variables. Third, we calcu-
lated the predictive R2, which is a bounded measure of
model relative accuracy whereby 0 indicates that model
prediction is no better than using the mean value of the
response variable and 1 indicates perfectly accurate
model prediction. For the six scenarios with multiple
train/test data set combinations, we calculated average
predictive performance and corresponding standard
error over the multiple train/test data set combinations.

RESULTS

The predictive models accounted for 34–63% of the
variation in lake nutrients and productivity across the
seven scenarios that mimic three common macroscale
sampling strategies (Fig. 3A). In general, R2 values
decreased from larger to smaller training data sets, from
random sampling design (stratified or not) to targeted

FIG. 2. Map of lakes color coded by water clarity measured as Secchi disk depth (m), colored by percentile. Gray lines delineate
regions.
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sampling, and from TP to TN and to CHL. R2 was >0.5
for all of the response variables and sampling scenarios,
except for when modeling TN using the regional land
use targeted sampling scenario (Fig. 3A(g)). The predic-
tor variables that accounted for most of the variation in
responses were lake and watershed landscape character-
istics such as lake maximum depth, watershed percent
forest, and water clarity (Appendix S1: Table S1–S3).
The two random sampling design scenarios are (a)

and (b) in Fig. 3. The scenario that used 75% of lakes to
build the model (a) resulted in predictions of nutrients
and productivity with the lowest error as measured by
RMSE and MRAE (Fig. 3B, C). Although we consid-
ered this scenario to be somewhat unrealistic in practice
due to the large sample size (e.g., n = 4,422 for TP),
when we decreased that sample size to 25% of sampled
lakes (e.g., n = 1,474 for TP; (b)), the effect on predictive
performance was negligible (change in RMSE of 0.02–
0.03; Fig. 3B, Table 3).
The two stratified random sampling design scenarios

are (c) and (d) in Fig. 3. When comparing the simple
random sampling design scenarios with the smaller
training data set (b) to these two stratified random sam-
pling designs, we found small differences in predictive
performance (Fig. 3, Table 3). In fact, the differences
among these three random sampling design scenarios
(stratified or not) were nonexistent to negligible. There-
fore, the three assumed interpolation scenarios with
smaller training data sets (b–d) were similarly able to
predict lake nutrients and productivity.
The three scenarios that represent targeted sampling

are (e)–(g) in Fig. 3. Targeted sampling based on lake
type (e) or region (f) resulted in slightly lower predictive
performance and higher variation across simulated data
sets compared to the random sampling design scenario
that uses the smaller training data set (b) (Fig. 3). How-
ever, the scenario that mimicked targeted sampling of
regions with high agriculture (g) resulted in the poorest
performance of any scenario, particularly for TN. This
poor performance is likely due to this scenario being a
case of extrapolation as demonstrated by differences in
the distributions of the response variables and important
predictor variables between the training and testing data
sets for (g) that was not apparent for the other scenarios
(Fig. 4).

DISCUSSION

We studied 6,784 lakes across a spatial extent of
1.8 million km2 to understand how different sampling
strategies may affect model predictions of commonly
measured ecosystem characteristics in unsampled
ecosystems at macroscales. We found that, although the
sampling strategy used is likely to influence model pre-
dictive performance, the differences may not always be
as large or as expected based solely on sample sizes and
whether the strategy results in interpolation or extrapo-
lation. We have two specific take home messages from

this research. First, sampling designs based on two com-
monly used stratified random approaches (i.e., by region
or by ecosystem type) did not result in better predictions
of lake nutrients and productivity compared to a simple
random sampling design, suggesting that at the macro-
scale, stratified random sampling designs may not al-
ways be better than simple random sampling designs.
Second, models trained with data from targeted sam-
pling were not always the poorest performing models.
However, the predictive performance varied across the
three targeted sampling scenarios and three response
variables. This fact suggests that data from some tar-
geted sampling may result in extrapolation and poor
model performance, and thus should be examined for
potential biases before use. Below, we discuss the effects
of sampling strategies on predictive model performance
and interpret these effects within the context of LAGOS-
NE, the database that was used to create the seven sam-
pling scenarios. Then, we discuss the implications of our
results for optimizing macroscale sampling designs.

Effects of sampling strategies on predictive performance

We anticipated that random and stratified random
sampling designs would outperform targeted sampling.
This expectation was based mainly on the assumption
that targeted sampling designs would result in the train-
ing and test data having different distributions, meaning
predictions would be made outside of the model space
(i.e., extrapolation). However, our results demonstrated
that this assumption does not always hold true. For
example, the distributions of the training and test data
sets for the response and predictor variables were very
similar for the Targeted-Type scenario (Fig. 4). Recent
work on identifying when predictions will be extrapola-
tion or interpolation suggests that this can be done by
either examining distributions of predictor variables or
comparing predictive variance at out-of-sample loca-
tions to a threshold (e.g., maximum predictive variance)
based on in-sample locations (Conn et al. 2015; Bartley
et al. 2019). As our example shows, not all targeted sam-
pling designs will result in extrapolation and it may be
acceptable to include data from such targeted efforts in
larger, compiled data sets.
We also anticipated that stratified random sampling

would result in better predictive performance than ran-
dom sampling. There is intuitive appeal to stratified
random sampling designs, particularly given the large
amounts of ecological variation that exist at the regio-
nal scale (Cheruvelil et al. 2013, Lapierre et al. 2018).
However, we did not find this to be the case, perhaps
because LAGOS-NE includes a large sample size of
6,784 lakes (Table 3) that are relatively evenly dis-
tributed such that they capture the large geographic
gradients that are present across the study area. It is
also important to recognize that stratified random
sampling design is better than random sampling design
only if the strata used are ecologically relevant. For
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example, some sampling designs stratify by ecosystem
size or area (e.g., U.S. EPA 2017). However, we did
not include lake area as a stratum because it is not
related to lake characteristics in LAGOS-NE (Stanley
et al. 2019). Although we did not find stratified ran-
dom designs to improve predictions over simple ran-
dom designs, there may be other ways to stratify lakes
that we did not consider here; further, there may be

other ecosystem types, locations, or uses of macroscale
monitoring data that require stratification.
Finally, we expected that lake nutrients would be bet-

ter predicted than productivity because nutrients are
more directly related to landscape context characteristics
(Wagner and Schliep 2018) and exhibit a stronger spatial
structure than CHL in our study area (Lapierre et al.
2018). This expectation was supported by lower R2s and

FIG. 3. Box plots showing the model predictive performance of each scenario indicated by letters (x-axis labels, letters as per
Fig. 1) as measured by (A) predictive R2, (B) root mean square error (RMSE), and (C) median relative absolute error (MRAE).
The colors signify the different types of sampling strategies: random (yellow), stratified (green), and targeted (blue). The y-axis
scales are truncated for better visualization. TP, total phosphorus; TN, total nitrogen; CHL, chlorophyll a. Box plot components
include the midline (median); box edges (the first and third quartile); and, whiskers (the minimum and maximum values).

September 2020 ECOLOGICAL PREDICTION ATMACROSCALES Article e02123; page 9



TABLE 3. The number of lakes in the training and testing data sets for each of the seven sampling scenarios and three response
variables.

Sampling scenario

TP TN CHL

Training Testing Training Testing Training Testing

(a) Random-Large 4,422 (9 %) 1,474 (3 %) 3,190 (6 %) 1,063 (2 %) 5,088 (10 %) 1,696 (3 %)
(b) Random-Small 1,474 (3 %) 4,422 (9 %) 1,063 (2 %) 3,190 (6 %) 1,696 (3 %) 5,088 (10 %)
(c) Stratified-Type 1,474 (3 %) 4,422 (9 %) 1,063 (2 %) 3,190 (6 %) 1,696 (3 %) 5,088 (10 %)
(d) Stratified-Region 1,474 (3 %) 4,422 (9 %) 1,063 (2 %) 3,190 (6 %) 1,696 (3 %) 5,088 (10 %)
(e) Targeted-Type 2,869 (6 %) 3,024 (6 %) 2,079 (4 %) 2,171 (4 %) 3,393 (7 %) 3,379 (7 %)
(f) Targeted-Region 2,927 (6 %) 2,927 (6 %) 2,127 (4 %) 2,127 (4 %) 3,392 (7 %) 3,392 (7 %)
(g) Targeted-AgRegion 4,422 (9 %) 1,474 (3 %) 3,190 (6 %) 1,063 (2 %) 5,088 (10 %) 1,696 (3 %)

Notes: For all scenarios except (g), these are average numbers of lakes over multiple subsets of training and testing data. The
numbers in parentheses are the percent of the total lake population ≥4 ha comprised for each scenario and response variable
combination.

FIG. 4. Density plots showing the distribution of data in the training (blue) and testing (orange) data set for each sample design
scenario (a–g as per Fig. 1) and for, left to right, TP (lg/L), TN (lg/L), CHL (lg/L), water clarity (m), lake maximum depth (m),
and watershed percent forested. One randomly selected data set for each sample design scenario is portrayed in this figure. The x-
axis is truncated and axis labels are not shown to better visualize the majority of the data for best visual comparison of the training
vs. test data sets. The letters are as for Fig. 1.
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higher RMSEs for CHL than for the nutrients. In fact,
the errors may be enough to suggest an alternate trophic
state (e.g., the predicted value could be beyond a trophic
threshold between mesotrophic and eutrophic). These
results suggest that there is no one best sampling design
for all response variables and that multiple metrics
should be used when evaluating model predictive perfor-
mance. The different diagnostic metrics also suggest that
there are some subtle differences depending on which
metric is used, and caution should be made in interpret-
ing the results when selecting a sampling design based
on one model performance metric alone.
Our conclusions should be interpreted within the con-

text of the data used to conduct the research, specifically
regarding the type of database, the study area, and the
sample sizes used. This research was conducted using a
compiled database of 87 disparate lake water quality
data sets, many of which were sampled by individual
U.S. state agencies (LAGOS-NE; Soranno et al. 2015,
2017). Consequently, sample lakes in LAGOS-NE were
selected using a variety of different sampling strategies.
In particular, sampled lakes tend to be larger and more
connected than all lakes in the study area (Stanley et al.
2019). Therefore, lakes with in situ measurements in
LAGOS-NE may not completely represent all lakes
within the study area and the mimicked random sam-
pling designs are not truly random (i.e., random selec-
tion from ~4,000–8,000 lakes with lake nutrients and
productivity data rather than random selection from
~51,000 lakes in the census population). However, we
believe that the sampled lakes in LAGOS-NE can pro-
vide a good approximation of all lakes in this geographic
extent for three important reasons: (1) because LAGOS-
NE contains sampled lakes that vary widely by lake type,
region, and ecological contexts, it contains sufficient
variation in predictors and responses to effectively build
predictive models; (2) a prior resampling exercise that
corrected for the surface area sampling bias that we
know is present in LAGOS-NE did not substantially
change the statistical distributions of total nutrients and
productivity (Stanley et al. 2019); and (3) the combined
sample sizes are likely large enough that any existing
biases due to individual program sampling designs
would have a minor effect on model performance.

Implications for macroscale sampling designs

Macroscale monitoring programs often use either a
stratified random design or targeted sampling. Our
results from LAGOS-NE, which includes com-
piled lake data collected using a variety of sampling
designs, suggest that predictions from targeted sampling
designs may sometimes perform similarly to those from
random sampling designs. Thus, there is potential to
include these data sets that were created to answer par-
ticular questions or to address specific environmental
problems in compiled data sets because the bias associ-
ated with these data have only minimal effect on

prediction errors. This fact will be especially true when
data from targeted sampling designs make up a small
proportion of the total compiled ecosystem data, result-
ing in differences between the distributions of training
and test data sets (i.e., extrapolation). Moreover, because
it is unlikely that a large number of data sets will have
exactly the same sample biases, assembling multiple data
sets should tend to minimize the impact of any one data
set collected for one particular reason on prediction.
Therefore, the use of such secondary data sets compiled
from multiple sources, as was done for LAGOS-NE, is
useful for macroscale prediction of ecosystem character-
istics. Based on our results using lake nutrients and pro-
ductivity, we make two specific suggestions for
optimizing sampling designs at macroscales.

To stratify or not?.—Our results suggest that it may not
be necessary to stratify when a relatively large sample
size is feasible and relevant strata for prediction are
either not present or unknown. Macroscale monitoring
programs generally sample <20% of ecosystems, and
sometimes as little as 1%. In comparison, LAGOS-NE
includes 8–13% of all lakes ≥4 ha, depending on the
response variable. For a stratified random design to be
effective, the stratification must account for some varia-
tion in the ecosystem characteristics of interest such that
resulting predictions are interpolations (predictions
within model space) as opposed to extrapolation (predic-
tions outside of model space). We tested two commonly
used approaches for stratification that have been shown
to capture variation in lake nutrients and productivity,
regions (Cheruvelil et al. 2013) and local lake and water-
shed characteristics (e.g., Collins et al. 2017), but were
unable to document substantial improvements in model
performance over simple random designs. This fact is
likely because the relatively large number of lakes spread
across wide environmental gradients in LAGOS-NE
resulted in similar distributions of training and testing
data (Fig. 4) such that strata were not necessary to effec-
tively capture variation in predictors and responses.
Therefore, predictive performance was not substantially
improved by adding stratification to a simple random
sampling design.
Further, it is not likely that a single stratification

design would adequately capture the complexity of all
ecosystem characteristics, particularly when one consid-
ers biological, physical, and chemical characteristics in
diverse ecosystems. Because the key characteristics that
are most beneficial to use as strata will vary by response
variable, it may be more effective to increase the total
sample size across the study area rather than to spread
samples across strata. Such relatively large and dis-
tributed sampling should help to increase predictive per-
formance. The relative performance of simple random
vs. stratified random designs warrants testing in other
settings, for other macroscale data sets, and for other
ecosystem characteristics to test the generality of our
results. For example, the need for stratification may
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become more important as landscapes become more
heterogeneous or vary across strata and as sample sizes
drastically decrease, resulting in sampled ecosystems
being less likely to represent a large proportion of the
total landscapes or ecosystems within a study area.

Space or time?.—Our study examined the macroscale
spatial predictions of lake nutrients and productivity by
leveraging the broad spatial gradients in the LAGOS-
NE database. In fact, an analysis of LAGOS-NE data
using annual time scales across several decades found
that spatial variation of lake nutrients and productivity
far exceeded temporal variation (Soranno et al. 2019).
However, if the goal is to predict responses of all ecosys-
tems across regions and continents to a range of global
change stressors, then making predictions across both
space and time is essential (Janousek et al. 2019).
Although there are few spatially and temporally exten-
sive data sets, the newly constructed U.S. National Eco-
logical Observatory is helping to fill that gap (Thorpe
et al. 2016). For new macroscale sampling programs, we
recommend first capturing the existing spatial variation
in predictor and response variables by sampling across
the full range of ecological contexts present across a
study area. Then, once sufficient spatial variation is cap-
tured, resources could be directed towards a smaller
number of systems that are repeatedly sampled to cap-
ture temporal variation. By combining the use of sec-
ondary data sets that have excellent spatial coverage
across a range of ecological context settings with sam-
pling designs focused on filling in gaps in the temporal
domain, macroscale studies will be able to inform a wide
range of science questions and policy goals related to
forecasting the effects of global change on ecosystem
characteristics.
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