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Abstract

In regions with thousands of lakes, large scale regional macrophyte surveys are rarely done due to logistical difficulties and high costs. We

examined whether remote sensing can be used for regional monitoring of macrophytes in inland lakes using a field study of 13 lakes in Michigan,

USA (nine model development lakes and four model testing lakes). Our objectives were: (1) to determine if different levels of macrophyte cover,

different growth forms or specific species could be detected using the Landsat-5 TM sensor, and (2) to determine if we could improve predictions of

macrophyte abundance and distribution in lakes by including sediment type or measures of water clarity (Secchi disk transparency, chlorophyll a,

phytoplankton biovolume, or water color) in our models. Using binomial and multinomial logistic regression models, we found statistically

significant relationships between most macrophyte measures and Landsat-5 TM values in the nine model development lakes (percent concordant

values: 58–97%). Additionally, we found significant correlations between three lake characteristics and the TM values within lake pelagic zones,

despite the inability of these variables to improve model predictions. However, model validation using four lakes was generally low, suggesting

caution in applying these models to other lakes. Although the initial model development results suggest that remote sensing is a potentially

promising tool for regionally assessing macrophytes, more research is necessary to refine the models in order for them to be applied to unsampled

lakes.

# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Large scale regional macrophyte surveys are rarely

possible, even though effective macrophyte management

depends in part on understanding the coverage and abundance

of macrophytes, the growth forms present or the species

present. This lack of survey data is largely due to the expense

and challenges associated with sampling macrophytes.

Assessments are further complicated in regions containing

thousands of lakes. For example, the state of Michigan has

approximately 3500 inland lakes >10 ha in surface area and

many thousands of smaller lakes. Currently, it is not possible to

inventory this many lakes using traditional field sampling

techniques such as sampling along transects, within quadrants,

or subsampling randomly-stratified lake points. Although

these techniques can give good estimates of local macrophyte

biomass and species composition at selected sites within a

lake, these methods cannot capture whole-lake plant biomass/

cover or the patchy distribution of aquatic macrophytes in an

entire lake (Zhang, 1998). Remote sensing has the potential to

be an important tool to obtain survey information on

macrophytes within large geographic areas (Valley et al.,

2005; Vis et al., 2003).

Typically, remote sensing has been used to measure

macrophyte cover by the labor-intensive process of mapping

macrophyte areal distributions along coastal margins using

visual interpretations of aerial photographs (Orth and Moore,

1983; Marshall and Lee, 1994). Unfortunately, this approach

has limited applicability for assessing macrophyte distributions

in large regions with many water bodies. Therefore, an

approach that can accommodate many lakes is needed for

regional lake monitoring of macrophytes. One approach is to
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use Landsat Thematic Mapper (TM) satellite images that

include many lakes within a single image. Although Landsat

was primarily designed for detecting land features, recent

improvements provide better spatial and spectral resolutions

that may be applicable for aquatic studies (Zilioli, 2001).

However, satellite remote sensing of aquatic macrophytes,

especially submersed macrophytes, has been less studied than

terrestrial vegetation because of the difficulties inherent in

interpreting reflectance values of water (Penuelas et al., 1993;

Lehmann and Lachavanne, 1997). For example, clear water

provides little atmospheric reflectance and either absorbs or

transmits the majority of incoming radiation (Lillesand and

Kiefer, 1994; Verbyla, 1995). As a result, researchers have used

remotely sensed data to detect primarily emergent vegetation or

dense homogenous clusters of submersed vegetation, often only

in single water bodies (Ackleson and Klemas, 1987;

Armstrong, 1993). Despite the potential limitations of using

current sensors such as Landsat to detect submersed aquatic

macrophytes, more research is clearly needed to determine

whether this sensor can be used to assess macrophyte

abundance and distribution in large numbers of lakes across

a large geographical region.

Additionally, lake characteristics may need to be taken into

consideration when attempting to remotely sense macrophytes.

For example, several studies have shown that remotely sensed

images can measure lake characteristics such as chlorophyll,

Secchi disk transparency, and suspended sediments (Lathrop

and Lillesand, 1986; Jensen et al., 1993; Narumalani et al.,

1997; Lillesand et al., 1983; Khorram and Cheshire, 1985;

Dekker and Peters, 1993; Kloiber et al., 2000), all of which may

influence the detection of macrophytes, especially submersed

macrophytes. Lakes within a region can vary widely in several

of the above characteristics, which can also influence how

aquatic macrophytes are remotely sensed. For example,

because water color and lake water depth may influence the

sensor’s ability to detect macrophytes, it may be necessary to

incorporate such factors into predictive models of aquatic

macrophytes. Although water depth has been incorporated into

models to detect submersed macrophytes using sensors such as

Landsat in individual water bodies (Raitala and Lampinen,

1985; Ackleson and Klemas, 1987; Armstrong, 1993;

Narumalani et al., 1997), no studies have linked the influence

of this feature or other physical and chemical lake features with

the ability to detect submersed macrophytes in multiple lakes at

a regional scale.

Our objectives in this study were: (1) to determine if

different levels of aquatic plant cover and plant types (cover of:

overall littoral macrophytes, emergent plants, floating leaf

plants, submersed vegetation, and submersed M. spicatum)

could be detected using the Landsat-5 TM sensor and (2) to

determine if we could improve predictions of lake macrophyte

abundance and distribution by including lake characteristics

(Secchi disk depth, chlorophyll a, phytoplankton biovolume,

water color, sediment type, and water depth) in the models. We

hypothesize that including these additional lake characteristics

will strengthen relationships between macrophyte cover and

Landsat-5 TM spectral values.

2. Materials and methods

2.1. Study area

Using a random stratified design, we selected study lakes

distributed throughout an area of approximately 70,000 km2,

located in the lower peninsula of Michigan, USA (Fig. 1). The

lakes were stratified by surface area (20–140 ha), mean depth

(2–10 m), and Secchi disk depth (0.6–8.2 m). A total of 36

lakes were selected and sampled. However, due to cloudy

weather during late summer 2001, the final analyses were

conducted on only 13 lakes for which cloud-free imagery could

be obtained. Four of our 13 sample lakes were randomly

selected and withheld from the model development for use as a

validation dataset (Table 1). Therefore, nine lakes were used for

model development.

2.2. Macrophyte sampling

The study lakes were sampled during the summer-stratified

season and peak plant biomass (July 17–September 12, 2001).

Macrophytes were sampled using a modification of the point

intercept method (Madsen, 1999). Each lake was mapped using

a geographic information system (GIS) and then overlain with a

grid of points which represented the macrophyte survey points.

The sample points were located in the field with a global

positioning system (GPS), and plant cover was assessed at each

point for an area of 40 m � 40 m or 50 m � 50 m depending on

lake area, resulting in 138–467 points per lake. At each point,

we measured water depth and assessed plant composition by

recording plant presence in each of four categories: emergent,

floating leaf, total submersed, and exclusively submersed,
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Fig. 1. The study area and lakes within Path 21 of Landsat (Worldwide

Reference System-2) in Michigan, USA. The three individual scene rows

within Path 21 used in this study are designated as R29, R30, and R31. Images

R29 and R30 were acquired September 5, 2001. Image R31 was acquired

August 4, 2001.
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non-native Myriophyllum Spicatum. Examples of the plant

species included in the emergent category were Typha latifolia,

Pontederia cordata, and Scirpus spp. Representative species of

the floating leaf category included Nuphar advena, Nymphaea

odorata, and Brasenia schreberi. Examples of macrophytes in

the total submersed category included Chara spp., Potamoge-

ton spp., as well as M. spicatum. Plant cover at each site was

assessed by qualitatively assigning a ‘plant cover level’ for each

category, which was done by visual inspection in shallow/clear

water, or by throwing a two-sided rake in deeper/turbid water.

Plant cover levels were: 0 (0–20% plant cover), 1 (21–40%

plant cover), 2 (41–80% plant cover), and 3 (81–100% plant

cover). An additional binomial category of total littoral zone

plant cover was developed by combining the four levels

recorded for each plant category at each point. This category

captures littoral plant presence or absence at each point by

assigning each site either a 0 (0–20% plant cover) or a 1 (21–

100% plant cover).

We calculated littoral percent plant cover for each lake as the

number of points sampled with any plant category greater than

level 0 (i.e., >20% cover at an individual site), divided by the

total number of points in the littoral zone. The littoral zone was

defined as <4.5 m water depth. Sites with a depth of >4.5 m

were regarded as pelagic where we assumed that reflectance of

the water column would dominate the reflectance spectra

necessary for submersed plant detection by Landsat (Lillesand

et al., 1983; Kloiber et al., 2000).

2.3. Lake characteristics

We estimated lake water clarity with Secchi disk depth

averaged across two measurements taken over the shady side of

the boat. Pelagic water samples were taken from the deepest

area of each lake for nutrients, chlorophyll a, total alkalinity,

and total phytoplankton biovolume (Table 2). For each lake, the

depth of the epilimnion was calculated with a temperature

S.A.C. Nelson et al. / Aquatic Botany 85 (2006) 289–298 291

Table 1

Physical characteristics and image information for the study lakes

Lake County Image date Plant sampling

date–image date

# Littoral zone

sample points

Surface

area (ha)

Mean depth

(m)

Sediment

typea

Deep Lenawee 8-04-01 �10 44 26.1 7.3 Marl

Eagle Kalamazoo 8-04-01 �5 38 29.1 5.2 Sand

Roundb Lenawee 8-04-01 �9 70 25.8 5.3 Marl

Round Jackson 8-04-01 �18 191 62.4 2.4 Marl

Swains Jackson 8-04-01 �12 93 30.8 4.3 Marl

Vandercookb Jackson 8-04-01 �11 116 57.9 6.8 Rocks/cobble/gravel

Baptist Newaygo 9-05-01 �7 72 34.9 6.9 Sand

Dickerson Montcalm 9-05-01 �9 114 60.2 7.4 Rocks/cobble/gravel

Horseshoe Montcalm 9-05-01 �11 47 37.9 5.1 Sand

Little Whitefish Montcalm 9-05-01 �16 122 72.5 5.5 Marl

Nevins Montcalm 9-05-01 �9 45 21.0 7.2 Marl

Sunriseb Osceola 9-05-01 +7 62 82.4 8.4 Rocks/cobble/gravel

Winfieldb Montcalm 9-05-01 �11 137 47.3 4.5 Sand

a Littoral zone sediment type estimates were based on an average of six to ten sample sites per lake which were qualitatively assigned a category: sand, rocks/

cobble/gravel, marl, or silt/muck/peat.
b Lakes used for model validation, thus were not used for model development.

Table 2

Limnological characteristics of the study lakes, including the measurements of water transparency included in predictive models

Lake Image date Secchi depth

(m)

Water colora

(Co-Pt units)

Chlorophyll a

(mg/L)

Total phosphorus

(mg/L)

Total nitrogen

(mg/L)

Phytoplankton

biovolume (mm3/mL)

Deep 8-04-01 2.6 14 1.8 8 297 1,467,500

Eagle 8-04-01 2.0 5 3.5 25 182 1,415,600

Round Lenaweeb 8-04-01 3.3 9 2.2 16 486 5,110,100

Round Jackson 8-04-01 2.0 7 1.6 15 462 498,300

Swains 8-04-01 1.6 10 3.0 20 448 7,318,100

Vandercookb 8-04-01 2.5 29 3.2 13 329 5,838,000

Baptist 9-05-01 4.5 5 3.3 23 275 10,591,300

Dickerson 9-05-01 2.7 20 2.5 19 385 4,695,700

Horseshoe 9-05-01 1.0 11 13.7 27 429 11,642,100

Little Whitefish 9-05-01 4.1 7 4.1 14 238 3,731,000

Nevins 9-05-01 2.8 3 2.0 6 277 3,189,400

Sunriseb 9-05-01 3.1 10 5.0 8 248 7,094,000

Winfieldb 9-05-01 1.9 30 7.7 18 485 3,226,700

a Water color values were collected by MI-DEQ 1974-1981 (STORET), and were measured on the cobalt-platinum scale (Co-Pt units). This scale ranges from 0 in

very clear lakes to 300 Co-Pt units in heavily stained bog waters, which have high concentrations of humic substances.
b Lakes used for model validation, thus were not used for model development.
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profile, and a tube sampler was used to take an integrated

epilimnetic sample. For chlorophyll analysis, water was filtered

on site through a glass fiber filter (Whatman GF-C) and stored in

dark containers until being returned to the lab and frozen.

Chlorophyll a concentrations were determined fluorometrically

with phaeopigment correction following 24 h extraction in

methanol (Nusch, 1980). Total nitrogen was determined using a

persulfate digestion followed by second derivative spectroscopy

(Crumpton et al., 1992). Total phosphorus was determined using

a persulfate digestion (Menzel and Corwin, 1965) followed by

standard colorimetry (Murphy and Riley, 1962). Secchi disk

depth was measured for each lake over the shaded side of the

boat. Phytoplankton were preserved with 1% Lugol’s solution

and stored in the dark until further laboratory analysis occurred.

For each lake, a 50 mL phytoplankton sample was settled for 5

days except for 3 lakes (Nevins, Little Whitefish, and Round

(Jackson County)), which were only settled for 48 h. For these 3

lakes, we extrapolated to a 5-day count based on comparisons of

the 2 settling lengths for 6 lakes that were counted after being

settled for both 2 and 5 days. For all lakes, phytoplankton samples

were counted and identified using an inverted microscope. For

each lake, more than 400 individuals were counted using

multiple magnifications (40, 100, 400, and 1000�), and

phytoplankton densities (mm3/mL) were then calculated. Finally,

we developed sediment type estimates in the littoral zone by

visually assessing 6–10 sites per lake. We categorized lake

sediments into four different types that represent different

‘colors’ of sediment that may reflect light differently: sand,

gravel/rock/cobble, marl, or silt/mulch/peat.

2.4. Satellite imagery

We used three Landsat-5 TM scenes: one from August 4,

2001 and two from September 5, 2001. All three scenes were

from the Landsat ground track Path 21 (Worldwide Reference

System-2; Fig. 1). Image rectification and geoprocessing was

conducted using ERDAS Imagine 8.4 image processing

software. Atmospheric corrections were not necessary for

the two contiguous Landsat scenes (September) used in this

study because the images were taken on a single date and

showed no signs of being effected by atmospheric haze (i.e.,

uniformed elevation in spectral pixel values throughout each

scene). Spectral pixel values within the entire August image

also appeared similar in the two September images. This

similarity in pixel reflectance values between all three images

suggested no evidence of differential reflectance throughout the

August image as a result of atmospheric haze conditions.

However, spectral values extracted from the August and

September images were independently statistically evaluated

before combining the two individual data sets to develop a

combined model data set.

The spectral pixel values or digital number (DN) values for

all single pixels located at the same position as each lake

sample point (using the field-recorded GPS coordinates within

each lake) were extracted using the ArcInfo GRID module of

ArcGIS 8.1 (ESRI) from the imagery. Spectral DN values for

the pelagic region of each lake (sample points with depth

measurements >4.5 m) were also extracted to analyze the

relationship between pelagic zone lake characteristics and

spectral values (see below). Because the pelagic zone is more

homogeneous than the littoral zone, we averaged the spectral

DN values for all pixels within the pelagic zone resulting in one

pelagic spectral value.

2.5. Statistical analysis

We analyzed the satellite imagery DN values and macro-

phyte data using binomial and multinomial logistic regression

(logit models) in SAS/STAT software (SAS Institute Inc.,

1995). We included spectral DN values for TM bands 2 and 4

(TM2 and TM4) in the models as the independent variables

based on numerous attempts to fit several individual and

combined bands to the data using a series of stepwise regression

techniques. In all models, we also included lake depth at each

sampling point as an interaction term with each main effect

variable (TM2 and TM4).

We included sample points from multiple lakes in all logit

models, unless noted otherwise. However, because our images

were from two different dates, we developed three separate

models to assess whether including results from different dates

(and potentially different atmospheric levels, i.e., haze) would

change model predictions. Thus, we grouped the nine sample

lakes into three datasets; two datasets according to the August

and September image dates, and one dataset that combined both

August and September lakes. The three datasets resulted in 366,

400, and 766 sample points for each logit model, respectively.

Each of the five macrophyte categories (overall littoral plant

cover, emergent plants, floating leaf plants, submersed plants,

and submersed M. spicatum) served as individual response

variables for each of the three models. The logit model uses the

explanatory and interaction covariates to predict the probability

that the response variable will take on a given value (SAS

Institute Inc., 1995). For binomial logistic regression, the logit

model indicates how the explanatory variable (TM values)

affects the probability of the event (macrophytes) being observed

versus not being observed. For the multinomial logistic

regression, probable outcomes of observations are calculated

by analyzing a series of binomial submodels that represent the

overall model’s ability to predict each of the plant cover response

variables. For all logit model analyses, we used the descending

option to select the highest plant category level as the response

variable reference (level 3 for emergent, floating leaf, total

submersed, and submersed M. spicatum and level 1 for littoral

plant cover). This selection ensured that the results were based on

the probabilities of modeling an event (macrophytes present),

rather than a non-event (macrophytes not present).

Model fit was determined by examining the percent

concordant values and the Wald test statistic. The percent

concordant values provide an indication of overall model

quality through the association of predicted probabilities and

observed responses. These values are based on the maximum

likelihood estimation of the percent of paired observations of

which values differ from the response variable (Kleinbaum,

1994). Thus, the higher the predicted event probability of the

S.A.C. Nelson et al. / Aquatic Botany 85 (2006) 289–298292
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larger response variable (based on the highest plant category

level), the greater the percent concordant value will be. The

Chi-square level of significance for the Wald test statistic tests

the hypothesis that the coefficients of the independent variables

are significantly different from zero by fitting the model using

the intercept terms (Kleinbaum, 1994; Pampel, 2000). The

Wald test is regarded as being more accurate than other test

statistics when large sample sizes, such as ours, are used

(Kleinbaum, 1994).

To examine whether there were significant differences

between data from the two image dates and whether it was valid

to include all lakes in a combined model, we developed

individual-lake logit models. We then compared the model

output and model coefficients from lakes in the August image to

lakes in September image. First, we used a two sample t-test to

test for differences between the means of the model coefficients

(log transformed) of the September lakes and the August lakes.

Resultant p-values are for the paired variance and significance

was determined at the 0.1 level. Insignificant results from these

tests suggest that the means of the nine individual lakes showed

no significant difference. Therefore, atmospheric effects may

not significantly affect the datasets and it is valid to include

lakes in a combined model across image dates. Second, we

compared the means of the percent concordant values from the

individual models for the September lakes to those from the

August lakes. In this analysis, the absence of large differences

between the September and August percent concordant values

also supports the validity of including all lakes in a combined

model across image dates.

Using the logit model for individual lakes, we also examined

whether various lake characteristics can help improve

predictions of plant cover using Landsat imagery. Using

ordinary least squares regression, we regressed each of the four

model coefficients (TM2, TM4 and the interaction terms with

lake depth for both) from the individual lake logit models

against each of the measured lake characteristics individually:

Secchi disk depth, water color, chlorophyll a, total phyto-

plankton biovolume, and sediment type.

2.6. Logit model validation

We validated the results of the logit models by using field-

collected data from four lakes not included in model

development. The validation was developed by calculating

the logit values for each sample point in the four validation

lakes from the logistic (for plant cover) and bionomial (for all

other plant categories) regression equations for both the

September and combined models. The August model was not

used for validation comparisons because the plant sample date

of these validation lakes more closely matched the September

dataset. The logit values represented the cumulative probability

of each sample point being each plant cover level (0, 1, 2, and 3)

within each plant category. The cumulative probability value of

the logit was then used to calculate the actual probability of

each sample point being each plant cover level. The actual

probabilities were then averaged to determine the overall

probability of sample points belonging in each plant cover level

and plant category.

S.A.C. Nelson et al. / Aquatic Botany 85 (2006) 289–298 293

Fig. 2. The distribution of plant categories and plant cover levels within the littoral zone of the lakes comprising our three logit model datasets and validation lakes.
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3. Results

3.1. Macrophyte cover in the study lakes

The 13 study lakes had sites with each of the four plant

categories, although there was variation across all lakes as well

as among categories within each lake. In particular, few lakes

had very dense amounts of emergent and floating leaf

vegetation as compared to submersed macrophytes. In addition,

although M. spicatum was present in relatively low amounts as

compared to total submersed macrophytes, it was present in all

lakes. The overall percent cover of macrophytes in the study

lakes ranged from 5 to 42%, and the percent cover of

macrophytes in the littoral zone ranged from 10 to 90%. Four

lakes had �50% plant cover in the littoral zone; in these lakes,

the littoral zone was dominated by exposed lake sediments

rather than macrophytes. Although the overall presence of

macrophytes was quite common in all lakes, plant density at

each sample point was quite low (Fig. 2). The majority of

sample points had 0–20% plant cover (level 0) at a site, which

led to skewed distributions of plant levels across the four

categories. The total submersed plant category was the most

evenly distributed category across all levels.

3.2. Detecting macrophyte cover with satellite imagery

The highest concordance values from the logit models of

plant cover categories and Landsat DN values were for the

emergent and floating leaf (91–98%) plant categories (Table 3).

Lower concordance values were found for the two submersed

categories, total submersed (69–73%) and submersed M.

spicatum (58–61%). These results suggest that it may be easier

to predict plant categories that are above the water surface than

below the water surface. When all plant categories were

aggregated into a single category (littoral plant cover), the logit

models produced moderate percent concordance values (66–

73%). The p-values for the Wald test were highly significant

( p < 0.001) for all categories and tests.

To assess the validity of grouping lakes into a combined

August/September model, we developed individual logit

models for each image. We found no significant differences

in any model coefficients between the August and September

lakes (t-test p = 0.16–0.78 for all main effects and interactions

terms), suggesting that the relationships between the means of

the spectral DN values and plant cover estimates were similar

across different images, despite any atmospheric differences

(Table 4). Additionally, comparisons of the percent concordant

S.A.C. Nelson et al. / Aquatic Botany 85 (2006) 289–298294

Table 3

Logit regression results for the three models

Plant category Statistical test August model September model Combined model

Littoral plant cover Percent concordancea 66 73 71

Wald testb <0.001 <0.001 <0.001

Number of lakes 4 5 9

Number of sample points 366 400 766

Emergent Percent concordancea 98 97 91

Wald testb <0.001 <0.001 <0.001

Number of lakes 4 5 8

Number of sample points 366 400 766

Floating leaf Percent concordancea 97 95 96

Wald testb <0.001 <0.001 <0.001

Number of lakes 4 5 9

Number of sample points 366 400 766

Total submersed Percent concordancea 71 69 73

Wald testb <0.001 <0.001 <0.001

Number of lakes 4 5 9

Number of sample points 366 400 766

Submersed M. spicatum Percent concordancea 67 58 61

Wald testb <0.001 <0.001 <0.001

Number of lakes 4 5 9

Number of sample points 366 400 766

a Percent concordance assesses the overall model quality based on the maximum likelihood estimation of all pairs of observations with different values of the

response variable (plant category). For example, because the models predict the probability of detecting a plant category, if the larger response value (>0 for a level of

plant cover) has a higher predicted event probability than the smaller response value (0, non-event or<20% plant cover), then the observation pair is concordant. Pairs

are calculated from the number of observations within each category level submodel, which makes up the overall logit regression for each plant category.
b The Wald test is the Chi-square statistic for overall model fit. It tests the hypothesis that the coefficient of an independent variable is significantly different from zero.

Table 4

T-test p-values from testing the difference between the means of the beta

coefficients (log transformed) for the 9 individual lakes used in the August and

September logit models

Plant category TM2 TM4 TM2 � depth TM4 � depth

Littoral plant cover 0.31 0.23 0.42 0.16

Emergent 0.24 0.22 0.16 0.39

Floating leaf 0.21 0.34 0.33 0.32

Total submersed 0.28 0.42 0.64 0.54

Submersed M. spicatum 0.23 0.35 0.78 0.42
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values from the individual lake logit models suggest that the

August and September models produced similar model fits to

the data (Fig. 3). Given that there were no statistically

significant differences between the two images, we concluded it

was valid to combine all lakes into a single ‘combined’ model.

3.3. Improving predictions of macrophyte cover by

including lake characteristics

The ordinary least squares regressions of the logit model

coefficients estimated for the nine individual lake datasets with

lake characteristics produced low r2 values and insignificant p-

values for the majority of lake characteristics. Total phyto-

plankton biovolume produced the highest r2 values and only

four phytoplankton biovolume-plant category combinations

were significant at the 0.10 level (littoral plant cover, emergent,

total submersed, submersed M. spicatum). This result suggests

that knowing phytoplankton biovolume may help improve

predictions of littoral plant cover using Landsat. However,

although some relationships were significant, this result was not

consistent for all independent variables tested. Because we

found it surprising that additional lake characteristics did not

appear to improve model predictions, we examined how well

we could predict these lake characteristics from Landsat DN

pelagic zone values. We found significant correlations between

all variables and spectral DN values of the pelagic zone except

for water color (Table 5). Thus, our regression results suggest

that differences in the significant variables (Secchi depth,

chlorophyll a, and phytoplankton biovolume) should be

detectable within the nine lakes sampled.
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Fig. 3. The percent concordance for individual lake models averaged by image

date.

Table 5

Regression results of Landsat TM2 and TM4 digital values vs. selected pelagic

lake characteristics using the combined dataset of all lakes (N = 9)

Lake characteristics r2 p

Secchi depth 0.72 0.01

Water color 0.02 0.87

Chlorophyll a 0.65 0.01

Phytoplankton biovolume 0.54 0.03

See Table 2 for lake characteristic units.

Table 6

Results of the model validation using the 4 lakes not used in model development (see Table 1 for lake identities and characteristics)

Plant

category

Cover

level

September model: average probability

of correctly classifying each level

Combined model: average probability

of correctly classifying each level

No. of observed

sites

Littoral plant cover 0 0.62 0.69 124

1 0.26 0.24 261

Average 0.44 0.47

Emergent 0 0.05 0.01 367

1 0.26 0.20 10

2 0.69 0.32 7

3 – 0.92 1

Average 0.33 0.36

Floating leaf 0 0.04 0.03 313

1 0.04 0.08 23

2 0.17 0.16 16

3 0.46 0.45 33

Average 0.18 0.18

Total submersed 0 0.22 0.24 152

1 0.23 0.22 42

2 0.12 0.21 50

3 0.29 0.20 141

Average 0.22 0.22

Submersed M. spicatum 0 0.00 0.01 297

1 0.11 0.09 63

2 0.65 0.67 17

3 0.00 0.00 8

Average 0.25 0.26
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3.4. Model validation

We validated the September and the combined models using

field-collected data from four lakes. The distributions of overall

plant categories and plant cover levels in our four validation

lakes were similar to the distributions found in the nine lakes

used to develop the models (Fig. 2). Similar to the nine model

lakes, the majority of sample points had 0–20% plant cover at

most site sampled, resulting in skewed distributions of plant

levels across the four categories in our four validation lakes.

The total submersed plant category was the most evenly

distributed category across all levels.

Evaluation of the validation results showed very little

difference between the September and the combined model

(Table 6). We found relatively low, yet fairly similar

probabilities of correctly classifying each multilevel plant

cover category (emergent, floating leaf, total submersed, and

submersed M. spicatum) and a somewhat higher probability for

the aggregated category of littoral plant cover (plant cover

presence or absence). This result may be influenced by the fact

that we correctly classified level 0 at a higher probability level

than we were able to correctly classify level 1. However, within

two of the multilevel categories (emergent and floating leaf),

we obtained the best probability of correct classification from

the higher levels of plant cover (level 2 and 3). High

classification levels were also seen for the level 2 submersed

M. spicatum category, which was the highest level for this

category (level 3 was of very low occurrence for this category in

our validation lakes). The most evenly distributed range of

probabilities occurred in the total submersed category;

probabilities of classification ranged from 0.12 to 0.29 for

the September model and 0.20–0.24 for the combined model.

4. Discussion

We found relatively strong relationships between the five

plant cover categories and Landsat spectral TM values. For

each plant cover category, we obtained significant model fits

and reasonably high percent concordant values. Not surpris-

ingly, the highest percent concordant values were for models of

the plant categories with plant components above water:

floating leaf and emergent macrophytes. Lower percent

concordant values were seen for the submersed categories

(total submersed and submersed M. spicatum). This result is

expected considering the difficulties inherent in remotely

sensing the aquatic environment (Lillesand and Kiefer, 1994;

Verbyla, 1995). The fact that the models resulted in percent

concordant values for the two submersed categories ranging

from 58 to 73%, suggests that remote sensing using the Landsat

sensor may prove to be a valuable tool for measuring plant

abundance and distribution, including the spread of the non-

native M. spicatum, in multiple lakes across a large region.

We did not find a consistent effect of lake characteristics on

the ability to detect aquatic macrophytes in lakes. We found this

result surprising given the wide range of water clarity that was

present in the study lakes (Secchi depth range from 1.0 to

4.5 m). However, it is possible that with only nine lakes in the

combined model (and 4–5 lakes in the single-date models), the

sample size was too low to detect the effects of lake

characteristics on predicting plant cover. Additionally, although

other studies have found Landsat to be significantly correlated

with a variety of water clarity and water quality parameters

(Lathrop, 1992; Cox et al., 1998; Kloiber et al., 2000; Nelson

et al., 2003), there may be sufficient variation around these

relationships to make it difficult to quantify the effect that these

lake parameters have on model predictions of aquatic

macrophytes across a range of lakes.

An interesting finding of our study is the similar results

obtained using the individual date models (August and

September) and the combined date models. It is commonly

accepted that values sampled from images collected on

different dates should not be combined into a single dataset

because they are affected by different atmospheric effects (i.e.,

haze) specific to the date of image acquisition (Song et al.,

2001). However, we did not find this to be the case. In fact,

atmospheric differences resulted in no statistically significant

differences in model predictions between the datasets used to

build or validate the predictive models. These results are

important because they allowed us to include all lakes into a

combined model, thus increasing our sample size, which also

allowed us to better examine the effect of lake characteristics on

the models.

The model validation step adds additional insights into the

use of remote sensing to detect aquatic vegetation. The

validation resulted in relatively low probabilities (0.44–0.47) of

correctly classifying macrophytes in all plant categories and

across all cover levels. This result was surprising because the

models produced high overall percent concordant values and

significant Wald test statistics, suggesting a good model fit with

the data. Based on the distribution of the categories and levels

of plant cover, the randomly selected validation lakes appear to

be very similar to the model lakes. We can only speculate as to

why the validation and the model statistics resulted in different

interpretations. First, the four lakes used in the validation may

have differed for some other important feature as compared to

the model lakes. However, there was no statistical difference in

the means between the lakes of the two groups for all of the key

limnological characteristics measured in this study (see Table 2

for the list of variables; Nelson, unpublished data). Second, the

models themselves, although significant, may be sensitive to

the distributions of macrophytes within each category. There-

fore, if the plant-cover level distributions of both the model

datasets and the validation datasets had been more equally

balanced among levels, higher probabilities in the validation

may have resulted. In fact, except in the case of littoral plant

cover, higher validation probabilities seem to be related to

higher plant cover levels (Table 6), of which we had relatively

few sample points. Thus, this potential statistical issue

demonstrates that new analytical techniques to analyze this

type of data may be needed. Finally, our lower concordance

values may also have been related to variables within the

macrophyte bed structure that could not be easily accounted for

in our predictive models, such as variability within the plant

cover categories. For example, biomass densities (biomass per
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unit volume) may differ according to growth forms within each

category, such that species within our floating-leaf and canopy-

forming submergent beds may have produced plants with

variable biomass densities among stands of the same species or

combination of species category (White, 1985; Lonsdale and

Watkinson, 1983; White, 1981). Thus abundances could be

highly variable if estimates are based on canopy cover, height,

and differential shading effects as opposed to the degree of

packing within the macrophyte stand (Duarte and Kalff, 1990).

Below we explore some possible limitations of our study.

First, it is possible that we had low positional accuracy with our

hand-held GPS unit. Horizontal accuracy of commercial-grade

hand-held GPS units still varies from 7 to 15 m depending on

environmental and satellite signal reception conditions.

Second, there was the potential for sample point/image pixel

misalignment, which sampling at a finer grid resolution in the

field may have alleviated. However, it may not be feasible to

sample additional points on multiple lakes. In addition,

although we sampled a total of 36 stratified-randomly selected

lakes for this study, cloud-free images were available for only

13 of these lakes. These lakes may not necessarily be

representative of the overall 36 lakes. For example, nine of

the 36 lakes for which we had no clear images had overall lake

plant cover >42% (Cheruvelil, 2004). Therefore, additional

clear images would have increased the number of lakes

included in the models and resulted in more evenly distributed

plant cover. The final unknown in this study is to what extent we

reached the detection limits of the Landsat sensor to detect

aquatic macrophytes. Unfortunately, we were not able to

quantify any of the above sources of error in our study.

However, despite these study limitations, our significant results

warrant further examination of this important research area.

Our results demonstrate that the use of remote sensing in

freshwater lake studies can play a vital role in reducing the cost,

labor, and time required to monitor these systems over a large

geographic area. Remote sensing also has the potential to be

used as a tool for statewide assessments that are currently

impossible using traditional field approaches. Here, we have

provided a general method for detecting littoral zone plant

cover in inland freshwater lakes using satellite imagery.

However, the results of our validation suggest that attempts to

predict macrophytes in unsampled lakes may be difficult

without further research incorporating more lakes with even

more varied levels of plant cover. Additionally, we offer the

following suggestions. First, more sample lakes should be

included in the model calibration to provide representative

distributions of regional plant cover within the lakes modeled.

Second, until newer sensors are developed for aquatic

applications, inland lake remote sensing may be most useful

as a supplement to existing volunteer and agency monitoring

programs, rather than a replacement of these programs. Newer

sensors, such as Space Imaging’s IKONOS sensor and Digital

Globe’s Quickbird, show some promise by offering comparable

spectral bands to the Landsat platform but at higher spatial

resolutions (4 m and 2.44 m, respectfully). However, the trade

off for regional remote sensing comes at a steep price, as data

obtained from high resolution sensors are currently very costly

as compared to available Landsat data. Additionally, because of

the higher resolution, the total spatial coverage is more limited

than with a single Landsat image, thus requiring more images.

Finally, these high resolution data are not routinely collected

and require additional programming or tasking fees to acquire

data over the area of interest, making the use of this data fairly

cost prohibitive for many inventory, management, or regulatory

agencies forced to operate on limited budgets. Clearly, more

research needs to be done to determine the optimal spatial

resolution of sensors for aquatic macrophyte detection.
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