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Abstract

Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such
systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand
emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of
uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build
parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-
consequence events that may have significant policy implications, and explanation of model behavior to describe the
system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation
resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input
space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy,
where the distribution of results informs us about the expected value that can be validated against independent data, and
provides information on the variance around this mean as well as the extreme results. In our last two computational
experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only
to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial
model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output
of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including
outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that
exposes the smallest number of inputs influencing the steady state of the modeled system.
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Introduction

Socioecological systems are perpetually dynamic and nonlinear

[1,2,3,4,5,6,7]. To account for this complexity, researchers often

employ agent-based models (ABMs). Socioecological ABMs are

computational models composed of heterogeneous entities (called

agents) that shape a common environment representing an

integrated human and natural system [2,8,9]. ABM offers a

robust vehicle for simulating socioecological systems, for example

landscape dynamics, by providing means of representing auton-

omous and decentralized decision-making that results in emergent

landscape-scale characteristics (e.g., land value, land use patterns)

and phenomena (e.g., biodegradation, land conservation). For

example, ABMs are often used to model agricultural land systems,

in which the environment is operationalized by spatial layers

(maps) including land use, soil productivity, vegetative cover, and

precipitation. The agents, or actors, in the system may include

farmers who cultivate their land, developers who buy and sell land

parcels, residents who inhabit select locations, and authorities that

adopt and enforce land-related policies [10,11,12,13,14,15,16]. As

with all modeling of such complex systems, ABMs are inevitably

prone to uncertainty reflecting insufficient knowledge of the

processes driving these coupled human-natural systems. For

example, we have incomplete knowledge on the relationships

and feedbacks between crop market fluctuations, farmland

management, and temporal dynamics in nutrient cycling affecting

such systems, nor do we fully understand the inherent randomness

of environmental and social events like the popularity of
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agritourism during a heat wave. Not surprisingly, comprehensive

evaluation of uncertainty has emerged as an important topic of

social-ecological research, including environmental modeling

[17,18,19,20], land use and land cover change [5,21,22], and

geographic information science [23,24,25,26]. The need for

proper handling of uncertainty also has been widely recognized

in ABMs of socioecological systems [27,28,29].

We argue that systematic evaluation of ABM uncertainty should

comprise a joint quantification of model output variability and its

sensitivity to inputs (called factors) - Figure 1 [5,21,28,29,30,31].

Consequently, we propose a new framework for evaluating

uncertainty of ABMs. We demonstrate how an integrated

quantitative uncertainty analysis and sensitivity analysis (UA-SA)

can be employed in ABM development to meet three modeling

objectives: 1) to evaluate the validity of simulation results (using

uncertainty analysis - UA); 2) to generate a more parsimonious

model (using sensitivity analysis - SA), and 3) to prioritize input

data refinement by identifying the ABM factors that are mostly

responsible for model output variability (using both UA and SA).

Factors comprise various uncertain model components including

variables, parameters, spatial data (maps), functions, and sub-

models that jointly influence ABM results - Figure 1 [32].

Uncertainty analysis (UA) evaluates how the variability of factors

propagates through the model and affects the variability of output

values. The objective of UA is to quantify the distribution of results

given uncertain factors. Conversely, sensitivity analysis (SA)

evaluates how factor variability contributes to model output.

Although ABMs are relatively common in socioecological

research, studies rarely include the joint use of quantitative UA-

SA, suggesting that these stages of ABM evaluation are

perfunctorily, if at all, undertaken [33,34,35].

Recognized as important for scientific understanding, quanti-

tative UA-SA has been employed in a number of non-ABM studies

on socioecological systems. Examples include ecological modeling

of ecosystem vulnerability to climate change [36], hydrology and

water use [37,38,39,40], species interactions and community

stability [41], changing human environmental attitudes [42], water

eutrophication [43], and coral reef degradation [44]. In ABMs

studies, the most common approach involves an UA that

summarizes the results of Monte Carlo simulation based on

simple random sampling or, in the case of SA, running the model

with extreme values of its factors or using a limited number of

values, with little or no quantification of the influence of these

factors on the variability of results [1,45,46,47,48]. One possible

explanation for the lack of quantitative UA-SA in socioecological

ABM is the relative infancy of the AB methodology coupled with

the flexible protocol for executing AB simulations. There is a need

for a well-defined UA-SA framework tailored to meet the specific

needs of ABM, such as handling the very large number of

heterogeneous factors (at least one per agent) of a highly nonlinear

model.

Quantitative UA-SA in ABMs can serve many purposes

[31,49,50,51]. It can be used to strengthen trust in model realism

and to eliminate model factors that have negligible influence on

the variability of the output, allowing for a simpler, easier to

understand model. Therefore, UA-SA together provide informa-

tion on influential factors that significantly affect the variability of

model results. They allow scientists to gain a deeper understanding

of the complexity of the model, its uncertainties, interrelationships,

and its potential future scenarios. UA-SA provide a means of

asking ‘what if?’ questions that help to validate or disqualify the

results [52]. UA-SA should be included in all ABM exercises using

methods that systematically examine model factors and outputs to

build credible models necessary for addressing problems at the

science/policy interface [53,54]. We argue that a reliable

simulation-based policy analysis requires simplified yet practical

models, and that integrated quantitative UA-SA associated with

ABM of socioecological systems is essential for scientific under-

standing for two reasons. First, uncertainty is a fundamental

property of complex systems that cannot be ignored. Moreover,

because a portion of this uncertainty is irreducible, a socio-

ecological model that generates results with little or no variability

has little practical value. Second, a distribution of UA outputs,

including the tails and means, provides an opportunity for

exploration of extreme system behavior. Although highly unlikely,

boundary cases may result in radical changes of significant

consequence to society and/or the environment. On the other

hand, scientific explanation requires considerable accuracy, which

can be achieved through reducing output variability in order to

improve model performance.

In the next sections, we describe how quantitative UA-SA can

be used to build ABMs for policy analysis and exploration. While

still nascent, a comprehensive UA-SA have been applied to ABMs

in a few previous studies [28,30,35,55,56,57]. For example,

Fonoberova et al. [35] use UA-SA to identify factors for model

reduction in an ABM of criminal activity, while Parry et al. [55]

Figure 1. Uncertainty and sensitivity analyses of model output.
doi:10.1371/journal.pone.0109779.g001
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use UA-SA to identify the highly sensitive factors that need further

refinement in an ABM of bird population. What sets our

manuscript apart is the use of comprehensive UA-SA separately

for model explanation and exploration, by focusing on the

refinement of the most influential factors (explanation) and the

reduction of the least influential factors (exploration) of a

socioecological ABM. We employ variance decomposition of the

ABM output - a method commonly used in ecological modeling

outside of ABMs [58,59,60]. UA is applied to build a legitimate

model, where the distribution of model results informs us not only

about the expected value validated against independent data, but

also provides information about the spread around the expected

value and the extreme (boundary) results. SA is then employed to

produce a parsimonious model. Two cases are examined. First, we

build a practical exploratory model that allows scientists to simulate

low-probability but high-consequence events that may be of high

policy relevance. Second, we build a more explanatory model that

provides the means of describing the system with higher accuracy.

Specifically, we postulate that the explanatory power of a model

lies in illuminating the core underlying processes [61] and

exposing system-wide regularities [62], which manifest themselves

through the mean of the output of interest. The proposed

framework is applied to the problem of modeling farmland

conservation and resulting land use change (from agriculture to

fallow), demonstrating the utility of UA-SA for contributing to

science and policy.

Materials and Methods

Uncertainty analysis
UA produces a distribution of model results (Figure 1). It

requires multiple model runs, where factor values are randomly

chosen from their respective distributions. Because the results of

quantitative UA-SA are computationally expensive, the selection

of the sampling method used to perform UA is essential. Following

Saltelli et al. [63], we use quasi-random sampling that generates

samples more uniformly over the entire factor space than simple

random sampling. A sample is then used to execute the model,

which produces an individual output value. In our case study, for

example, the output is a measure of total area of land converted

from agriculture to fallow. These results build a distribution of

outputs that can be further analyzed using descriptive statistics.

Two statistics are particularly useful: the mean that represents the

central tendency of the stochastic process, and the variance that

summarizes the variability of the results. Variance is then used as

input to SA (UA is, therefore, a prerequisite to SA).

Sensitivity analysis using output variance decomposition
Commonly, SA involves modifying the value of one factor

(while keeping the other factors constant) and observing the effects

of this change on model results. This method, referred to as one-

parameter-at-a-time (OAT) [33,64,65], is most often used by

socioecological modelers. The prominent examples, closely related

to socioecological ABMs, include the use of OAT in land use

change cellular automata models to evaluate their sensitivity to

map resolution and the size and configuration of neighborhoods

[66,67] and the use of OAT to identify the most sensitive factors in

an epidemiological ABM of the spread of measles among humans

[68]. OAT popularity may be attributed to its simplicity, low

computational cost, clear starting point in the form of a baseline

parameter set, and the fact that the observed changes in outputs

can be easily traced back to changes in specific factors [33].

Unfortunately, the utility of OAT for complex socioecological

ABM is limited. The arbitrary choice of which factor to modify

and by what amount is problematic when the magnitude of key

system drivers is hard to determine [28]. Also, OAT does not

explore the variability of factors in combinations and, conse-

quently, assumes a linear relationship between inputs and outputs.

Finally, OAT is of limited use in exploratory modeling, because it

does not test the full range of factor variability and therefore

minimizes our ability to simulate extreme, but catastrophic, events.

As an alternative to OAT, we utilize a global SA approach, which

is based upon simultaneous perturbations of the entire model

factor space, examining the factors both individually and in

combinations [69,70].

Our global SA uses model output variance decomposition in

which the variability of the area of fallow land (resulting from

farmer agent decision making) is decomposed (partitioned) and

distributed among model factors evaluated in various combina-

tions [69,71]. Factor sensitivity is quantified using two measures

referred to as a first order sensitivity index, S, and a total effects

sensitivity index, ST [69,70,72]. Index S measures the indepen-

dent, fractional contribution of each individual model factor to

output variance. The ST index estimates the overall contribution

of a given factor to output variance including its interactions with

other factors. Assuming that model output Y has unconditional

variance V, the indices of a given factor (i) are formalized as.

follows:

Si~
Vi

V

ST i~
V{VCi

V
2

Where Vi is the variance of Y due to the variability of factor i
alone, and VCi is the conditional variance due to all model factors

except i. The sum of all S indices (SS) is the fraction of output

variance that can be explained by the individual factors alone.

Therefore, the formula:

I~1{
X

S 3

gives the fraction of output variance due to the interactions (I)

between the factors. This succinct measure of interactions can be

further analyzed using the ST indices, which provide information

about the total (first and higher order) influence of each factor on

output variance. For more details on variance decomposition, the

reader is referred to Saltelli et al. [70], Lilburne and Tarantola

[69], and Homma and Saltelli [72], among others.

The (S,ST) pairs are quantified as ratios of the conditional

output variances to the total variance and, thus, measure the

relative contribution of each factor to output variance (Figure 2A).

Factors with relatively high S (ST) values will have the greatest

impact on the variability of model results. When these factors are

refined or fixed to constant values, the result is a reduction in

output variance. We use this property of the (S,ST) pairs to

operationalize the explanatory power conception of modeling

(Figure 2B). The major premise of model explanatory power is

that additional observations used for estimating the most

influential factors get us closer to an accurate representation of

the underlying system. By better approximating values of the most

influential factors, especially in cases where these factors dominate

the output, we can unravel the interrelationships among other

factors and expose model nonlinearities. Conversely, if we fix

factors that have S (ST) values close to zero (i.e. the non-influential
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factors), we do not significantly change the variance of the results.

Instead, we derive a simplified model with quantitative exploratory
power (embodied in variance of a given output) equal to this

model’s baseline implementation (Figure 2C).

Case study: ABM of Michigan farmer enrollment in the
Conservation Reserve Program

We use quantitative UA-SA for land use model simplification

and factor prioritization. The goal is to build a simpler

representation of an ABM with two distinct objectives: policy

analysis that would benefit from exploratory modeling [73], and

advancing science through explanatory modeling [74]. Our case

study considers the participation of farmers in a land conservation

program aimed at protecting ecologically valuable areas.

Published research suggests that farmers’ decision to participate

in a land conservation program is driven by both financial and

nonmonetary drivers [75,76,77,78]. These findings are based on

conventional statistical analyses of survey data. Few studies have

explicitly modeled the decision processes and analyzed the

resulting spatial configurations of conserved land [16]. Following

this observation, we develop an ABM of agricultural land

conservation decision making. The model simulates voluntary

participation in the U.S.’s largest land protection program, the

Conservation Reserve Program (CRP) [79]. We examine CRP

enrollment in southwest Michigan, U.S. (Figure 3). The area

covers 985 square km, with 2687 farmland parcels. This area is

characterized by large proportions of agricultural land with about

3% of farmland enrolled in CRP according to the U.S. 2007

agricultural census [80].

Model description
In the ABM reported herein, CRP enrollment is simulated

based on well-defined federal regulations [79]. Two types of

decision makers are involved in this process (Figure 4): [1] farmers

who decide whether or not to participate in CRP and [2] the Farm

Service Agency (FSA), which evaluates, selects, and accepts farmer

enrollment offers. The basic spatial unit of CRP decision-making is

a farmland parcel. During the model setup, a farmer agent (FA) is

associated with various socio-demographic and economic factors

(land tenure, operator’s retirement, and the value of production on

a farm; described in later sections). The FA is then assigned to a

parcel.

As a first step, the FA calculates their willingness to enroll in the

CRP based on decision criteria (factor values) including financial

motives and nonmonetary drivers. To calculate the willingness to

enroll, we apply a group of aggregation operations (aka decision
rules) called Ordered Weighted Averaging - OWA [81,82]. OWA

allows for simple representations of different conceptions of risk

related to CRP enrollment, which, after acceptance, is mandatory

for at least ten years. OWA decision rules range from the most

Figure 2. A framework for uncertainty and sensitivity analysis of ABMs of socioecological systems. Applying variance decomposition to
simplify a stochastic model (A), and maintain its exploratory power embodied in outcome variability (B) or improving its explanatory power by
reducing its outcome variability (C).
doi:10.1371/journal.pone.0109779.g002
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risk-averse, where values of all decision criteria must be positive, to

the most risk-taking where only one decision criterion needs to be

nonzero. For example, if an agent makes a decision to participate

in the program based on low value of production AND retirement,

that decision is risk-averse, whereas if the decision is made based

on low value of production OR retirement, the agent is risk-taking.

Agent’s willingness to enroll is extended with a simple group

interaction mechanism, in which farmers adopt imitative behavior

[83] based on the decisions made by other proximal farmers. An

FA incorporates into its decision mechanism the density of
enrollment in its neighborhood, measured as the ratio of CRP-

enrolled neighbors to the total number of neighbors within 0.5 km

from the parcel.

If an FA’s willingness to enroll exceeds an empirically derived

threshold, the agent selects a fraction of its parcel for potential

enrollment [77]. Eligible sites in the parcel (pasture and cropland)

are rank ordered based on distance to water, distance to forest,

and land slope, and the first fraction of sites is selected. Next, the

FA builds an offer by calculating an expected annual payment

based on soil rental rates [84]. To increase its offer competitive-

ness, the FA reduces the payment using a bid rate established by

USDA [85] and estimates a discounted annual payment (DAP).

The FSA agent collects offers from the FAs and selects a subset (n)

of them based on the environmental benefit index (described in the

following section), the signup budget, and the DAP. Next, FSA

announces the signup results leading to land use change from

agriculture to fallow. In sum, the location and area of fallow land

results both from the FAs’ decisions to participate and the FSA’s

decision to accept their offers. The process of CRP signup is

repeated annually for ten years (minimum CRP contract length).

Land use change maps constitute the output of the model. They

are summarized into the total area of fallow land. This scalar is

used in the UA and SA.

Model input data
The ABM uses a number of factors, some that are readily

available and some that we derived from auxiliary resources,

including land uses obtained from 2010 cropland raster layers

[86], freshwater ecosystems from a lakes and rivers geodatabase

[87], soil data [88], and slope [89]. The major geoprocessing

operations were mapping land eligible for CRP [79], deriving

spatial layers that influence FA’s choice of area to enroll (Figure 4 -

distance to water, distance to forest, and land slope), and

generating the soil rental rate (SRR) and the environmental

benefits layers. The SRR layer (Figure 5) was derived from a soil

productivity index map for the State of Michigan [90] and county

cash rental rates [84].

Deriving environmental benefits
Ranking of CRP offers is based mainly on their Environmental

Benefits Index (EBI) values. EBI is a composite index based on

multiple rated criteria describing benefits for wildlife, water

quality, soil erosion, long term maintenance of installed vegetation,

and air quality [85]. To optimize environmental benefits per dollar

Figure 3. Study area in Michigan, U.S.
doi:10.1371/journal.pone.0109779.g003
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expended for rental payments, the EBI is adjusted by a cost and

bid rating scale. Offers with lower total annual payments and

higher bids (voluntary reduction by the farmer of the offer value

below the maximum payment) receive highest priority.

EBI can be quantified in many different ways, resulting in

substantial uncertainty. Consequently, we used alternative con-

ceptions of the benefits (Figure 6), weighed by their respective

point scores [85] in various combinations to generate six different

benefit layers used interchangeably in the ABM. The values of EBI

range from 50 to 350 points and the six alternative EBI surfaces

have moderate to high positive correlation (min Pearson’s r = 0.35,

max Pearson’s r = 0.89).

Farmer’s decision to participate
Statistical and econometric studies of CRP enrollment point to

five major categories of independent variables used to predict

participation in land conservation programs: farm, household, and

environmental characteristics; government assistance; and farm-

ers’ attitude and perception [77,78,91,92,93,94]. We used USDA’s

Agricultural Resource Management Survey (ARMS) [95], a semi-

annual survey of American farming businesses and households

sponsored by USDA’s Economic Research Service and the

National Agricultural Statistical Service, as our data source for

farm finances, production practices, and household characteristics.

We developed an a priori set of candidate multiple regression

models to understand farmer participation in the CRP based on

Figure 4. Agent-based model of enrollment in Conservation Reserve Program.
doi:10.1371/journal.pone.0109779.g004

Figure 5. Soil rental rates (the southeast fragment of the study
area).
doi:10.1371/journal.pone.0109779.g005
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results of prior studies about farmer participation in land

conservation programs. Using a multimodel inference analytical

approach based on the Akaike information criterion (AIC), models

with relatively low AIC values were considered the most

parsimonious, balancing bias and variance of model predictions

[96]. We assigned relative strengths of evidence to each candidate

model according to AIC weights and evaluated explanatory

variables in terms of deviance explained. From this process,

farmers’ retirement status (RETIREMENT), the total value of

farm production (PRODUCTION), and the ratio of farmed to

owned acres (TENURE) received the most support in terms of

deviance explained (Table 1). Consequently, these three attributes

became FA’s decision criteria (Figure 4). Finally, the dependent

variable used in the regression models (yes/no CRP participation

decision) was used to estimate the threshold for FA’s willingness to

enroll equal to 0.87, which reflects the ratio of farmers enrolled in

CRP to total farmers in 2010 in Michigan based on the ARMS

data.

Factor distributions
Given the CRP enrollment procedure and the available data,

we identified nine factors for the ABM. Seven factors are

attributed to the FA and the remaining two to FSA (Figure 4).

The three independent explanatory variables used by the FA in

the enrollment decision (land tenure - TENURE, value of

production - PRODUCTION, and operator’s retirement status -

RETIREMENT) were included as individual, farmer-level factors

in the form of empirically-derived probability density functions -

PDFs (Table 1). These functions epitomize the financial and

nonmonetary drivers affecting the FA’s land conservation decision.

Empirical data for other factors were only partially available.

Consequently, we used a uniform PDF for the other model factors

[97]. The density of enrollment in the FA’s neighborhood depends

on how the neighborhood is defined. In our model, we delineated

neighborhood based on distance from FA’s parcel, which varied

from 500 to 1500 m. For OWA, we assumed various magnitudes

of attitude to risk, where each level had an equal probability of

selection. To select the fraction of land for potential enrollment

(LAND in Figure 4), we assigned a uniform distribution from 1%

to 100% of parcel area (partial to full land enrollment). The

number of offers accepted by FSA was based on the budget

allocated to CRP per county [98].

Figure 6. Benefit layers used to calculate six composite EBI surfaces. Each EBI surface is a sum of one of the N1 layers, one of the N2 layers,
and the N3 layer. All N1, N2, and N3 layers are standardized based on their respective point scales [78]. The remaining benefit criteria used in EBI
calculation (vegetation and air quality) were not used due to their negligible role in the area of study.
doi:10.1371/journal.pone.0109779.g006
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Design of experiments
Our simulations include three computational experiments. In

experiment one (EXP1, 2560 model runs), our base scenario

(Figure 2), we run Monte Carlo simulations using all nine factors.

In experiment 2 (EXP2, 1536 runs), the simplified exploratory

scenario, we include only those factors that most influence the

variability of the total area of fallow land (AREA), calculated at the

end of model execution. The simplified explanatory scenario with

variance reduction is implemented in experiment 3 (EXP3, 2304

runs), where we fix the value of the most influential factor from

EXP1, leaving the remaining factors unchanged. All simulations

were run using high performance computing at Michigan State

University. Factor samples were produced using the quasi-random

Sobol’ experimental design [99], which is the most optimal

method to approximate the values of the S and ST indices [63,69].

The ABM was implemented in the Python programming language

(http://www.python.org/) and the (S, ST) indices were computed

using the SimLab software package for uncertainty and sensitivity

analysis (http://ipsc.jrc.ec.europa.eu/?id=756). Statistical regres-

sions were completed utilizing R, version 3.0.2.

Results

The results of our ABM simulations are land use maps with one

additional category, fallow land, when compared to our input land

use maps. Example results from EXP1 are depicted in Figure 7A.

Because FAs make decisions on a site-by-site basis, most of the

parcels enrolled in CRP at the end of model execution have only a

portion of their land enrolled in CRP. Figure 7B illustrates the

frequency of site enrollment (number of times a site is enrolled for

all ABM executions). Note the considerable spatial variability in

site enrollment. Most sites are only selected 5–8% of the time. We

hypothesize that this dispersed enrollment is caused by the

complex interactions between the nine factors. We utilize UA-

SA to illuminate these complexities and focus on the causes of

CRP enrollment variability.

Uncertainty analysis
To explore the variability of CRP enrollment, we performed

UA by examining the distribution of the total area enrolled in

CRP (total fallow land area - AREA). Figure 8A summarizes the

distributions of AREA for each of the three experiments. We also

calculated the mean and variance of AREA per experiment. The

mean CRP AREA was between 5120 and 5150 acres, with results

of no experiment being significantly different from any other (one-

way ANOVA (F(2,6397) = 0.961, p = 0.38), confirming that all

ABM representations are equivalent. Since our experimental

design uses a more uniform (quasi-random) sampling compared to

the typical ABM Monte Carlo simulations that are based on

simple random sampling, we can infer that the calculated mean is

indeed the true (accurate) measure of central tendency in AREA

distribution. Consequently, we can use this value to validate the

model against an independent dataset. The U.S. Agricultural

Census [80] reported 5490 acres (,24,700 map units) of CRP

land in the study area, which is about 7% more than the mean for

the baseline EXP1, rendering the results plausible for further

evaluation.

We used the variance to evaluate the degree of AREA

variability. As expected, the variances of EXP1 and EXP2 are

approximately equal. Consequently, the simplified model used in

EXP2 can be used in exploratory analysis without the loss of

variability necessary when evaluating the CRP policies. Converse-

ly, EXP3 (in which data on the most sensitive factor was refined)

produces a distribution much more centered around the mean

when compared to the baseline. Consequently, the simplified and

refined ABM used in EXP3 can be used in explanatory analysis of

the social, economic, and ecological processes associated with

CRP participation. The following section explains the details on

how we arrived at these two ABM simplifications.

Sensitivity analysis and model simplification
UA alone does not provide any information about the influence

of individual factors on AREA variability. Without SA it would be

impossible to build the simpler yet equivalent versions of our

ABM. By performing the decomposition of AREA variance, we

can identify factors in the initial version of the ABM that can be

either reduced without the loss of ABM exploratory power

(EXP2), or refined if our objective is to explain the processes

(EXP3).

Figure 8B shows pie charts of the S and ST indices for all three

experiments. Because factors with relatively high values of S have

the most effect on the of total fallow land area, we look for factors

Table 1. Probability distributions for factors used in ABM simulations.

Factor Name Factor Description Probability Density Function

RETIREMENT Primary operator retired from farming
(0 -retired, 1- working).

D = {(0,.06), (1,.94)}

PRODUCTION Total value of production on a farm (normalized). D = {(0,0), (.2,.06), (.4,.06), (.6,.11), (.8,.15),(1,.62)}

TENURE Ratio of owned to operated acres. D = {(0,.04), (.2,.14), (.4,.18), (.6,.14), (.8,.15),(1,.35)}

DE Extent of FA’s neighborhood used to calculate
the density of enrollment in FA’s geographic vicinity.

U = {.5 km to 1.5 km with increments of 100 m, with equal
probability of selection}

OWA FA decision rule based on ordered weighted averaging,
with varying attitudinal character i.e. the level of ‘‘orness’’ [81].

D = {17 combinations with equal probability}

LAND Fraction of parcel to set aside for conservation. U = (0, 1]

BID Voluntary reduction by the farmer of the offer
value below the maximum payment rate.

D = {0% to 16% of offer reduction with increments of 1,
with equal probability of selection}

EBI Environmental benefits index dataset. D = {6 layers with equal probability}

n Number of offers (contracts) accepted annually
by FSA.

D = {18 to 28 with increments of 1, with equal probability
of selection}

U - uniform distribution, D - discrete distribution (value, probability). All factors were normalized to [0.0, 1.0]. All data are for CRP sign-up 41 in 2010 [108].
doi:10.1371/journal.pone.0109779.t001
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that, if fixed singly, would most reduce the variance of AREA. In

the baseline EXP1, the highest S is recorded for the number of

offers accepted by the FSA (n). Trivially then, the extent of

farmland conservation is first and foremost driven by the FSA

signup choices. Given that CRP is competitive among farmers, the

ABM confirms the observation that program participation

depends on the federal budget allocated to annual payments.

Only about 10% of AREA variance can be attributed to factor

interactions, which occur between n, OWA, BID, LAND, and

RETIREMENT. Due to their influence, these five factors were

included in a simplified version of the model in EXP2 (central box

plot and pie charts of Figure 8A and 8B). Because we only

excluded factors that had negligible influence on the distribution of

AREA (which were set to constant values - either their mean or

median), the resulting and baseline distributions are nearly

identical, including their means and variances. More importantly,

variance decomposition generated S and ST indices consistent

with the original model formulation. We can therefore conclude

that our ABM formulation used in EXP2 meets the criteria of a

simplified exploratory model (Figure 2). This simplified model is

more efficient computationally - an indispensable feature for

models used in policy analysis [73]. At the same time it maintains

result variability, which can be of use when identifying the less

probable but highly consequential policy scenarios.

In EXP3, we set n = 23 (its midpoint number of offers), to

demonstrate how the behavior of our ABM changes when, instead

of fixing the negligible factors, we do so for the most influential

factor. This scenario imitates a situation in which we obtain more

accurate data on the most sensitive factor of the model. There was

a significant reduction in AREA (Figure 8A), and although the

mean is roughly the same as its initial value, the spread around the

mean decreased by 64% compared to EXP1. EXP3 is also

characterized by a more complex behavior than the first two

experiments. Only 35% of this reduced variance can be explained

by individual factors (Figure 8B right). The total effect indices

suggest that non-monetary motives (perception of risk and FA’s

retirement) are equally important in FA’s decision as the financial

drivers (BID, LAND, PRODUCTION, TENURE). We hypoth-

esize that a portion of these interactions can be attributed to the

functional relationships between factors. For example, if the

fraction of land to convert in a particular parcel has a relatively

high value while the OWA rule is conjunctive (AND-only) [100], a

large portion of land has the potential to become fallow. However,

if the OWA rule is disjunctive (OR-only), an offer can be accepted

(and the land can be set to fallow) even when the fraction of land to

convert to fallow is relatively low, provided that the other factors

(RETIREMENT, PRODUCTION, TENURE) compensate for

LAND and encourage land conservation. In summary, while we

reduced the range of the distribution for AREA in EXP3, we also

exposed more complex dependency among the remaining factors

than initially observed. By ‘‘improving’’ the most influential factor,

we illuminated the complexity of FA’s decision making. We can

therefore postulate that this simplified ABM carries more

explanatory power than the original model.

Limitations
Our combined quantitative UA-SA framework serves as a tool

for better-informed ABM building. It leads to equivalent but

simpler representations of a given socioecological system. Output

uncertainty can be greatly reduced if more effort is put into

improving the quality of data on the most influential factors (factor

prioritization) through additional field studies, surveys, or auxiliary

databases. However, the UA-SA framework also has limitations

due to two design aspects: factor distributions and the type of

output variables used (i.e., the way we measure or assess model

results). A different output variable (e.g. the patchiness of fallow

land, the cost of vegetation installation, or the long term reduction

in nutrient loading to lakes) might point to a different set of

influential factors. For example, the use of spatial metrics applied

to output land use change maps [101] may lead to alternative

explanations of model uncertainty [30]. Similarly, the type and

characteristics of the probability distributions used for each factor

(e.g. uniform versus normal distribution for LAND) could

influence both the variability of outputs and the relative

contribution of factors to this variability.

Figure 7. Example output land use maps (A), and the frequency of agriculture-to-fallow conversion (B). For clarity, only the southeast
portion of the study area is shown.
doi:10.1371/journal.pone.0109779.g007
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The ABM presented here is of limited use for natural resource

management practice. Data for most of the factors are either

simulated or come from secondary sources and some of the

mechanisms are poorly defined. Future model improvements will

require surveys of and interviews with farmers and government

officials. The recent decline in CRP enrollment suggests that

increasing crop prices and government subsidies may play a

significant role in the extent of land conservation [102], indicating

the importance of such research. Finally, more insight into the

spatial configuration of fallow land (connectivity, clustering, or

dispersion of fallow land) may be necessary to better evaluate the

ecological benefits of land conservation resulting in the prioriti-

zation of protected areas.

Discussion

ABMs have distinct advantages over other modeling approaches

due to their abilities to couple human and natural systems, to

incorporate micro-level behaviors among interacting agents, and

to understand emergent phenomena due to these interactions.

Their use thus far has been primarily by researchers for descriptive

and predictive purposes [103]. This fact may explain their limited

use in policy-making; ABMs’ abilities to make accurate predictions

Figure 8. Results of uncertainty (A) and sensitivity (B) analysis for the output variable fallow land area. Fallow land area is reported in
map units (equivalent of 30 m). Factor labels used in text: number of offers accepted by the Farm Service Agency - n, payment reduction used by the
farmer agent to increase offer competitiveness - BID, FA’s decision rule - OWA, fraction of farmland enrolled in CRP - LAND, FA’s retirement status -
RETIREMENT, FA’s value of production - PRODUCTION, land tenure - TENURE, density of enrollment in the neighborhood - DE, measurement of
environmental benefits - EBI, factor interactions - I (Equation 3).
doi:10.1371/journal.pone.0109779.g008
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have been questioned [62,104]. We have addressed this perceived

limitation using our quantitative UA-SA approach by identifying

and fixing the values of the most influential factors, thereby

reducing the variance of model results. Doing so allows researchers

to gain a greater understanding of the individual and interactive

effects of different model factors. Further, by controlling the

factors that explain the most variation in the output, researchers

can expose the smallest number of factors that influence the steady

state of a system. In our CRP example, we fixed the number of

offers accepted by the FSA in our exploratory model (EXP 3),

thereby reducing the number of factors by one as compared to the

baseline model. Although the mean of our output variable, fallow

land area, was essentially the same as that of the baseline, the

variance decreased dramatically. Thus, this explanatory model

revealed complex and important interactions among the remain-

ing factors.

We also used the quantitative UA-SA approach to improve the

ABM’s policy relevance. Lempert [105] argued that ABM policy

relevance might be improved if utilized for exploratory rather than

predictive purposes, reflecting the fact that there is often great

uncertainty and little agreement among stakeholders regarding

complex, dynamic processes and corresponding decisions. Where-

as his suggestion was to exercise large numbers of model runs and

use various criteria including robustness, resilience, and stability to

evaluate different policies, we have offered a more tractable

approach. By identifying the most influential factors and ignoring

others, we developed an ABM model for exploratory purposes; a

simplified model with no loss in output that allows for the

exploration of various policy scenarios, including rare but

potentially catastrophic events. In our example, our exploratory

model (EXP 2) used only five factors as compared to nine in the

baseline model. Yet, the mean and variance of our output variable,

fallow land in conservation, changed little from the baseline. Thus,

by reducing model factors, we are able to efficiently explore

different, policy-relevant scenarios.

Interest in the study of complex socioecological systems or

coupled human and natural systems has risen concomitantly with

the recognition of profound challenges in the Anthropocene

including climate change, biodiversity loss, land use change,

alteration of nitrogen and phosphorus cycles, and the depletion of

freshwater [106]. Our ability to address these challenges depends

greatly on how well we can make decisions despite great

uncertainty. Although utilizing a variety of approaches is certainly

of value [107], ABMs will likely play an important role in these

efforts. Our intent, in utilizing a quantitative UA-SA approach,

was to expand ABMs explanatory and exploratory potentials,

contributing both to scientific efforts to increase our knowledge

and predictive abilities and to policy requirements of making good

decisions without complete knowledge.
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