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Scientific Significance Statement

Identifying lake networks and quantifying the degree of connectivity among lakes (e.g., the stream course distance between
lakes) by incorporating streams can help scientists better understand and predict the movement of abiotic materials and biota
within networks. LAGOS-US NETWORKS v1 fills the need for accessible and comprehensive connectivity metrics and tools at
the individual lake and network scales across the conterminous United States. It includes surface connectivity metrics for a
total of 898 networks comprised of 86,511 lakes ≥ 1 ha in surface area.

Abstract
Identifying lake networks and knowing the degree of surface-water connectivity among lakes can help scientists
better understand and predict the movement of abiotic materials and biota within networks. Quantifying
broad-scale networks that include lake and stream connections is difficult computationally. Starting from the
medium resolution National Hydrography Dataset’s lakes, streams, and rivers, we applied a graph theory
approach to identify lake networks, a set of lakes connected by streams both upstream and downstream. The
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LAGOS-US NETWORKS v1 module contains four data tables, one of which includes derived surface-water con-
nectivity metrics for lakes (n = 86,511 lakes ≥ 1 ha in surface area) and networks (n = 898) within the contermi-
nous United States, including dams. The NETWORKS module also includes a flow table as well as a
bidirectional and a unidirectional distance table that provide the stream course distances between every con-
nected lake. Finally, this module includes a detailed User Guide.

Freshwater network structure is an important area of
research for aquatic ecologists. Knowing the number of and
distance to upstream and downstream lakes, the position of a
lake in a network, as well as the complexity of lake networks
can help scientists better understand and predict the move-
ment of materials and biota within networks. Studies have
shown that surface-water connectivity affects lake and stream
characteristics such as water chemistry (Wollheim et al. 2008;
Sadro et al. 2012; Soranno et al. 2015; Schmadel et al. 2018)
and biotic diversity (Olden et al. 2001; Beisner et al. 2006;
King et al. 2021a). Research also shows that incorporating
both streams and lakes into measures of connectivity gives a
more accurate representation of nutrient processing and biotic
movements (Jones 2010) than using only one freshwater type
(lakes or streams).

One way to characterize freshwater surface connectivity is to
create metrics for surface-water networks or a series of connected
lakes and stream reaches. These metrics can incorporate the
number of and distance to surface-water connections as well as
the waterbody position within a network (i.e., landscape posi-
tion). For example, Olden et al. (2001) investigated how a suite
of connectivity metrics such as upstream and downstream
watercourse distances between lakes, watercourse distance
through an intermediate lake, and stream gradient corresponded
to fish community composition. They found that different con-
nectivity metrics were important for different lakes. Popular
stream network position metrics like stream Strahler order
(Strahler 1957) and link magnitude (Shreve 1967) have been
used to capture the spatial arrangement of a stream reach within
a river network. Similarly, lake position within a network has
been characterized with lake network number (LNN) and lake
order (LO), a lake’s position in a lake chain and the Strahler
order of the outflowing stream, respectively (Kling et al. 2000;
Riera et al. 2000; Martin and Soranno 2006). The position of a
lake in the network has been shown to be correlated with both
abiotic (Kling et al. 2000) and biotic (Kratz et al. 1997) proper-
ties. However, connectivity metrics that describe surface-water
network structure by incorporating both streams and lakes are
needed to better understand the influence of connectivity
(or isolation) on biotic and abiotic lake properties.

The best approach to quantify surface-water networks
depends on both the research question and focus of the study
(e.g., biota vs. nutrients, streams vs. lakes) as well as the spatial
scale of interest. For example, when working at broad scales
(regions to continents) and including both streams and lakes, it
is difficult to balance accurate estimates of surface-water

connectivity and computational challenges. Graph theory
approaches, which model pairwise relationships between nodes
(lakes or streams) connected to each other by edges (streams),
provide ways to overcome computational challenges because
they have minimal data requirements while still providing accu-
rate estimates of connections between waterbodies (Calabrese
and Fagan 2004). However, because these metrics can be compu-
tationally difficult, studies that have applied graph theory to
lakes are often restricted to a few watersheds (Bishop-Taylor
et al. 2015; Saunders et al. 2016).

Our research fills the need for accessible and comprehen-
sive lake networks and connectivity metrics at the national
scale. A recent study using the National Hydrography
Dataset’s (NHD) high-resolution lakes (> 0.5 ha) and medium
resolution permanent rivers and streams classified river net-
works into four types based on surface connections across the
conterminous United States (U.S.; Gardner et al. 2019). This
study demonstrated how lake/reservoir abundance and size
scale with stream order and provided a first step in incorporat-
ing lakes into river networks at the national scale (Gardner
et al. 2019). Our research complements their study by focus-
ing on lake networks and making the data and code publicly
accessible for further research and applications.

This data paper presents the LAGOS-US NETWORKS v1 data
module that identifies a total of 898 networks that include
86,511 lakes ≥ 1 ha in surface area (more detailed description of
methods can be found in the User Guide). The number of lakes
in a network ranges from 2 to 32,811 lakes, the largest network
being the Mississippi River basin (Fig. 1). NETWORKS was cre-
ated using a graph theory framework to generate lake networks
for the conterminous U.S., where lakes and streams were the
nodes and connections between them were the edges (sensu
Urban and Keitt 2001; Eros et al. 2012). We defined lake net-
works as a set of lakes connected by ephemeral or permanent
streams, regardless of the directionality of those connections
(e.g., upstream, downstream, or both) and we excluded connec-
tions through the Great Lakes, oceans, and estuaries. The NET-
WORKS module includes all lakes that are connected to other
lakes (i.e., no isolated lakes or lakes only connected to streams
are included), which is about 18% of all lakes ≥ 1 ha in surface
area in the study extent (Smith et al. 2021; Cheruvelil et al. In
press). This proportion is comparable to similar studies that
found 33% (Hill et al. 2018) and 15% (Gardner et al. 2019) of
NHD lakes to be in-network.

From these networks, we derived a suite of surface connec-
tivity metrics, including metrics for connections among lakes
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(both upstream and downstream), dam metrics, and network
position (spatial orientation of the lake within its network) for
connected lakes. We also included upstream and downstream
distances (bidirectional) and just downstream distance (unidirec-
tional) between every pair of connected lakes and a flow table
that describes the flow path direction (e.g., FROM and TO)
between two flowlines (i.e., streams and artificial flowlines
through lakes) that was used to create the networks and infor-
mation in the other three tables. All data in the NETWORKS
module can be linked to individual lakes in the LAGOS-US data-
base platform via “lagoslakeid” (Smith et al. 2021; Cheruvelil
et al. In press) or linked to the medium resolution NHDplusV2
via “nhdplusv2_comid” (U.S. Geological Survey 2019). Finally,
we include a detailed User Guide for NETWORKS that provides
more information on methods for this module.

NETWORKS is unique because it identifies lake networks
for the conterminous U.S. that include lakes located on differ-
ent tributaries that are connected through a downstream con-
fluence and provides a suite of connectivity metrics at the
individual lake and network scale. Thus, the NETWORKS
module can be used in conjunction with other abiotic and
biotic datasets to further ecological prediction, such as how
nutrients or contaminants move through a network, changes
in invasive species distributions, or how biota might move up
or downstream in response to climate change (for further

discussion of uses, see section “Data Use and Recommenda-
tions for Reuse”). These networks will help advance our under-
standing of how surface-water connections and network
position affect abiotic and biotic properties of lakes at regional
to continental scales.

Data description
Overview of data sources

The LAGOS-US NETWORKS module was created using a
variety of existing datasets. The lake networks were derived
from the lake and stream flow tables of the medium resolution
U.S. National Hydrography Dataset (NHDplusV2) downloaded
05 August 2019 (U.S. Geological Survey 2019). NHDplusV2 is
a national geospatial surface-water dataset that integrates
information from the NHD, the National Elevation Dataset,
and the Watershed Boundary Dataset at a 1 : 100,000-scale.
Lakes were assigned both their “nhdplusv2_comid,” which are
unique identifiers for lakes from the NHDplusV2 dataset and
their “lagoslakeid,” which are unique identifiers from LAGOS-
US LOCUS v1 data module (Smith et al. 2021; Cheruvelil
et al. In press). LAGOS-US LOCUS includes lakes and reser-
voirs ≥ 1 ha from the high-resolution NHD.

In order to include potential barriers to connectivity, we
spatially joined the NHDplusV2 lakes and streams to dams

Fig. 1. Lake networks. Lakes (n = 86,511) in the LAGOS-US NETWORKS module, colored according to their network membership (n = 898 networks).
NETWORKS includes lakes > 1 ha in surface area that are connected to other lakes (i.e., no isolated lakes or lakes only connected to streams are included)
in the conterminous U.S.
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from a variety of data sources. The National Anthropogenic
Barrier Dataset (NABD) (Ostroff et al. 2013) is a dataset of
large, anthropogenic barriers that were originally spatially
linked to the NHDPlusV1 data product to facilitate analyses
based on the NHD and National Inventory of Dams
(NID 2015). However, we used a modified NABD that was aug-
mented by Cooper et al. (2017) with 170 additional dams
from the USFWS Fish Passage Decision Support Tool and that
included dam removals since the NABD was published as
listed in the 2018 American Rivers dam removal database
(American Rivers 2019). This modified NABD dataset was used
to establish the population of dams (n = 49,525) that reside
on streams or lakes and calculate dam metrics for all lakes and
networks within the LAGOS-US NETWORKS module (Fig. 2).
The NETWORKS module includes a source table that can be
linked to the data tables. See the User Guide that accompanies
these data for additional details (King et al. 2021b).

Overview of data tables and variables
The NETWORKS module contains two metadata tables, four

data tables, and a detailed User Guide (Fig. 3). Themetadata tables
are (1) a data dictionary that provides a definition for each variable
name or column of every table in themodule and includes impor-
tant information such as units, and (2) a source table that includes
a description of the data sources used to create NETWORKS. The
four data tables contain the key variables and include (1) a lake

connectivity metrics table (nets_networkmetrics_medres) that has
lake identifier information, upstream and downstream connectiv-
ity metrics, upstream and downstream dam metrics, network
position, and network metrics (Table 1), (b, c) two distance tables
(nets_uninetworkdistance_medres, nets_binetworkdistance_medres)
that include lake identifier information as well as upstream and
downstream distances between pairs of connected lakes using
either a unidirectional graph (Table 2) or a bidirectional graph
(Table 3), and (d) the modified flow table (nets_flow_medres)
with NHDplusV2 common identifiers for NHDFlowlines that
describes the flow path direction between two flowlines
(e.g., TO and FROM) and that was used to create the networks
and metrics (Table 4). See the User Guide that accompanies
these data for additional details (King et al. 2021b).

Figures 4–6 highlight some variables from the nets_
networkmetrics_medres table. For example, we found that the
majority of lakes are near to each other along the network
(nearest bidirectional lake median 4.40 km; Table 1); however,
the nearest distance to a downstream lake can be up to
200 km, with lakes in the Mississippi network even further
than that (Fig. 4a). Similarly, many lakes have zero dams
upstream or downstream (median 0.00; Table 1), but in the
Mississippi River basin some have > 10 dams downstream
(Fig. 4b). The majority of U.S. lakes have a low LNN (a lake’s
position in a lake chain; Martin and Soranno 2006), indicat-
ing a high amount of network branching rather than long,

Fig. 2. Dam locations. Dam points (n = 49,525) in the LAGOS-US NETWORKS module colored according to their network membership (n = 898
networks).
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linear lake chains (Fig. 5a). Higher values of LNN appear in
the upper-midwest, west, and south-central U.S. LO (the Stra-
hler order of the outflowing stream; Riera et al. 2000) is fairly
evenly distributed across the U.S. and the majority of lakes
tend to be lower order (Fig. 5b). LNN ranges from 1 to 50 and
LO ranges from 0 to 9 (Table 1).

Although the Mississippi River network includes 32,811
lakes (Fig. 6a), the majority of lake networks have < 100 lakes
and over a third consist of only two connected lakes (Fig. 6b;
Table 1). The network average distance between lakes ranges
from less than 1 to over 1500 km, with a median distance of
approximately 7 km (Fig. 6c; Table 1). The network average
lake area ranges from just over 1 to about 47,000 ha, with a
median of approximately 18 ha (Fig. 6d; Table 1). The number

of dams in a network ranges from 0 to about 25,000 (the
Mississippi River network), with the majority of networks
including 1 dam (Fig. 6e; Table 1).

Overview of data access
LAGOS-US NETWORKS v1 is made up of metadata and

data tables that are csv files as well as a User Guide in pdf
form, all of which are available for public download via the
EDI repository (King et al. 2021b). There is also code available
on GitHub for those who would like to reproduce, extend, or
adapt our networks (Wang and King 2020) and an R package
that can be used to download and link NETWORKS with the
other LAGOS-US core and extension modules (lagosus;
Stachelek 2020). When NETWORKS data are included in ana-
lyses, users should cite them as well as this data paper that
describes the motivation and context for creating the NET-
WORKS module.

NETWORKS v1 data and documentation: King, K.,
Q. Wang, L. K. Rodriguez, M. Haite, L. Danila, T. Pang-Ning,
J. Zhou, and K. S. Cheruvelil. 2021. LAGOS-US NETWORKS
v1.0: Data module of surface water networks characterizing
connections among lakes, streams, and rivers in the conter-
minous U.S. Environmental Data Initiative. doi:10.6073/
pasta/98c9f11df55958065985c3e84a4fe995.

Data paper: King, K., Q. Wang, L. K. Rodriguez, and K. S.
Cheruvelil. 2021. Lake networks and connectivity metrics for
the conterminous U.S. (LAGOS-US NETWORKS v1). Limnol.
Oceanogr.: Letters. doi:10.1002/lol2.10204.

LAGOS-US R package: Stachelek, J. LAGOSUS: Interface
to the Lake Multi-scaled Geospatial and Temporal Database. R
package version 0.0.1. doi forthcoming.

Methods
This section outlines the methods used to create lake net-

works as well as derive connectivity metrics in LAGOS-US
NETWORKS v1. We also explain how dam data from the
NABD was linked to our networks to add potential barriers to
connectivity. For further technical detail on this process, we
have submitted data documentation in the form of a User
Guide along with the metadata and datasets on EDI (King
et al. 2021b) and users can consult the published code for fur-
ther extension of our methods (Wang and King 2020).

Creating lake networks
Lake networks across the continental U.S. were created

using the flow table from the medium resolution NHDPlusV2
database (U.S. Geological Survey 2019). The flow table from
NHDPlusV2 consisted of every flowline (streams and artificial
flowlines that go through lakes) either in the FROM column
or TO column, denoting a direction of flow from one line
to the other, as well as the distance for each connection
between two flow lines. Prior to creating a graph, we removed
several connections. We removed coastline connections
(Fcode 56600; McKay et al. 2012) so that the connectivity

Fig. 3. The LAGOS-US NETWORKS schema. NETWORKS includes meta-
data in the form of a source table and a data dictionary and four data
tables (nets_networkmetrics_medres, nets_binetworkdistance_medres,
nets_uninetworkdistance_medres, and nets_flow_medres). The tables are
connected to each other and other LAGOS-US modules via lagoslakeid,
depicted with red text. The nets_networkmetrics_medres table also
includes observation-level flags, depicted with blue text. The variables in
black text included in the four data tables are representative examples,
see Tables 1–4 for more details on variables. Note: Not shown is the
detailed User Guide.
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Table 1. Summary of variables in the nets_networkmetrics_medres table (n = 86,511 lakes; file size ~ 11.1 MB).

Variable name Variable description Units Min Median Mean Max

lagoslakeid Unique lake identifier developed by
LAGOS-US.

NA NA NA NA NA

nhdplusv2_comid Unique lake identifier from the nhd for the
medium resolution NHDplusV2.

NA NA NA NA NA

lake_nets_upstreamlake_km Distance to nearest upstream lake using a
unidirectional graph.

Kilometers 0.00 0.987 3.10 220

lake_nets_downstreamlake_km Distance to nearest downstream lake
using a unidirectional graph.

Kilometers 0.00 26.0 165 2410

lake_nets_bidirectionallake_km Distance to the nearest lake upstream or
downstream using a bi-directional
graph.

Kilometers 0.00 4.40 8.40 285

lake_nets_upstreamlake_n The number of upstream lakes directly
connected through streams to a lake.

Number 0.00 0.00 1.44 7310

lake_nets_downstreamlake_n The number of downstream lakes directly
connected through streams to a lake.

Number 0.00 1.00 1.44 13.0

lake_nets_lakeorder Lake order (LO) follows the Strahler
stream order of the outflowing stream,
where the higher order stream is chosen
if more than one outlet occurs (Riera
et al. 2000; Martin and Soranno 2006).
The exceptions are that headwater lakes
are 0 and terminal lakes receive the
order of the highest inflowing stream.

NA 0.00 1.00 1.09 9.00

lake_nets_lnn Lake network number (LNN) is the
position of a lake within the network in
reference to other lakes. The lake at the
top of a network (i.e., no upstream
lakes) will be 1, the next lake
downstream will be 2, etc. If a lake has
more than one lake upstream, it will
take the higher LNN.

NA 1.00 1.00 1.65 50.0

lake_nets_nearestdamup_id The NABD dam ID for the nearest
upstream dam.

NA NA NA NA NA

lake_nets_nearestdamup_km Distance to nearest upstream dam. Kilometers 0.00 2.66 7.90 270
lake_nets_nearestdamdown_id The NABD dam ID for the nearest

downstream dam.
NA NA NA NA NA

lake_nets_nearestdamdown_km Distance to nearest downstream dam. Kilometers 0.00 0.00 37.0 1700
lake_nets_totaldamup_n The total number of upstream dams. Number 0.00 0.00 0.800 6030
lake_nets_totaldamdown_n The total number of downstream dams. Number 0.00 0.00 1.31 32.0
net_id The unique identifier assigned by LAGOS-

NETWORKS for each network (n = 898
networks).

NA NA NA NA NA

net_lakes_n The total number of lakes in each
network.

Number 2.00 3.00 96.3 32,800

net_averagelakedistance_km Average distance between lakes in each
network.

Kilometers 0.015 7.36 27.4 1650

net_averagelakearea_ha Average lake area in each network. Hectares 1.19 17.8 130 47,200
net_dams_n The total number of dams on each

network.
Number 0.00 1.00 54.3 25,000

King et al. U.S. lake networks
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networks did not connect through the ocean, estuaries, or the
Great Lakes, as well as IDs associated with the Great Lakes water
bodies. Artificial flowlines were linked to water bodies
(nhdplusv2_comid), and these water bodies were linked to
lagoslakeids using the lake_link table from the
LAGOS_US_LOCUS module (Smith et al. 2021; Cheruvelil
et al. In press). The modified version of the NHDPlusV2 flow
table, including where artificial flowlines are matched to lakes
from the LAGOS-US database, can be found as the
nets_flow_medres data table.

We applied a graph theory framework to create lake net-
works from the nets_flow_medres data table. Graphs are mathe-
matical structures made up of “nodes” and “edges” used to
model pairwise relations between objects (nodes) (Eros
et al. 2012). In our case, we were interested in modeling the
pairs of lakes that are connected by streams (edges). We cre-
ated lake networks using bidirectional graphs, which consid-
ered both downstream and upstream connections, using both
lakes and streams as nodes (Fig. 7a). We used Dijkstra’s algo-
rithm (Cormen et al. 2001) to traverse the graph both
upstream and downstream starting at a given lake. During the
traversal, if a node was a stream, we continued traversing the
graph until the node was a lake. We saved the distance from
the given lake to this lake and stopped traversing. If there
were multiple paths to connect the same two lakes, the algo-
rithm chose and saved the path with the shortest length. This
approach produced all the connections of the given lake to its
neighbor lakes. This process was repeated for every lake until
the connections and stream course distances between all lakes

were known. A network includes all lakes that are connected
to another lake up or downstream, thus including lakes
located on different tributaries that are connected through a

Table 2. Summary of variables in the nets_uninetworkdistance_
medres table (n = 124,251 lake pairs; file size ~ 2.6 MB).

Variable name Variable description Units

lagoslakeid LAGOS lake identifier of
the “from” lake that is
connected to
lagoslakeid_to using a
unidirectional graph
(traversing the
network downstream).

Null

to_lagoslakeid Identifier of lake 2
(lagoslakeid)
connected to lake 1
using a unidirectional
graph (traversing the
network downstream).

Null

streamlength_down_km Distance downstream
from lake 1
(lagoslakeid) to lake 2
(lagoslakeid_to) using
a unidirectional graph
(traversing the
network downstream).

Kilometers

Table 3. Summary of variables in the nets_binetworkdistance_
medres table (n = 39,498,506 lake pairs; file size ~ 1.9 GB).

Variable name Variable description Units

lagoslakeid LAGOS lake identifier of
the “from” lake that is
connected to
lagoslakeid_to using a
bidirectional graph
(traversing the
network both
downstream and
upstream).

Null

to_lagoslakeid Identifier of lake 2
(lagoslakeid)
connected to lake 1
using a bidirectional
graph (traversing the
network both
downstream and
upstream).

Null

streamlength_total_km Total stream distance
from lake 1 to lake 2
(as indicated by
lagoslakeid) using a
bidirectional graph.

Kilometers

streamlength_up_km Distance upstream from
lake 1 to lake 2 (as
indicated by
lagoslakeid) using a
bidirectional graph.

Kilometers

streamlength_down_km Distance downstream
from lake 1 to lake 2
(as indicated by
lagoslakeid) using a
bidirectional graph.

Kilometers

Table 4. Summary of variables in the nets_flow_medres table
(n = 2,722,347 rows of flowlines, streams and artificial flowlines
through lakes; file size ~ 76.2 MB).

Variable name Variable description

from_comid Common identifier of the upstream
NHDFlowline feature.

to_comid Common identifier of the downstream
NHDFlowline feature.

from_lagoslakeid Identifier of the upstream lake as indicated by
lagoslakeid.

to_lagoslakeid Identifier of the downstream lake as indicated
by lagoslakeid.

King et al. U.S. lake networks
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downstream confluence (Fig. 7c,d). We assigned each of these
networks a unique identification number (net_id). All of the
stream course distances between pairs of lakes can be found in
the nets_binetworkdistance_medres. The artificial flowline dis-
tances through lakes were not included in these distances.
This table includes upstream, downstream, and total distance
between two lakes. The total distance may be smaller than the
sum of the upstream and downstream distances due to
the absence of data on stream reach intersection. For example,
it is unknown whether one stream reach intersects the top,
middle, or bottom of another reach; therefore, an intersecting
stream reach was only counted once for the total distance, but
was included in both the downstream and upstream distance
columns (see the dataset User Guide, King et al. 2021b for
more details).

Linking dams to lake networks
The NABD is a dataset of large, anthropogenic barriers that

are spatially linked to the NHDPlusV1 data product to facili-
tate analyses based on the NHD and National Inventory of

Dams (Ostroff et al. 2013). Cooper et al. (2017) added
170 additional dams to this database from the USFWS Fish
Passage Decision Support Tool and excluded ~ 250 dams that
were identified as having been removed since the NABD was
published (American Rivers 2019). The 49,525 dams were
linked to the NHDPlusV2 flowlines and were incorporated
into networks. Dams were assigned to a lagoslakeid if they
were less than 50 m from a lake (Polus et al. In preparation).
Dams that were directly on (or in) a lake could not be consid-
ered as up- or downstream because they were on the node and
therefore, did not have a direction in reference to that node.
Therefore, these dams were assigned as upstream or down-
stream from a lake using two methods:

1. Using ArcGIS, lake inlets and outlets were identified using
the start and end vertices associated with the artificial
flowlines and extracted as points representing inlets and
outlets. For each dam point location, the nearest three
inlets or outlets (combined) were identified using Euclidean
distance in the ArcGIS GenerateNear tool. If both inlets

Fig. 4. Map of downstream lakes and dams. Map depicting location of lakes in NETWORKS color-coded according to (a) the distance to the nearest
downstream lake (km), where gray circles mean the lake has no downstream lake and (b) the number of downstream dams from each lake within its
network.

Fig. 5. Map of lake network position. Map depicting location of lakes in NETWORKS color-coded according to their network position measured as (a)
lake network number and (b) lake order.
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and outlets for the same lake were very near each other or
an inlet or outlet for another lake was very near, the dam
position was assigned for manual review. Methods are
available as Python code within the LAGOS GIS Toolbox
(http://github.com/cont-limno/LAGOS_GIS_Toolbox; nat-
ional_outlets_inlets.py, dams_link_lake_junctions.py). There
were 11,551 dams that were assigned upstream or down-
stream of a lake using this method.

2. The remaining dams (n = 1079) that could not be identi-
fied by the automated process were then manually classi-
fied by visual inspection of the dam location in
comparison to the NHD polygons and flowlines and manu-
ally assigned as either on the upstream or downstream side
of a lake.

Two data flags were created during the process of linking
dams to lakes and streams/rivers. These flags were for cases

when a dam fell onto an artificial flowline contained within a
lake or when multiple dams fell on the same lake (Table 5;
section on informational flags).

Quantifying lake and network connectivity metrics
After creating the networks, several metrics were derived at the

lake scale using a unidirectional graph. Unidirectional graphs tra-
verse the network downstream only (Fig. 7b). We used Dijkstra’s
algorithm (Cormen et al. 2001) to traverse the graph downstream
starting at a given lake. The sameprocesswas used for the unidirec-
tional graph that was used for the bidirectional graph described in
the above section “Creating lake networks.” The stream course dis-
tances between two lakes using a unidirectional graph can be
found in the nets_uninetworkdistance_medres table.

The metrics for the nearest lake distance were determined
by comparing the distance between each lake and all of its
neighboring lakes and choosing the nearest distance upstream

Fig. 6. Network metrics. Network metric summaries of (a) frequency distribution of the number of lakes in a network, (b) frequency distribution of the
number of lakes in networks with less than 100 lakes, (c) boxplot of the average distance (km) between lakes in a network, (d) boxplot of the average
lake area (ha) in a network, and (e) boxplot of the number of dams in the network. See Table 1 for summary statistics. Note that many networks have
0 dams, however, because this plot was log transformed zeros were not included in this plot.
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and the nearest distance downstream from the unidirectional
graph. Note that not all lakes have both an upstream and
downstream lake. The number of directly connected lakes
upstream was computed as the indegree of a lake, i.e., the num-
ber of lakes upstream only connected through streams flowing
into the lake. Similarly, the number of directly connected down-
stream lakes was calculated using the outdegree of a lake,
i.e., lakes directly connected through streams flowing out of a
lake. There were instances when a lake did not have any directly
connected upstream or directly connected downstream lakes
because the lake was only connected through the bidirectional
graph to the lake network (n = 7617). Therefore, we also
included a metric for the nearest lake using bidirectional dis-
tance. These instances are easily identifiable because these lakes
only have a nearest bidirectional distance and do not have a
nearest downstream or nearest upstream lake distance.

Two metrics that describe the position of a lake within the
network and landscape were derived using a unidirectional
graph: LNN and LO (Riera et al. 2000; Martin and
Soranno 2006) (Fig. 8). LNN was computed by starting at the
first lake in a network (e.g., no upstream lakes) and assigning
that lake a “1,” then moving downstream to another lake and
assigning that lake a “2,” and so on throughout the network.
Therefore, multiple lakes in a network could be assigned a “1”
if they do not have any upstream lakes. Lakes with multiple
upstream lakes were assigned the larger sequential number
(Martin and Soranno 2006). LO was assigned using the
Strahler stream order from the NHDplusV2 attributes. LO
followed the Strahler streamorder of the outflowing stream,where
the higher order stream was chosen if more than one outlet was

present (Riera et al. 2000; Martin and Soranno 2006). There were
two exceptions to this: headwater lakes were assigned a “0” and
terminal lakes received the Strahler order of the inflowing stream
(Riera et al. 2000; Martin and Soranno 2006). We considered
inflowing streams for LO calculations to differentiate between
headwater lakes and lakes that had inflowing streams but not
upstream lakes. There were instances when a loop between two
lakes occurred (0.02% of all connections), for example lake
A flowed to lake B and lake B flowed back to lake A. In these
instances, we randomly removed one connection.

Several dam metrics were derived that characterize barriers to
connectivity. The depth first search (DFS; Cormen et al. 2001)
algorithm was used to traverse each lake-stream network to find
all of the upstream dams and downstream dams. Dijkstra’s algo-
rithm was used to compute the distance to the nearest upstream
and downstream dams (Cormen et al. 2001). Because we used a
graph to create the network, the algorithmdid not have the exact
location of the dam on the stream reach, just the flowline it was
located on. Therefore, when deriving the metrics for the nearest
dam, the entire stream reach with the dam was included in the
distance calculation. Thus, there were instances when two or
more dams fell on the same stream flowline (8.7% occurrence).
In these instances, all dams were considered as the nearest up- or
downstream dams, they were assigned the same distance from
the lake, and all of the dam ids were included and separated by a
semicolon. These instances are easily identifiable because more
than one dam is listed in the lake_nets_nearestdamdown_id or
lake_nets_nearestdamup_id column. Similarly, if multiple dams
were on a lake (0.15% occurrence), all of the dams were consid-
ered the nearest dam, all dam ids were included, and dams

Fig. 7. Graph creation. A bidirectional graph (a) and unidirectional graph (b). An example of a lake network (c) compared to its corresponding bidirec-
tional graph (d) to illustrate how networks were created and how upstream or downstream distances were defined in NETWORKS. The distance between
lake C and lake D includes traversing the network downstream and then upstream. The stream course distance is used as a weight in panel (d); thicker
connecting lines depict further distances. Panel (d) was made using the “igraph” package (Csardi and Nepusz 2006).
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located on a lake were assigned the distance of 0 km. Lakes with
multiple dams on the lake were assigned a flag (Table 5;
section on informationalflags).

At the network scale, we traversed the completed lake net-
works using the DFS algorithm. This process calculated total
lakes in each network, the average distances between lakes in
a network, and the total number of dams in each lake net-
work. The average area of the lakes in each network was calcu-
lated using lake area values from LAGOS-US LOCUS v1.0
polygons (Smith et al. 2021; Cheruvelil et al. In press), group-
ing lakes by networks, and then using the Calculate Geometry
tool in ArcGIS. See the User Guide for more methodological
details.

Technical validation
Informational flags

During construction of the module, we created a series of
data flags that convey something about a data observation
that may be of interest to users. These flags are all informa-
tional flags of general relevance to the data user and none of
these flags are cautionary flags that indicate potential con-
cerns for inclusion of particular data observations in analysis
(Table 5).

Validation and quality control/quality assurance
The validation and quality control/quality assurance (QAQC)

process was intended to ensure that the procedures used to cre-
ate the values for NETWORKS variables resulted in the intended
outcomes. We used two methods for validation and QAQC.

First, during the creation of themetrics, a simulation graphwas
created to validate the code. This simulation graph included paths
that were unidirectional as well as bidirectional, multiple

connections between lakes, lakes that were directly connected to
other lakes without streams, and a Great Lake. Using this sim-
ulation graph, we checked that the distance between pairs of
lakes was correct for downstream, upstream, and bidirec-
tional connections. Then, we ensured that the code accu-
rately selected the shorter distance if there were multiple
connections between lakes for both the unidirectional and
bidirectional connections. For lakes that did not have a
stream connection between them, we ensured the code
resulted in downstream and upstream distances of 0 km.
Finally, we tested that the code ignored connections to the
Great Lakes. Our team manually examined resulting net-
works and associated metrics using either ArcGIS 10.3 Desk-
top (ESRI 2014) or the “hydrolinks” package (Winslow
et al. 2018), which downloads and traverses paths for the
medium resolution NHDplusV2 data to identify potential
issues with either the input data or code. All solvable issues
were reconciled and the networks or metrics were regenerated
and retested until no further issues were found.

After metrics were quantified, we proceeded with a second
phase of QAQC. We queried the NETWORKS metrics data table
(nets_networkmetrics_medres) to: (1) identify potential data or
geoprocessing issues and (2) verify that data values were sensible
(e.g., within expected ranges and expected completeness of
data). These checks of individual variables assessed that the
workflow generating data accurately reflected both the source
data and the lake-specific values. For this process, the
nets_networkmetrics_medres data table, in csv (comma-separated
values) format, was imported by semiautomated R scripts that
then summarized the data table, ensured comparability with the
source GIS layer and data dictionary, summarized and mapped
values for each variable, and automatically generated scores for
three main evaluation criteria in a QAQC summary report

Table 5. Description and occurrence of lake informational data flags in the nets_networkmetrics_medres table (number of
lakes = 86,511).

Flag Value Description User relevance
Number of
occurrences

Percent
of data

lake_nets_damonlake_flag Y, N A value of “Y” indicates that
there is at least one dam on
this lake. This means that the
dam point falls onto one of
the artificial flowlines that
flows through a lake and is
therefore associated with the
lake and not a stream reach.
A value of “N” indicates there
is not a dam on a lake.

This flag primarily serves to
alert the user of the presence
of a dam directly on a lake as
opposed to on a connecting
stream reach.

12,630 14.6%

lake_nets_multidam_flag Y, N A value of “Y” indicates that
there are multiple dams on a
lake. A value of “N” indicates
there are not multiple dams.

This flag identifies lakes that
have multiple dams. There
may be a dam at multiple
inlets or outlets or a dam at
both locations.

132 0.15%
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provided in html format. Note that actions were iterative; the
QAQC review feeds back into the data creation process, which
then re-exports the data table and then re-runs the entire QAQC
process.

Below are the three evaluation criteria and subsequent
actions used in this process:

1. Match with GIS data: This check compared the list of
lagoslakeids in the data table with those in the
corresponding LAGOS-US LOCUS reference shapefiles
maintained in an ArcGIS geodatabase (GIS_LOCUS;
Smith et al. 2021; Cheruvelil et al. In press). If a “Fail”
warning was generated, nonmatching lagoslakeids were
manually investigated to identify the source of the mis-
match between the data table and the reference GIS data
layer.

2. Match with metadata: Variable names in the data table
were compared with the master list of variable names
maintained in the metadata table data dictionary. Where
there was no match, due to missing or incorrect names in
either the data dictionary or the data table, a “Fail” warning
was generated and the mismatches were listed in a table in
the QAQC report. Where a “Fail” warning was generated,
the data dictionary and data table variable names were
examined and the name(s) in error were fixed as necessary.

3. Missing value: This check counted the number of observa-
tions with missing values, listed them, and produced maps
of their location. A “Warn” evaluation was created for this

criterion and variables were inspected to make sure there
were no gaps in the input data.

Data use and recommendations for reuse
NETWORKS is based on the medium resolution NHDplusV2

flow data because of limitations in computing capacity at the con-
terminous U.S. scale and because there are stream attributes in the
medium resolution that are not available in the NHD high-
resolution data. Although the NHD high resolution includes
smaller streams that connect some lakes that are not connected in
the NHD medium resolution, the NHD high resolution separates
some lakes that lie very close to a stream and considers them iso-
lated when they are connected in the NHD medium resolution.
Thus, there are benefits and challenges to basing networks and
connectivitymetrics on either version of theNHD.

We advise users to heed caution when combining the data
in NETWORKS that are based on the medium resolution
NHDplusV2 flow data with other resolutions of the NHD data
or with derived data using other NHD versions. For example,
when users combine NETWORKS with LAGOS-US, they
should be aware that connectivity metrics will differ between
the LOCUS and NETWORKS modules. Because NETWORKS is
based on the medium resolution NHDplusV2 flow data,
whereas LOCUS used the NHD high resolution (Smith
et al. 2021; Cheruvelil et al. In press), there may be lakes clas-
sified as connected in LOCUS that are not part of a network
in NETWORKS or a lake classified as isolated in LOCUS might
be part of a network in the NETWORKS module.

Fig. 8. Lake network number and lake order. Example of part of a lake network with lake network number (LNN) and lake order (LO) metrics for
each lake.
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We also wish to remind users that the metrics in NET-
WORKS were derived only for lakes connected to other lakes.
Therefore, the NETWORKS module does not include isolated
lakes or lakes that are only connected to streams. Finally, net-
works that cross international boarders (e.g., Canada) may
underestimate the number of upstream lakes, nearest upstream
lake, and LNN, due to the nature of the dataset being con-
strained to the continental U.S.

The data in NETWORKS have not yet been used in research
that has been published, but are being used in several on-
going efforts that will result in publications. For example,
these metrics are being used to quantify how connectivity
affects both stream and lake fish communities within and
across networks. These data are also being used to determine
how freshwater networks best facilitate latitudinal range shifts
for species under ongoing climate change and if highly con-
nected networks reside in protected areas. Finally, these data
are being used for studies of invasive species movement and
species distribution modeling.

NETWORKS will be a valuable data source for building
broad-scale understanding of lake networks and the role of
connectivity and barriers to connectivity for movement
of abiotic materials and biota. Future users can combine these
data with a variety of lake abiotic and biotic data, by linking
the module with other LAGOS-US modules or to their study
systems by using the NHD unique identifiers. For example,
lake nutrient data from LAGOS-US-LIMNO could be linked
with NETWORKS to investigate if lake network position has
the same influence on lake nutrient concentrations across
regions of the U.S. Likewise, water temperature, habitat data,
and species observations could be linked to on-network lakes
to investigate the available habitat suitability for species range
shifts. Further, a management agency considering barrier
removal could use the NETWORKS module to identify the
entire network that would be affected by removal, including
quantity of habitat available for migratory species or invasive
species within the network.

In addition to the derived metrics, we have published the
distance table, flow table, and our code to facilitate the exten-
sion of our work through the creation of additional metrics or
modeling by future users. For example, the distance table and
connectivity table could be joined to calculate the lake density
(number of lakes per total distance in the network) or the lake
distance table could be used for similar modeling techniques
as those that have been developed for stream networks
(Peterson et al. 2007; Isaak et al. 2014). Moreover, the distance
and flow tables act as an “edge list” that can be used in the
“igraph” package (Csardi and Nepusz 2006) to calculate more
graph metrics for specific lake networks (e.g., betweenness
centrality, lakes that are the shortest path between many
other lakes in the network). Finally, the flow table includes all
individual stream reaches, so our code could be used to make
similar metrics for streams or to incorporate more information
on lakes or streams such as size, slope, or quality of habitat

patch that would weight the links and nodes (Eros et al. 2012)
to answer a myriad of questions related to freshwater surface
connectivity.

Comparison with existing datasets
Although the majority of past studies fail to address surface-

water connectivity at the U.S. national scale, we provide an
overview of preexisting datasets so that readers and users under-
stand what connectivity information was available at the time
of writing and how these previous methods align with or devi-
ate from the networks and connectivity metrics in the NET-
WORKSmodule.

Several connectivity datasets and tools for the conterminous
U.S. exist for streams. For example, the NHD (McKay et al. 2012)
includes connectivity metrics such as a modified version of Stra-
hler stream order. Cooper and Infante (2017) have created dam
metrics for streams in the conterminousU.S., which represent net-
work fragmentation. However, these datasets and metrics do not
include lakes and the stream networks stop at dams because they
were created for biotic variables that cannot move past these bar-
riers (e.g., fish). In addition, the U.S. Geological Survey has created
a tool “Hydro Network-Linked Data Index (NLDI)” (https://labs.
waterdata.usgs.gov/about-nldi/index.html), which is a web appli-
cation programming interface that can traverse upstream or
downstream and link to other NHD or Water Quality Portal data.
Similarly, the “nhdplusTools” R package (Blodgett 2019) can be
used to download NHD data and navigate upstream or down-
stream from a feature in the network. These tools may be useful
for small-scale studies, but would take considerable time for broad-
scale research.

For lakes, there are a few broad-scale U.S. datasets that have
important similarities and differences to NETWORKS. The
LAGOS-US LOCUS module (Smith et al. 2021; Cheruvelil et al. In
press) includes several connectivity metrics, such as connectivity
classes, the number of upstream lakes, upstream lake area, and
stream density within a watershed. However, this dataset lacks
downstream connections because it was created for abiotic vari-
ables. LakeCAT includes some metrics such as density of streams
or dams within a catchment; however, they do not quantify lake
or network connectivity metrics (Hill et al. 2018). Fergus
et al. (2017) provide connectivity information at the HUC 12 and
HUC 8 scale, including lake, stream, and wetland densities and
clusters, although this is only for the northeastern/northern mid-
western region of the U.S. The “hydrolinks” package (Winslow
et al. 2018), which was used for NETWORKS validation, is a tool
for mapping connectivity; however, it only traverses upstream or
downstream, it includes coastal lines and Great Lakes polygons,
and it is best used for small extents because of computation time.
Therefore,NETWORKS extends these datasets and tools by provid-
ing lake networks and connectivity metrics for the entire conter-
minous U.S. that include both lakes and streams and both
upstream and downstream information that is useful for studying
both abiotic and biotic properties of freshwaters.
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