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Abstract

Empirical nutrient models that describe lake nutrient, productivity, and water clarity relationships among

lakes play a prominent role in limnology. Landscape-based regressions are also used to understand macro-

scale variability of lake nutrients, clarity, and productivity (hereafter referred to as nutrient-productivity). Pre-

dictions from both models are used to inform eutrophication management globally. To date, these two

classes of models are generally conducted separately, which ignores the known dependencies among

nutrient-productivity variables. We present a statistical model that integrates nutrient-productivity and

landscape-based regressions—where lake nutrients, productivity, and clarity variables are modeled jointly.

We fitted a joint nutrient-productivity model to over 7000 lakes with three nutrients (total phosphorus, total

nitrogen, nitrate concentrations), chlorophyll a concentrations, and Secchi disk depth as response variables

and landscape features as predictor variables. Because lakes in different regions respond to landscape features

differently, we focused our analysis on two subregions with different dominant land uses, the agricultural

Midwest and the forested Northeast U.S. Predictive performance was enhanced by modeling nutrient-

productivity variables jointly. We also found strong evidence that nutrient-productivity variables were cou-

pled, and that only nitrate may be decoupled from other nutrient-productivity variables in the forested

region. We speculate that these regional differences may be related to differences in the strength of biogeo-

chemical cycles and stoichiometric controls between these regions. Jointly modeling nutrient-productivity

variables in lakes effectively integrates the two dominant approaches for studying lakes nutrient-productivity

relationships and provides novel insight into macroscale patterns of the coupling of nutrients, chlorophyll,

and water clarity in lakes.

The development of empirical models to predict nutrient

concentrations, measures of primary producer biomass (e.g.,

chlorophyll a concentrations; CHL) and water clarity (e.g.,

Secchi disk depth), has a rich history in limnology (Dillon

and Rigler 1974; Canfield and Bachmann 1981; Peters 1986).

The classic example—a log-linear relationship between CHL

and total phosphorus (TP)—is commonly used to inform the

development of lake water quality criteria (Havens and

Walker 2002; U.S. EPA 2010; Huo et al. 2014). These models

used to describe lake nutrient, productivity, and clarity rela-

tionships (hereafter referred to as empirical nutrient-

productivity models) are integral in informing lake manage-

ment decisions, testing basic limnological principles, and for

advancing our understanding of the controls and drivers of

water quality in lakes (Pace 2001). Nutrient-productivity

models have been widely applied to individual lakes and,

more recently, to populations of lakes in efforts to improve

our understanding of the spatial heterogeneity in the

response of lakes to environmental stressors (Malve and

Qian 2006; Phillips et al. 2008; Wagner et al. 2011).

Although the development and application of empirical

nutrient-productivity models are common, models that

include information about lake morphometry and the natu-

ral and anthropogenic watershed features of lakes are

increasingly being used to identify and understand the

importance of landscape drivers of lake nutrients and mea-

sures of productivity (Wagner et al. 2011; Nielsen et al.

2012; Read et al. 2015). For instance, landscape-based regres-

sions are used to identify the relative importance of different

land use types as non-point sources of nutrients to lakes and

for explaining macroscale variation in nutrients, primary*Correspondence: txw19@psu.edu
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producer biomass, and other indicators of water quality

(Arbuckle and Downing 2001; Jones et al. 2004; Wagner

et al. 2011). These landscape-based regressions are also used

to highlight potential management activities that could help

meet water quality goals and have been shown to be useful

for prediction (Meeuwig and Peters 1996). Because

landscape-based regression models use predictors that are

largely derived from widely available geospatial datasets,

these models are well suited for predicting nutrients and pro-

ductivity across large spatial extents—at regional to conti-

nental scales (Cheruvelil et al. 2013; Collins et al. 2017).

The increase in use of landscape-based regression models

is driven by the importance of lake morphometric properties

and landscape characteristics to the source, delivery, and

processing of nutrients in lakes (Soranno et al. 1996; Carpen-

ter et al. 1998; Collins et al. 2017). Likewise, empirical

nutrient-productivity models are widely used because many

nutrient-productivity variables are correlated with one

another (Ostrofsky and Rigler 1987; Phillips et al. 2008). The

correlation among nutrient-productivity variables is partly

due to coupled biogeochemical cycles (Schlesinger et al.

2011; Gibson and O’Reilly 2012). For example, nutrients and

other elements do not cycle independently, as illustrated by

co-limitation of growth of primary producers (Sterner 2008;

Harpole et al. 2011). For other variables, such as Secchi disk

depth, the correlation with nutrients is because water clarity

is measuring, in part, an outcome (i.e., algal biomass) driven

by the coupling of biogeochemical cycles. This correlation

among nutrient-productivity variables has important impli-

cations for limnological modeling and prediction and for

furthering our understanding of the ecological processes that

influence lake water quality.

From a limnological modeling perspective, combining

nutrient-productivity and landscape-based regressions is

desirable because both approaches are useful for furthering

our understanding of nutrient dynamics and water quality

in lakes and making informed predictions for unobserved

lakes. In fact, there are important relationships between and

among nutrients and landscape variables that may be

ignored or not realized by not integrating these two

approaches. Efforts to integrate nutrient-productivity and

landscape-based regressions have been limited due to chal-

lenges with missing data and multicolinearity. Instead,

researchers study the different nutrient-productivity variables

individually by developing univariate nutrient regressions,

where, for example, independent TP, total nitrogen (TN),

and CHL regressions are developed and modeled as a func-

tion of one or more landscape predictors and then compared

(Jones et al. 2004; Carle et al. 2005; Chen et al. 2015; Sor-

anno et al. 2015). Including additional nutrient-productivity

variables as predictors into these models can be problematic

because there is often missing nutrient-productivity data

(Soranno et al. 2017), and these nutrient-productivity varia-

bles will likely be confounded with each other and with

other landscape predictors. The missing nutrient-

productivity data can be problematic because—although

accommodating missing data during analysis is a statistical

issue—commonly used statistical software programs for fit-

ting regression models require values of all predictor varia-

bles for each lake, either observed or imputed. Missing data

is less problematic for landscape-based predictors which are

often derived from satellite or remotely sensed data sources.

The presence of missing predictor variables is most com-

monly addressed by using a complete-case analysis; whereby,

those lakes with missing data are removed from the analysis

(Little 1992; Fergus et al. 2016). Discarding lakes with miss-

ing data results in a loss of information.

The second major challenge with integrating these two

types of empirical models is the high correlation that often

exists among predictors (particularly among nutrient-

productivity variables and between nutrient-productivity var-

iables and landscape predictors) which leads to uninterpret-

able regression coefficients associated with multicollinearity

(Doubek et al. 2015). This is important because there is inter-

est in interpreting regression coefficients within the context

of understanding drivers of lake nutrients and productivity.

In addition, by independently modeling nutrient-

productivity variables, we are ignoring the inherent depen-

dence among them, which may be due to coupling, similar

environmental drivers, or some combination of both. This

dependency affects predictive performance and limits our

ecological understanding of how these indicators covary

over space and time. Ideally, we could utilize both

approaches—nutrient-productivity and landscape-based

regressions—that is, jointly model nutrient-productivity vari-

ables as a function of landscape-based predictors.

Jointly modeling multiple response variables allows for

the integration of nutrient-productivity and landscape-based

regressions and overcomes some of the above challenges

(Clark et al. 2014; Warton et al. 2015; Schliep et al. 2017).

To date, however, jointly modeling multiple nutrient-

productivity variables is rarely done (but see Cha et al. 2016

for an example of jointly modeling N and P). These models,

which we will refer to as joint nutrient-productivity models,

quantify the effects of landscape drivers on nutrient-

productivity variables, while at the same time account for

nutrient-productivity dependence through the residuals. The

joint models enable observed nutrient-productivity variables

to inform on the prediction of unobserved variables after

accounting for the effects of landscape predictors. For exam-

ple, by understanding how relationships between nutrient-

productivity variables, such as TP and Secchi disk depth—

which is widely measured (Lottig et al. 2014)—vary across a

population of lakes, we can leverage this information to

make more informed predictions of TP at unobserved lakes.

Joint nutrient-productivity models can also provide new

insight into fundamental limnological relationships by

decomposing the correlations among nutrient-productivity
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variables that are due to shared landscape drivers vs. those

that may be due to ecological processes that result in strong

ecological coupling.

Our study area contains over 7000 lakes and five nutrient-

productivity variables. We compared the predictive perfor-

mance of the joint nutrient-productivity model to the tradi-

tional univariate models where residual dependence is

ignored. Previous research has shown that lakes in regions

with different dominant land uses and eco-climatic zones

respond differently to different landscape drivers. Our study

area contains two regions with different dominant land

uses—an agriculturally and forested-dominated region. We

fitted a nutrient-productivity model for each region to test

our expectation that lake nutrient and productivity measures

in different regions are likely to be coupled in different ways

and are likely to respond to different dominant landscape

drivers.

Methods

Nutrient-productivity data

We used lake nutrient-productivity data for 7184 lakes

located in the Midwest and Northeastern United States.

Nutrient-productivity variables included nutrients—TP (lg

L21), TN (lg L21), and nitrate concentrations (lg L21; NO3-

N)—and indicators of algal biomass (CHL concentration; lg

L21), and water clarity (Secchi disk depth [m]). All data came

from the Lake Multi-Scaled Geospatial and Temporal

Database (LAGOS) of the Northeast U.S. (LAGOS-NELIMNO v.

1.087.1; Soranno and Cheruvelil 2017a,b; Soranno et al.

2017) using the LAGOS R package (Stachelek and Oliver

2017). LAGOS-NE is a subcontinental scale database that

includes approximately 1,800,000 km2 over a 17-state region

in the Midwestern and Northeastern United States. We used

a subset of lakes with a surface area � 4 ha that had at least

one of the five nutrient-productivity variables quantified.

Lake nutrient data were restricted to epilimnetic samples

taken during the summer months (15 June–15 September)

spanning the years 1990–2011. We retained the most recent

sampling occasion for every lake. For lakes sample more

than once over time (n 5 5081 lakes), we used a two-staged

approach to ensure that we obtained lakes that were sampled

for TN, because TN was not measured as often compared to

the other nutrient-productivity variables. First, we selected

all lakes that had observed values of TN and used the most

recent observation for those lakes. For all other lakes sam-

pled multiple times, we used the most recent observation.

This process resulted in a single observation of at least one

of the five nutrient-productivity variables per lake (Fig. 1).

Study subregions

We selected two subregions within the LAGOS-NE study

area, previously delineated by Collins et al. (2017) in a study

that examined drivers of lake nutrient stoichiometry across

the LAGOS-NE extent. The regions were created to capture

the gradient in forested and agricultural land use present in

Fig. 1. Map showing study lakes across the LAGOS-NE study extent and the Midwest and Northeast subregions.
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the LAGOS study extent and to represent regions dominated

by extremes in these two land use/cover types. The focus

was on contrasting agricultural and forested landscapes

because of the strong relationship between agricultural land

use and nutrient inputs into inland lakes (Collins et al.

2017). The two regions (Fig. 1) were created by aggregating

regional major river watersheds (HUC 4) based on the

proportion of agricultural land use cover in a given HUC 4

where adjacent HUC 4 watersheds with similar land use

characteristics were combined. This approach resulted in two

contrasting regions—the Northeast region (n 5 1655 lakes),

composed of ten HUC 4 watersheds, that had very low pro-

portions of agricultural land use (< 10%), and the Midwest

region (n 5 434 lakes), which was composed of seven HUC 4

watersheds with relatively high proportions of agricultural

land use (> 50%).

Landscape predictor variables

We chose landscape predictor variables that represented

important sources of nutrients (e.g., land use) or the trans-

portation of materials to lakes (e.g., stream density), and

that are associated with internal processing of nutrients in

lakes (e.g., lake depth; Collins et al. 2017). All geospatial lake

predictor variable data came from LAGOSGEO v. 1.05

(Soranno and Cheruvelil 2017b). Except for lake maximum

depth and lake area, which are lake-scale properties, all geo-

spatial summaries were derived at the lake watershed scale.

Statistical model

We modeled nutrient-productivity variables jointly to

account for correlations among variables. Let YðsÞ5ðY1ðsÞ;
. . . ;YKðsÞÞ0 denote a vector of length K of lake nutrient-

productivity variables for lake s. The joint nutrient-

productivity model can be written as:

YðsÞ5BXðsÞ1�ðsÞ (1)

where B is a matrix of coefficients such that Bkp is the coeffi-

cient of the pth predictor variable for the kth variable. Addi-

tionally, �ðsÞ is an error vector of length K. We model

�ðsÞ �iid MVNð0;RÞ

where R is a K 3 K covariance matrix capturing the depen-

dence between nutrient-productivity variables that is not

accounted for by the regression. These errors are assumed

independent and identically distributed across lakes.

Nutrient-productivity variables were modeled on the loge-

transformed scale. Because of highly skewed distributions, all

proportional predictor variables (e.g., land use) were logit

transformed and standardized, while non-proportion predic-

tors were loge-transformed and standardized prior to analysis.

The model was fitted to three datasets. The first model used

the entire LAGOS-NE study extent. The second and third

were fitted to the Midwest and Northeast subregions. All

models were fitted using the program WinBUGS (Lunn et al.

2000) called from within the program R (R Core Team 2017)

using the R2WinBUGS package (Sturtz et al. 2005). Indepen-

dent, diffuse normal priors were used for all coefficient

parameters in B, and the variance-covariance matrix, R, was

modeled using the scaled inverse-Wishart distribution

(Gelman and Hill 2007). We ran three parallel Markov

chains beginning each chain with random starting values.

Each chain was run for 15,000 iterations, from which the

first 5000 samples were discarded. This resulted in 30,000

samples used to summarize posterior distributions. Conver-

gence was assessed both visually through the use of trace

plots and quantitatively using the Brooks-Gelman-Rubin sta-

tistic. Residual plots were examined to assess the assumption

of normality. We determined predictor variable significance

by evaluating whether or not the 95% credible interval of

the coefficient overlapped with zero.

Model performance measures and decomposing

correlations

We calculated root mean squared prediction error

(RMSPE) using 10-fold cross validation, where the model was

fitted 10 times to 90% of the data with 10% retained for out-

of-sample prediction. To evaluate the potential predictive

power gained by modeling nutrient-productivity variables

jointly, we compare marginal predictions (RMSPEM) to con-

ditional predictions (RMSPEC) of the nutrient-productivity

variables obtained at out-of-sample locations. Under the

multivariate normal distribution assumed in Eq. 1, the mar-

ginal predictive distributions are equivalent to the predictive

distributions that would result from modeling each nutrient-

productivity variable independently. Therefore, marginal

predictions are obtained for each nutrient-productivity vari-

able without reference to the values of the other variables.

The conditional predictions are obtained for each nutrient-

productivity variable by conditioning on the values of all

other variables, e.g., we predict TN conditionally at location

s� given its observations of TP, NO3-N, CHL, and Secchi disk

depth. Assuming that there is information shared across vari-

ables, we would expect to see more accurate and more pre-

cise predictions from the conditional predictive distributions

than the marginal predictive distributions. If there is very lit-

tle dependence between the nutrient-productivity variables

after accounting for the predictors in the model, the condi-

tional and marginal predictions will be approximately equiv-

alent. As an additional measure of model performance, we

calculated both the marginal and conditional predictive R2,

R2
M , and R2

C, respectively.

To quantify the potential spatial variability in both land-

scape drivers (i.e., the estimated regression coefficients) and

the residual covariance structure among the response varia-

bles on predictive performance, we calculated RMSPEM,

RMSPEC, R2
M , and R2

C for the Midwest and Northeast regions

using parameter estimates from the model fitted to all lakes
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in the LAOGS-NE study extent. If there were differences in

the marginal predictions between the region-specific and

LAGOS-NE models, then this would suggest the need for spa-

tially varying coefficients. If there were differences in condi-

tional predictions (and marginal predictions were the same),

then this may suggest the need for spatially varying covari-

ance structure. If both marginal and conditional predictions

were different, this would suggest the need for both spatially

varying coefficients and covariances.

Nutrient-productivity variable correlations were decom-

posed into residual correlations and correlations due to

shared environmental drivers. Residual correlations were

obtained from the off-diagonal elements of R. The correla-

tions due to shared environmental responses were calculated

following the methods of Pollock et al. (2014), where Pkk
0

denotes the correlation between nutrient-productivity varia-

bles k and k0, and is a function of the regression vectors bkp

and bk0p and the covariances of the environmental variables.

Strong residual correlation may suggest strong coupling of

nutrient-productivity variables or the need for the inclusion

of more predictors in the model. A strong correlation due to

the environment may suggest similar landscape and lake-

scale drivers.

Results

Study lakes

Lakes across the study region varied substantially in their

geophysical, chemical, and biological properties, and anthro-

pogenic settings (Table 1). Median values of TP, TN, and

NO3-N across all 7184 study lakes were 16.0 lg L21, 600 lg

L21, and 20 lg L21, respectively. Median CHL was 5.1 lg L21

and median Secchi disk depth was 2.4 m. Not all lakes had

all five nutrient-productivity response variables observed.

The proportion of lakes with missing observations was 0.29

(n 5 2093), 0.44 (n 5 3135), 0.55 (n 5 3983), 0.32 (n 5 2309),

and 0.18 (n 5 1265) for TP, TN, NO3-N, CHL, and Secchi

disk depth, respectively.

Lakes within the study extent also varied widely in the

amount of urban and agricultural land use present in their

watersheds, with lake watersheds ranging from 0% to 95%

urban and from 0% to 100% agricultural land use. The

median percentage of agricultural land use in a lake’s water-

shed in the Midwest subregion was 66% and only 1% for

lakes within the Northeast subregion. As expected, the two

subregions also differed substantially in lake chemistry and

landscape settings (Table 1). For example, median TP for

lakes in the Midwest subregion was 68.2 lg L2 1; whereas,

median TP in the Northeast subregion was 10.0 lg L21.

Landscape predictors and predictive performance

For all three models (LAGOS-NE extent, Midwest, and

Northeast) and across all five nutrient-productivity variables,

the predictive R2 due to landscape predictors alone ranged

from 6% (NO3-N in the Northeast subregion)—61%

(Secchi disk depth in the Northeast subregion; R2
M values;

Table 2). On average, predictive R2 was greatest for Secchi

disk depth (average R2
M 5 47%), followed by TP (average

R2
M 5 41%), TN (average R2

M 5 38%), CHL (average R2
M 5 22%),

and NO3-N (average R2
M 5 11%). Some important similarities

and differences in predictors of nutrient-productivity varia-

bles were detected across indicator and region (Fig. 2). For

instance, lake depth was consistently negatively correlated

with TP, TN, and CHL and positively correlated with Secchi

disk depth. In addition, the proportion of agricultural land

use was positively correlated to TP, TN, CHL, and NO3-N

and negatively correlated with Secchi disk depth across the

LAGOS-NE extent; however, the effect of agricultural land

use on nutrient-productivity variables varied by region. The

largest differences among the three models were observed in

Table 1. Medians, followed by the first and third quartiles, of the landscape and lake-scale predictors and nutrient-productivity
response variables for the LAGOS-NE study extent and Midwest and Northeast subregions.

LAGOS-NE Midwest Northeast

Maximum depth (m) 8.6 (4.9, 14.2) 5.8 (3.0, 10.3) 7.6 (4.2, 13.4)

Lake area (ha) 54.5 (21.0, 145.5) 82.1 (30.0, 234) 35.1 (13.9, 108)

Watershed : lake area 8.4 (3.9, 21.6) 8.5 (3.6, 28.7) 10.2 (5.5, 22.9)

Proportion urban land use 0.06 (0.03, 0.12) 0.08 (0.06, 0.16) 0.05 (0.01, 0.09)

Proportion agricultural land use 0.05 (0.0, 0.35) 0.66 (0.40, 0.80) 0.01 (0.0, 0.05)

Proportion wetland land cover 0.07 (0.02, 0.16) 0.03 (0.0, 0.07) 0.04 (0.02, 0.08)

Road density (m ha21) 25.8 (16.3, 40.4) 28.2 (20.1, 44.2) 21.7 (12.0, 35.2)

Stream density (m ha21) 3.7 (0.02, 8.0) 4.0 (0.7, 8.0) 6.5 (2.1, 10.3)

TP (lg L21) 16.0 (10.0, 34.0) 68.2 (33.5, 138) 10.0 (7.0, 16.0)

TN (lg L21) 600 (366, 1000) 1450 (994, 2300) 284 (195, 420)

Chlorophyll a (lg L21) 5.1 (2.7, 14.0) 25.9 (9.1, 62.3) 3.9 (2.5, 6.6)

Secchi disk depth (m) 2.4 (1.3, 3.9) 0.9 (0.5, 2.0) 3.9 (2.4, 5.6)

Nitrate (lg L21) 20 (5.0, 50.0) 60 (18.0, 200) 50.0 (20.0, 50.0)
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the agriculturally dominated Midwest subregion. Fewer land-

scape predictors were important in predicting all five

nutrient-productivity variables in the Midwest subregion

compared to all the lakes in the study area and the North-

east subregion. The larger uncertainty in parameter estimates

in the Midwest subregion primarily reflects the smaller sam-

ple size in this region compared to the other two models.

Jointly modeling nutrient-productivity variables and

leveraging information about the dependence among

nutrient-productivity variables led to substantial gains in

predictive performance and, in particular, the precision of

estimates. The increased precision of the conditional predic-

tions can be seen when comparing the marginal and condi-

tional posterior predictive distributions in Fig. 3 for two

lakes from the Midwest subregion. These lakes were ran-

domly chosen for illustrative purposes. For a given lake, the

conditional distributions are obtained by conditioning on

whichever other nutrient-productivity variable is/are

observed. For lake #1, all five nutrient-productivity variables

were observed. Therefore, the conditional distribution for

each variable was obtained given the other four variables.

For this lake, the highest density of each conditional poste-

rior predictive distribution is closer to the observed value

(improved accuracy), and the distributions are narrower

(i.e., increased precision) when compared to the marginal

posterior predictive distributions (Fig. 3). Similar patterns

are observed for lake #2; however, for this lake, TP and TN

were not observed. The conditional posterior predictive dis-

tributions for these unobserved quantities have less uncer-

tainty and predict greater concentrations compared to the

marginal predictions (Fig. 3). In addition, note that the

observed value of Secchi disk depth for this lake is slightly

lower than the mean of the predictive distribution given

the predictors. Therefore, since there is negative depen-

dence between Secchi disk depth and TP, TN, CHL, and

NO3-N, the conditional distributions of TP, TN, CHL, and

NO3-N for this lake are shifted right. The shift is least pro-

nounced for NO3-N, which had the lowest residual correla-

tion with Secchi disk depth. Comparisons of the marginal

and conditional RMSPE and marginal and conditional pre-

dictive R2 values in Table 2 summarize the gain in predic-

tive performance—where smaller RMSPE and larger

predictive R2 values indicate better predictive performance.

For example, in the Midwest study region, RMSPE for TP

decreased from 0.762 to 0.637 when predictions were con-

ditional on the observed values of each of the other

nutrient-productivity variables. In addition to the decrease

in RMSPE, the predictive R2 increased from 0.48 (R2
M) to

0.64 (R2
C; Table 2). Similar gains in predictive performance

were observed for all nutrient-productivity variables and

across all three regions. Importantly, however, there were

differences between the subregions in predictive perfor-

mance for some nutrient-productivity variables. For

instance, the predictive R2 increased substantially for NO3-

N in the Midwest subregion (R2
M 5 0.12 vs. R2

C 5 0.39); how-

ever, a similar gain in predictive R2 was not observed for

NO3-N in the Northeast subregion (R2
M 5 0.06 vs. R2

C 5 0.21;

Table 2).

Residual and shared environmental correlations

Pairwise shared environmental correlations were plotted

against residual correlations for all nutrient-productivity

variable pairs and models (Fig. 4). The partitioning of the

effects of shared environmental drivers from residual inter-

actions revealed which nutrient-productivity variables

responded similarly to environmental conditions and which

ones may be correlated due to ecological processes not

accounted for by the predictor variables. For instance, for

lakes in the Midwest subregion, TP, TN, and CHL tended to

respond similarly to landscape drivers (Pjj
0: TP,TN 5 0.47,

TP,CHL 5 0.67, and TN,CHL 5 0.32) and were also indica-

tive of variables potentially driven by similar ecological pro-

cesses (residual correlations: TP,TN 5 0.35, TP,CHL 5 0.54,

TN,CHL 5 0.41). Whereas, Secchi disk depth tended to be

negatively correlated with shared environmental drivers

when compared with TP, TN, and CHL (Pjj
0: Secchi disk

depth,TP 5 20.68, Secchi disk depth,CHL 5 20.91, and Sec-

chi disk depth,TN 5 20.35), and to respond in the opposite

direction to shared environmental processes (residual corre-

lations: Secchi disk depth,TP 5 20.53, Secchi disk

Table 2. Margnal (M) and conditional (C) root mean squared
predictive error (RMSPE) and predictive R2 from joint nutrient-
productivity models for the Midwest and Northeast subregions.
RMSPE and R2 values with a LAGOS subscript are values for the
Midwest and Northeast subregions calculated using the model
fitted to the entire LAGOS-NE study extent.

TP TN CHL Secchi NO3-N

Midwest

RMSPEM 0.762 0.552 1.125 0.743 1.689

RMSPEC 0.637 0.428 0.775 0.527 1.404

RMSPEMLAGOS 0.927 0.658 1.148 0.770 1.804

RMSPEC LAGOS 0.662 0.437 0.765 0.531 1.498

R2
M 0.48 0.26 0.13 0.34 0.12

R2
C 0.64 0.55 0.59 0.67 0.39

R2
MLAGOS 0.23 20.06 0.10 0.29 0.00

R2
C LAGOS 0.61 0.53 0.60 0.66 0.32

Northeast

RMSPEM 0.640 0.431 0.805 0.391 0.962

RMSPEC 0.588 0.349 0.714 0.332 0.878

RMSPEMLAGOS 0.722 0.549 0.847 0.504 1.120

RMSPEC LAGOS 0.614 0.400 0.773 0.397 1.103

R2
M 0.34 0.44 0.21 0.61 0.06

R2
C 0.44 0.63 0.38 0.72 0.21

R2
MLAGOS 0.16 0.09 0.12 0.34 20.28

R2
C LAGOS 0.39 0.52 0.27 0.59 20.24
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depth,CHL 5 20.72, and Secchi disk depth,TN 5 20.35).

Similar patterns were observed in the other regions for

these nutrient-productivity variables, although the magni-

tude of the correlations varied. One noticeable difference in

the correlation partitioning across the two subregions was

between NO3-N and the other nutrient-productivity varia-

bles. In the Midwest subregion, the correlations due to

shared environmental drivers between NO3-N and TP and

TN were much larger compared to the Northeast subregion

(Midwest: NO3-N,TP 5 0.37, NO3-N,TN 5 0.76; Northeast:

NO3-N,TP 5 0.01, NO3-N,TN 5 0.06). Residual correlations

between NO3-N and TP and TN were also larger in the

Midwest subregion compared to those observed in the

Northeast subregion, especially for NO3-N and TN (Mid-

west: NO3-N,TN 5 0.49, Northeast: NO3-N,TN 5 0.29). In

addition, NO3-N shared environmental and residual correla-

tions tended to cluster more closely around zero compared

to the Midwest subregion (Fig. 4).

Discussion

Our results demonstrate that jointly modeling nutrient-

productivity variables effectively integrates nutrient-

productivity and landscape-based regression approaches to

understand macroscale drivers of water quality, while simul-

taneously accounting for dependence among indicators. This

approach also easily accommodates missing nutrient-

productivity data which allows for the inclusion of lakes

into an analysis that otherwise may have been excluded. To

date, jointly modeling nutrient-productivity variables is

rarely performed. One exception is Cha et al. (2016) who

jointly modeled TN and TP to examine N and P limitation

in aquatic systems. Their work focused on the spatial and

temporal dynamics of N and P limitation, but did not

include landscape predictors nor decompose correlation

structure. They emphasized the utility of jointly modeling

nutrients to further understanding of potential (de)coupling

of nutrients across space and time. Our results also highlight

the gain in predictive performance that is achieved by

Fig. 2. Estimated effects of landscape and lake-scale predictors on nutrient-productivity variables for the entire LAGOS-NE study extent (row 1), the
Midwest subregion (row 2), and the Northeast subregion (row 3). Circles are posterior means and horizontal bars are 95% credible intervals. Effects

with 95% credible intervals that overlap with zero are shown in blue. TP, total phosphorus; TN, total nitrogen; CHL, chlorophyll a; Secchi, Secchi disk
depth; NO3-N, nitrate.
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jointly modeling nutrient-productivity variables, which is

important given the wide-spread use of predictions from lim-

nological models to help inform management decisions

(Jones and Bachmann 1976). Specifically, there is a substan-

tial improvement in the precision and accuracy of predic-

tions that is achieved by conditioning on other observed

nutrient-productivity variables.

The effects of landscape predictors on nutrient-

productivity variables were as expected, and similar to those

reported by other studies that examined landscape drivers of

lake nutrients across large spatial extents (Wagner et al.

2011; Read et al. 2015; Collins et al. 2017). In addition, we

found the effects of landscape predictors to vary spatially

(i.e., between subregions), which suggests regional differ-

ences in the dominant drivers of, and their effects on, lake

nutrients and productivity. Spatially varying effects of land-

scape predictors on lake nutrients and productivity have

been previously identified (Soranno et al. 2014). For exam-

ple, using spatially varying coefficient models, Fergus et al.

(2016) explicitly accounted for spatial heterogeneity in the

effects of TP and water color when predicting CHL. Account-

ing for spatial differences in the effects of predictors on CHL

improved model fit and predictive performance compared to

models that did not allow predictor effects to vary over space

(Fergus et al. 2016). Our results support this notion of the

importance of incorporating spatially varying or regionally

specific coefficients. For example, predictive performance

decreased when using the model fitted to LAGOS-NE to

predict lakes in the Midwest or Northeast subregions com-

pared to using the region-specific models to make

predictions.

We observed relatively large, positive residual correlations

among TP, TN, and CHL across all analyses. In the case of

TP and TN, these positive residual correlations may be the

result of coupled biogeochemical cycles and the response of

algal communities to increased nutrient loading (Schindler

1978; Cha et al. 2016). Cha et al. (2016) also observed large

correlations between N and P in Finnish lakes, which they

concluded were indicative of similar rates of N and P biogeo-

chemical cycles. In addition, a relatively large negative resid-

ual correlation was observed between Secchi disk depth, TP,

TN, and CHL. This was expected, as Secchi disk depth is gen-

erally negatively correlated with nutrients and CHL (Canfield

and Bachmann 1981). Interestingly, however, there was spa-

tial variability in the residual correlation among NO3-N and

other nutrient-productivity variables. For example, the resid-

ual correlations of NO3-N with other variables were near

zero in the Northeast subregion and positive in the Midwest

subregion. These regional differences in NO3-N residual cor-

relations could be the result of differences in the strength of

the coupling between the N and carbon biogeochemical

cycles—and this coupling may play a larger role in north-

eastern lakes through stoichiometric controls and microbial

processes (Taylor and Townsend 2010). Differences in atmo-

spheric chemistry, nutrient processing dynamics of domi-

nant land cover types, and lake internal processing may also

Fig. 3. Marginal (solid black lines) and conditional (dotted lines) posterior predictive distributions from a joint nutrient-productivity model for two

lakes in the Midwest subregion. TP, total phosphorus; TN, total nitrogen; CHL, chlorophyll a; Secchi, Secchi disk depth; NO3-N, nitrate. Vertical line is
observed value. Lake #1 (upper row) had all five nutrient-productivity variables observed; whereas, TP and TN were not observed for lake #2 (bottom

row).
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contribute to the apparent decoupling of NO3-N with other

nutrients in Northeast, and in particular with TN, compared

to Midwest lakes (Bernhardt et al. 2002; Goodale et al.

2003). Understanding this potential (de)coupling of

nutrients across environmental gradients is important within

the context of global change. For example, extreme tempera-

ture events may result in the decoupling of some biogeo-

chemical cycles through altering microbial processes

(Mooshammer et al. 2017). These results suggest that further

investigations into spatially varying covariances among

nutrient-productivity variables may be warranted in an effort

to understand the implications of spatially varying covarian-

ces on model predictive performance and for understanding

how (de)coupling may vary spatially and in response to

global change.

In addition to relatively large positive residual correlations

among TP, TN, and CHL, we also observed strong positive

shared environmental correlations among these variables,

and strong negative shared environmental correlations

among these variables and Secchi disk depth. The positive

environmental correlations reflect the positive relationship

between nutrient loading and primary production (Schindler

1978). These patterns were consistent across all analyses and

highlight the similarity in dominant landscape (e.g., agricul-

tural land use) and lake-level (e.g., lake depth) drivers

between our subregions that influence the observed spatial

variability of key nutrients and, thus, algal biomass and

water clarity. Similar to the spatial variability observed for

residual correlations between NO3-N and other nutrient-

productivity variables, we also observed spatial variability in

the correlations due to shared environmental drivers

between NO3-N and other indicators. The regional differ-

ences in NO3-N shared environmental correlations may be

related to the dominant source of NO3-N to lakes in these

two regions. In the Midwest subregion, the dominant source

of NO3-N is from agricultural land use practices (Van Metre

et al. 2016), which is also a significant source of P. This may

result in similar shared environmental correlations among

nutrients and biological responses (e.g., CHL concentra-

tions). In contrast, the dominant source of NO3-N in the for-

ested Northeast subregion is from atmospheric deposition

(Aber et al. 2003), which may reduce the shared environ-

mental correlations of NO3-N with landscape-derived

nutrients (e.g., P). For NO3-N, shared environmental correla-

tions were closer to zero in the Northeast subregion and pos-

itive in the Midwest subregion. These patterns also partly

reflect the fewer number of landscape-based predictors that

were important for predicting nutrients in the Midwest com-

pared to the Northeast subregion—with lake depth, stream

density, and agricultural land use playing important roles as

a drivers of nutrients and lake productivity in the Midwest.

Conversely, a more diverse set of predictors were important

in the Northeast subregion, suggesting more than just agri-

cultural inputs and internal lake processing are potentially

driving nutrients and productivity in those lakes.

Summary

Understanding the dominant drivers of lake nutrients and

productivity, the coupling of biogeochemical cycles, and the

use of empirical models to predict water quality is necessary

to help guide management and conservation of lake ecosys-

tems. This is particularly the case when examining lakes

across macroscales, since some of the primary stressors of

freshwater ecosystems operate across large spatial extents.

For example, understanding how land use and climate

change and the increased human demands on freshwater

systems will affect water quality at regional, continental, and

global scales is of increasing importance (Woodward et al.

Fig. 4. Estimated residual and environmental correlations between pairs
of nutrient-productivity variables for the LAGOS-NE study extent (a) and
the Midwest (b) and Northeast (c) subregions. Circles are posterior

means and error bars are 95% credible intervals.
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2010). In fact, changes in environmental factors—such as

increasing temperatures—may interact with increased nutri-

ent loading to exacerbate the symptoms of eutrophication

(Moss et al. 2011). Jointly modeling nutrient-productivity

variables provides a useful analytical framework for increas-

ing knowledge of environmental drivers, the coupling of

nutrients across space and time, and improving limnological

predictions at macroscales.
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