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Abstract: Models of coupled landscape and aquatic systems (CLAS) are prone to input uncertainties 
that vary over space. To address this challenge, we employ a comprehensive model evaluation that: 
[1] quantifies the variability of model results (uncertainty analysis), and [2] decomposes this variability 
based on the relative contribution of inputs to identify major drivers in the model (sensitivity analysis).  
Our study simulates how agricultural land conversion from active to fallow lands reduces nutrient 
loading to lakes. We employ an agent-based model of farmer decision making coupled with a 
spatially-explicit biophysical lake model. A number of model inputs are uncertain including: variables 
reflecting farmer decision making, maps that represent the environmental benefits of land 
conservation, and variables that drive nutrient concentrations in CLAS. To be useful for policy 
analysis, the model requires simplification. To this end, we employ variance-based sensitivity 
analysis. We run the model multiple times to generate a distribution of lake total phosphorus 
concentration (TP) and evaluate the variability of TP using two spatial scales. First, the sensitivity 
analysis is run at a regional scale, at which the TP values from all lakes are lumped into a scalar 
calculated for the entire study area (aggregate analysis). Second, the sensitivity analysis is run at a 
lake scale focusing on TP values for individual lakes (fine-scale analysis). The aggregate analysis 
identifies the most critical components affecting the overall uncertainty of regional TP. The fine-scale 
analysis identifies the most crucial components affecting uncertainty of TP in individual lakes. A 
comparison of results from both scales provides useful insights for model simplification. 
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1 INTRODUCTION 

 
In 1985, the United States initiated a new land Conservation Reserve Program (CRP) aimed at 
protecting terrestrial and aquatic landscapes from adverse effects of agricultural production (Lambert 
et al., 2006; USDA FSA, 2012). This program was established to prevent soil erosion and degradation 
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of water and air quality, as well as facilitate biodiversity conservation (USDA FSA, 2012). CRP 
participation is voluntary. Farmers make an offer to United States Department of Agriculture (USDA) 
Farm Service Agency (FSA) and, if enrolled, they convert their farmland to fallow for ten to fifteen 
years by planting grass and trees in place of agricultural production. In exchange, they receive rental 
payments for the enrolled land. It is estimated that, in the Great Lakes Region alone, from 500 to 600 
thousand acres per year were enrolled in CRP between 2006 and 2010, intercepting annually about 
1360 metric tons of phosphorus, which would have otherwise entered the waterways (USDA FSA, 
2010). Notwithstanding these apparent environmental benefits of the program, it is unclear whether 
the existing policies that guide both farmers' and FSA's decision making result in the most efficient 
return on federal investment (Kramer et al., 2013), or whether they have a positive effect on the 
quality and health of water bodies. Accurate modelling of land use change from agriculture to CRP-
enrolled fallow lands, and the subsequent changes in nutrient loading to lakes, can help  evaluate the 
effectiveness of CRP for improving lake water quality. 
 
The landscape-CRP-lake system serves as a good example demonstrating the complex influence of 
land use change on lake nutrient concentrations. Its complexity and, by extension, uncertainty, results 
from a myriad of intertwined social, economic, and ecological conditions that affect the decision of 
land conservation. The uncertainty of the system is further exacerbated by the limited information on 
the biophysical processes affecting nutrient loading from the watershed to lakes, and the resulting 
lake nutrient concentrations. To study the landscape-CRP-lake system, we developed an integrated 
simulation platform composed of an agent-based model (ABM) of CRP participation and a lake model 
(LM) of total phosphorus concentration (TP). The ABM simulates CRP enrolment and produces maps 
of land use change in a given watershed. These land use maps serve as inputs to the LM that 
calculates TP loading to each lake.  
 
Because we use an ABM, in which each agent is represented by a set of variables, the resulting 
number of model input parameters (referred to as factors) can amount to hundreds or even 
thousands. These factors influence the size (area) and location of CRP-enrolled land and, as a 
consequence, the variability of TP in lakes. To build a transparent landscape-CRP-lake model that will 
be useful for policy analysis, we first need to reduce its dimensionality by eliminating factors that have 
a negligible effect on the simulated lake TP. Given the nonlinear nature of the model, we employ 
variance-based sensitivity analysis (VBSA) (Saltelli et al., 2010), in which the variability of the 
simulated TP is decomposed to quantify the influence of factors on model results. However an 
important question must be answered: At what scale(s) should we evaluate lake TP? Should we 
evaluate individual watersheds,  regions, or both? 
 
Due to the spatial heterogeneity inherent in modelling watershed phosphorus cycling and retention 
and therefore loading to lakes (Zhang et al., 2012), we hypothesize that the scale of model evaluation 
will affect its later simplification (Ligmann-Zielinska, 2013). Consequently, we employ variance based 
sensitivity analysis at two different scales. We first use an aggregate approach, in which variance 
decomposition is applied to TP calculated for the entire region. We then move to a fine-scale 
approach, in which TP variance decomposition is performed for each individual lake (and its 
watershed). The former results in one pair of sensitivity indices per factor, whereas the latter produces 
a separate pair per factor per lake. In order to make prudent decisions on model simplification, we 
compare the results of both analyses and identify the non-influential factors common to both scales.  
 
 
2 METHODS 
 
The ABM is the fundamental component of the integrated model. ABM is a relatively recent approach 
to modelling complex human-environmental models (An et al., 2005; Matthews et al., 2007). The 
major premise of ABM is to identify the critical actors in the system i.e., people and institutions that 
make decisions affected by and affecting the environment. In this research, these actors comprise 
farmers and the FSA. Below we describe the models in more detail (Figure 1, left). 
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2.1 Coupled Agent-Based and Lake Model 
 
The process of CRP enrolment is based on well-defined federal regulations (USDA FSA, 2012). A 
farmer, represented in the model by a farmer agent (FA), starts by evaluating their willingness to enrol 
in the program. To parameterize FA's enrolment decision, we use individual-level data obtained from 
the Agricultural Resource Management Survey (USDA ERS, 2012). Based on logistic regression, we 
identified three primary factors affecting FA's decision: farmer's retirement (yes/no), total value of 
production on the farm (in U.S. dollars), and land tenure (fraction of land owned by the farmer). Since 
we do not have data to identify the functional form of FA's choice behaviour, we use a collection of 
Ordered Weighted Averaging (OWA) aggregation functions that represent a continuum from risk 
averse to risk taking decision making (Yager, 1988).  
 
 

 

Figure 1. The coupled agent-based and lake model (left), and the study area (right). Refer to the text 
for symbol definition. 

 
 
When FA's willingness to participate exceeds an empirically derived threshold, the agent selects a 
portion of its farmland and builds an offer by calculating an expected annual payment based on soil 
rental rates (USDA FSA, 2012). The location of land to enrol is based on three environmental 
characteristics: distance to water bodies, slope, and distance to forest. These characteristics are 
applied to rank the potential enrolment locations using prioritization specific to each agent (e.g. slope 
first, followed by distance to forest, followed by distance to water). To increase the competitiveness of 
their offer, the FA will apply a bid to their expected annual payment according to rules established by 
the USDA (USDA FSA, 2011). All offers are passed on to the FSA agent who selects a subset of 
offers based on the available budget empirically derived from U.S. Agricultural Census database 
(USDA, 2013), the discounted annual payments, and the spatially-heterogeneous environmental 
benefit index (EBI). Finally, the FSA announces the selected signup offers. This signup process is 
repeated annually. Once the offer is accepted, the land in contract changes to fallow. At the end of the 
AB simulation (after ten time steps representing a ten-year enrolment period), a new land use map is 
generated showing the distribution of CRP land. 
 
The land use change map is then sent to the biophysical lake phosphorus concentration model 
(Figure 1, left), developed in our previous research (Kramer et al., 2013; Zhang et al., 2012). The 
ABM output map is the only factor that varies from run to run in the TP model. Other inputs include 
annual precipitation, surface water flow direction, lake area, and lake depth. In addition, the model 
uses a number of coefficients that account for land use-specific phosphorus attenuation along the flow 
path. We expect that, because row crops and pasture lands are important sources of phosphorus, the 
area of CRP participation and the heterogeneity of its spatial distribution can produce variable TP per 
lake. 
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2.2 Case Study 
 
We selected adjacent watersheds of seven inland lakes in the Cass County in Michigan, U.S. The 
outlines of the watersheds are shown in Figure 1, right. They are labelled with their initial TP values, 
that is, the TP values approximated from the lake model using the input land use map.  
 
 
2.3 Variance-Based Sensitivity Analysis and Experimental Design 
 
Variance-based sensitivity analysis allows us to analyze the effect of different factors on TP variability 
and determine the best way to reduce the dimensionality of the model without sacrificing its 
exploratory power. Because we deal with a very large number of similar factors, that is, factors of the 
same type for multiple agents (e.g., farmer's retirement, OWA, and prioritization are separately 
defined for each FA), we first assembled factors of the same type into factor groups. Factor grouping 
limits the number of model runs by effectively reducing the number of parameters in the model, and 
allows for treating similar factors as one single factor (Saltelli et al., 2008) without changing the model 
structure. All model factors are listed in section 2.1 in italics. Except for EBI, all factors are formulated 
as factor groups. In sum, the integrated model includes one model-level factor (pertaining to the 
environment) and seven factor groups (pertaining to the agents). For simplicity, both the individual 
factors and the factor groups are called factors in the following sections.   
 
We selected variance-based sensitivity analysis (VBSA) as a technique for evaluating the uncertainty 
of the integrated AB-LM model. This model does not meet the criteria of additivity or linearity required 
by other SA approaches, and VBSA accounts for the interaction effects among factors (Saltelli et al., 
2008). In the reported experiments, we calculated and decomposed the variance of TP per lake ((A) 
in Figure 1 centre-left), and then the variance of TP summarized over the region ((B) in Figure 1 
bottom-left). With the VBSA results, we computed two sensitivity indices for each factor (f): a first 
order index (S) that calculates the individual contribution of f to TP variance, and a total effects index 
(ST) that represents the contribution of f together with other factors to the variance of TP (i.e. 
accounts for f's interactions). We used well-established formulas for calculating the (S,ST) pairs 
provided in the SA literature (Saltelli et al., 2008; Saltelli et al., 2010).    
 
The probability density functions used to select  the factor values are listed in the Appendix. We ran 
the integrated model using Monte Carlo simulations (N=4608). Factor samples were produced using 
the quasi-random Sobol' experimental design (Sobol', 1993). The model was implemented in the 
Python programming language (http://www.python.org/) and the sensitivity indices were calculated 
with the SimLab software (http://ipsc.jrc.ec.europa.eu/?id=756). 
 
 
 
3 RESULTS 
 
 
3.1 Sensitivity Analysis of TP at the Regional Scale 
 
Figure 2 shows the results of SA for aggregated TP (i.e. calculated for the entire region). The sizes of 
the pie chart sectors are proportional to the values of sensitivity indices. The simulated decrease in 

TP ranges from 0.8 to 14.6 mcg/l, with  = 3.4 and  = 1.7. Assuming the best case scenario, in which 
all agricultural land is converted to fallow, the results of the computational experiments demonstrate a 

decrease in TP of 0% to 30% as compared to this full land conversion ( = 4.2,  = 4.5). These low 
TP decrease values can be attributed to the fact that only 2.9% of the agricultural land in our study 
area was annually enrolled in CRP during 2000-2010.   
 
We assume that only factors with both S<0.06 and ST<0.06 can be simplified because we do not 
want to significantly reduce TP variance (it should only be done by improving model input data). 
Consequently, we will fix only those factors that have overall negligible impact on TP variability. Based 
on the aggregate results, we can conclude that three factors can be substituted with their means: 
value of production, farmer retirement and, to a lesser extent, prioritization of land characteristics. Our 
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results also justify the selection of VBSA for sensitivity analysis, as 41% of TP variability can be 
attributed to factor interactions that other SA approaches cannot account for.  
 
 

 

Figure 2 Sensitivity analysis results at the regional scale. 

 
There exists a noticeable spatial dependence of TP reduction and its derivative (S, ST) indices 
(Figure 3). Thus, the regional results provide incomplete information to simplify our spatially-explicit 
model and we must also include the individual lake scale in our analysis. 
 
 
3.2 Sensitivity Analysis of TP at the Lake Scale 
 
Two observations can be made from the results of SA at the lake scale (Figure 3). First, the average 
decrease in TP is dependent on the value of the initial TP combined with the absolute area of 
agricultural land in the watershed. In particular, three lakes with the most agricultural land and the 
highest initial TP (Christiana, Coberts, and Paradise) end up with the highest average TP decreases 
of ~1 mcg/l (Figures 1 and 3). Second, watersheds with a relatively high interaction effects among 
factors (from 0.6 for Paradise Lake to 0.75 for Chain Lake) are characterized by higher variability in 

TP decrease ( > 1).  
 
 
 
Table 1 Factors with (S,ST) index values below 0.06. VP - value of production, FR - farmer retired, P - 
prioritization of land characteristics, LT- land tenure, LF - fraction of land enrolled in CRP, EBI - 
environmental benefits index layer, OWA - ordered weighted averaging decision rule, B - farmer's bid. 
Refer to the Appendix for details on factors. 

 S ST 

REGION VP,FR,P,LT,LF FR,VP,P 

Lakes   

Coberts  VP,FR,P,LT,LF,EBI,OWA FR 

Christiana VP,FR,P,LT,LF,B FR, P 

Shavenhead VP,FR,P,LT,LF,B,OWA FR, P 

Chain VP,FR,P,LT,LF,EBI, OWA FR 

Paradise VP,FR,P,LT,LF FR,VP,P 

Donnell VP,FR,P,LT,LF,B FR 

Birch VP,FR,P,LT,LF,B,EBI FR,P 
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3.3 Comparison of Sensitivity Analysis of TP at Two Scales 
 
At the regional scale, we identified three factors that could be simplified: value of production, farmer 
retirement and prioritization of land characteristics. When we compare the SA results for the entire 
region to the individual lakes, we find some interesting discrepancies both in terms of model 
simplification and factor prioritization. For most of the watersheds (excluding Paradise), the 
simplification of the model, based on the result of SA at the lake scale, would be different from its 
regional variant (Table 1). For example, at the individual lake scale, the value of production has 
ST~0.15 for Coberts, Chain, and Birch, whereas the prioritization of land characteristics has ST~0.09 
for Coberts, Chain, and Donnell. Consequently, we can obtain a simpler equivalent model by fixing 
only farmer retirement to constant because it is the only factor with (S,ST) below 0.06 for all lakes and 
for the entire region.   
 
 

 

Figure 3 Sensitivity analysis results at the lake (watershed) scale. 
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When considering factor prioritization, we focus on factors that need more attention due to their 
considerable influence on outcome variability (i.e. factors with the highest (S,ST) values). The regional 
analysis suggests three such factors: EBI, OWA, and bid. The results at the watershed scale lead to 
slightly different conclusions. For example, the role of EBI in shaping the variance of TP for three 
lakes (Birch, Coberts, and Shavenhead) is much less pronounced. For these lakes, we should rather 
focus on LT and LF in addition to OWA and bid.     
 
 
4 CONCLUSIONS AND RECOMMENDATIONS 
 
We examined the role of scale in guiding a simplification of an integrated agent-based and biophysical 
model. We applied variance-based sensitivity analysis to model results measured at two different 
spatial scales: a lake in its watershed and a region. We demonstrated how model simplification 
choices, which can be achieved through factor fixing (Saltelli et al., 2008), differ among spatial scales. 
The regional analysis produces fast and straightforward model simplification because it is based only 
on one set of indices (S,ST). However, analysis at the lake scale shows that the variance of the 
results and the subsequent sensitivity indices are spatially heterogeneous. Thus, a finer-scale 
analysis provides a more detailed and comprehensive picture about the uncertainty of the model, at 
the expense of brevity and transparency. As part of future research, we will extend our simulation to a 
wider geographic area that includes lakes with a larger range of TP and perform a thorough spatial 
statistical analysis to investigate whether general guidelines on variance-based multiscale model 
simplification can be proposed. 
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Appendix 

 
 
Probability distributions for factors used in simulations. U: uniform distribution, D: discrete distribution 
(value, probability).  

Factor Name 
(Symbol) 

Factor Description Probability Density 
Function 

Farmer 
Retirement (FR) 

Primary operator retired from 
farming (0: retired, 1: working). 
 

D = { (0, .06), (1, .94) } 

Value of 
production (VP) 

Total value of production on a 
farm. 

D = { (0,0), (.2, .06), (.4, .06), 
(.6,.11), (.8,.15),(1,.62) }   
   

Land tenure 
(LT) 

Ratio of owned to operated 
acres. 

D = { (0,.04), (.2, .14), (.4, 
.18), (.6,.14), (.8,.15),(1,.35) }   
   

Priority (P) Prioritization of land 
characteristics used in ranking 
potential CRP locations. 
 

D = { 6 combinations with 
equal probability } 
 

OWA Farmer agent decision rule 
based on ordered weighted 
averaging (Yager, 1988). 
 

D = { 17 combinations with 
equal probability } 

Land fraction 
(LF) 

Fraction of parcel to set aside 
for conservation.  
 

U = (0, 1] 
 

Bid (B) Voluntary reduction by the 
farmer of the offer value below 
the maximum payment rate. 

D = { 0% to 16% of reduction 
with increments of 1, with 
equal probability of selection} 
 

EBI Environmental benefits index. D = { 6 spatial layers 
representing different 
scenarios of EBI distribution 
in the study area with equal 
probability of selection } 

 
 


