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Many ecological studies are conducted by measuring
responses to stressors within populations, communi-

ties, or ecosystems. The interactions of basic building
blocks of ecological systems – from atoms to organisms,
with each other and with the environment – aggregate to
form broad-scale ecological patterns. Local-scale research
on these interactions is very important for scientists to
understand the impacts of environmental change on eco-
logical systems and the processes that shape these phe-
nomena. However, environmental change operates across
a range of local to broad scales, forcing ecologists to
expand, adapt, and integrate approaches (Heffernan
et al. 2014).

Improving approaches for prediction is one of the goals

of the emerging field of macrosystems ecology (MSE;
Heffernan et al. 2014). MSE researchers study ecological
systems as a whole and ask how processes and patterns at
regional to continental scales interact, respond, and
emerge from (and with) finer (eg individual) and broader
(eg continental) system levels (Peters et al. 2007; Evans et
al. 2012; Heffernan et al. 2014). Heffernan et al. (2014)
describe the important conceptual underpinnings of a
macrosystems perspective and its disciplinary foundations.
Here, we illustrate the suite of data, approaches, and tools
that can be used to address such research questions. Many
of these approaches were unavailable 10–20 years ago, and
are not commonly used by ecologists today. 

The methods we describe here differ from simple upscal-
ing procedures used in early research efforts that laid the
foundation for MSE, such as the 1970s International
Biological Program, which funded large-scale ecosystem
research projects studying the structure and function of
key biomes (Hagen 1992; Golley 1993). These studies
improved the understanding and development of ecology
by refining methods; collecting large amounts of data on
ecosystem components, processes, and interactions; and
creating many successful, smaller-scale systems models
(Golley 1993). However, their upscaling approaches were
limited by data resources, analytical tools, and computer
capabilities. Ecologists are now able to develop and use
technologies to incorporate the complex organization and
interactions across scales necessary for interpreting
macroscale phenomena (Hagen 1992). 

MSE studies explore how broad-scale variation in fine-
scale characteristics – such as organismal behavior and fit-
ness, nutrient transformations, and water-use efficiency –
relate to broad-scale spatial and temporal processes and
patterns such as climate change, landscape alteration, and
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In a nutshell:
• Macrosystems ecology uses new approaches and applies exist-

ing methods in novel ways to study ecological processes inter-
acting within and across scales

• These approaches often include multiple scales, diverse data
objects, data-intensive methods, cross-scale interactions, and
hierarchical relationships

• These studies require large volumes and diverse types of data
from many sources, encouraging ecologists to build field and
laboratory methods, database objects, and the data infrastruc-
ture capable of the joint analysis of multiple large data streams

• Scientists use powerful statistical methods, such as Bayesian
hierarchical models, machine learning, and simulations, to
find and explain important patterns in complex, multi-scale
datasets
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topography. Because MSE research questions are defined
at fine-to-broad spatial and temporal scales, the data used
to examine such questions must also be at such scales
(Figure 1). Fortunately, recent technological and method-
ological advances are making it easier to obtain and dis-
tribute data measured across a range of scales, such as
remote sensors on satellites or aircraft, compilations from
many individual studies and citizen-science programs
(Figure 2), or other studies using labor-intensive or long-
term traditional methods. Notably, such heterogeneous
data streams often require sophisticated, computationally
demanding standardization techniques before analysis
(Michener and Jones 2012; Rüegg et al. 2014). New
approaches are emerging that can handle large volumes
and diverse types of data, including mechanistic simula-
tions, meta-analyses, empirical models, and model–data
fusion (Figure 1). For example, the Paleo-Ecological
Observatory Network (PalEON) is using the fusion of

model and data to integrate long-term data with terrestrial
ecosystem models to better understand and model forest
dynamics (Panel 1 Example 3). Using the approaches
described below, MSE practitioners have the potential to
make novel contributions to the understanding of broad-
scale phenomena, how broad- and local-scale phenomena
interact, and how such patterns and processes are likely to
respond to environmental changes at multiple scales.

n Common methodological characteristics and
challenges of MSE studies

Here we highlight some important characteristics of, and
strategies for meeting the challenges inherent to MSE.
These elements are commonly, but not exclusively, a part
of MSE studies, and the research question being asked
will determine the appropriate methodology to be used
and the associated difficulties (Figure 1). 

Figure 1. Relationship between the major research questions, data sources and analyses, and existing challenges in MSE research. (Top
panel) Three broad areas of research are the focus of MSE. (Middle panel) These questions can be addressed using many of the existing
approaches, or through a combination thereof. Although these are the dominant data sources and analyses, the list within each category is
not exhaustive. (Bottom panel) All analyses are associated with problems that will need to be resolved as the discipline develops.
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First, we describe the characteristics of data collection in
MSE, which should allow analysis across scales and could
include (1) multi-scaled and (2) diverse data objects. The
large and diverse amounts of information requires
researchers to adapt (3) data-intensive approaches. Finally,
macrosystems analysis must incorporate the complex orga-
nization and interactions (4) across scales and the (5) hier-
archy among scales. We distinguish the challenges posed by
each of these characteristics and the available approaches
to address them, while acknowledging that novel tech-
niques will emerge as MSE continues to develop.

Multiple scales 

Macrosystems research can include ecological processes
that occur not only at local and short-term scales, but also
at the spatial and temporal macroscale (hundreds to a few
thousand square kilometers and temporally from days to
decades and beyond; Heffernan et al. 2014). For instance,

studies are being conducted to identify which macroscale
characteristics (eg temperature or rainfall) influence local
site responses to global change (Panel 1 Example 1) and
how the impact of local disturbances, such as fire, extend
beyond the immediate vicinity in time and space
(Goulden et al. 2006; Miao et al. 2009). The multi-scale
nature of studies often requires high-resolution data:
regional data are needed to examine broad-scale phenom-
ena, but ecological processes often occur at fine spatial
and temporal scales. For example, hourly environmental
data may be necessary to test how environmental
extremes affect regional patterns (Kearney et al. 2012).
Moreover, when ecological information, such as land
cover, varies at a spatial frequency that is finer than the
data grain, aggregation effects may lead to analytic biases
based on the more common finer-scaled landscape fea-
tures (eg Nol et al. 2008; reviewed in Verberg et al. [2011]).
On the basis of available data, researchers may choose
upscaling and/or downscaling approaches to transfer data

Figure 2. Networked sensors and technologies enable researchers to collect real-time, standardized, local- to continental-scale data. (a) A
microclimate sensors network is automatically collecting local climate data at 10-min resolution to estimate ground-surface temperatures
across entire landscapes and to test the efficacy of different methods for climate interpolation and downscaling. (b) Sensor towers of the US
National Ecological Observatory Network (NEON) are collecting ecologically relevant data at the continental scale. These data are
transferred automatically to NEON servers where they are standardized and transformed (including calibration, quality assurance/quality
control, and data flagging) into a usable format before being shared through an online repository. (c) The eMammal network of camera
traps helps researchers monitor animal populations and document the effect of recreational use on conservation areas. The motion-sensitive
cameras are operated by citizen scientists and record voucher photographs of all animals as they pass by. All photos are uploaded to an
online cloud and must pass expert review for data quality assurance before being archived and used in scientific research.

S
 M

cK
ni

gh
t

S
 T

ow
er

eM
am

m
al

(a) (b) (c)

Data loggers

Site-specific data

Statistical analysis

High-resolution
maps

Digital
repository

Data servers

Raw data

Cyberinfrastructure
team

Useful form
of data

Digital
repository

Volunteer computer

Pictures +
early metadata

Pictures +
final metadata

Online
cloud

Expert review tool

Digital
repository



Approaches for macrosystems ecology research  O Levy et al.

18

www.frontiersinecology.org © The Ecological Society of America

optimally between scales, such as upscaling locally mea-
sured carbon dioxide (CO2) fluxes from the AmeriFlux
network to the continental scale (Panel 1 Example 4) and
downscaling species distribution data to the grain of bio-
logical processes, to work at a scale at which management
decisions can be made (Keil et al. 2013).

Careful selection of the most appropriate scale(s) to
study and the measurements to be made at each scale is
challenging because of incomplete previous knowledge,
complexities that scientists are not yet able to predict (eg
treatment effects that may extend beyond the treatment
site), and logistical and financial constraints. Moreover,
statistical detection of processes may become difficult as
more locations in space and time are studied and the nat-
ural variation encountered by the study is increased. To
address these issues, we argue that identifying the scales of
processes by which organisms interact with the environ-
ment, resources, and other organisms is necessary. For
example, when studying migratory birds, telemetry data
may give insight on extent of the ecological system (eg
migration limits) while also pointing to processes and pat-
terns at local scales (eg stopover locations; Taylor et al.
2011). Moreover, the use of previous knowledge, such as

information available from historical records and national
resource inventories, may help guide the selection of sites
and time ranges for study (eg Goulden et al. 2006;
reviewed by Hewitt et al. [2007]). Additionally, variables
measured should represent the most likely explanatory
factors needed to test the study’s chosen hypothesis, which
may be difficult to identify prior to the study being con-
ducted (Hewitt et al. 2007). To allow statistical inference
for explanatory variables, scientists must carefully select
study site locations along gradients and scales (ie extent,
lag, grain, and resolution; Figure 3).

Increased availability and use of automated sensors,
instruments, and remote-sensing platforms enable
researchers to gather data on multiple scales; these data,
together with novel data-analysis approaches, can help
identify underlying ecological patterns. For example, high
temporal, moderate spatial resolution measurements from
the Moderate Resolution Imaging Spectroradiometer
(MODIS), a satellite-based instrument, can reveal
regional temporal patterns (eg forest loss) that can be fur-
ther investigated spatially using the high spatial resolu-
tion, low temporal resolution Landsat measurements
(Potapov et al. 2008). An additional challenge of working

Panel 1. Introduction of five case studies that demonstrate novel approaches to MSE 

Refer to WebPanels 1–5 for the full description of each example.

Example 1
Most studies investigating ecosystem responses to climate change are conducted in a single ecosystem type; consequently, scientists
lack knowledge of how (or if) site-level mechanisms – ones that explain ecological responses to climate change – may scale regionally
where environmental context also varies. A geographically distributed drought experiment is being conducted in grasslands in New
Mexico, Colorado, Wyoming, and Kansas that differ strongly in their ecological attributes, to test predictions of how environmental con-
text and site-level mechanisms interact to determine regional responses. 

Example 2
To provide a regional climate forecast, Salazar et al. (2011) proposed a hierarchical Bayesian model that assimilates different climate
model simulations while accounting for discrepancies between the simulations and historical weather data. Their model acknowledges
multiple sources of data and uncertainty, captures complex space–time dependence structures to improve prediction, reduces dimen-
sionality and computational burden, and delivers full uncertainty assessment at all space and time coordinates. The results can be used
to explore hypotheses related to climate change.

Example 3
Many ecological processes operate at spatiotemporal scales not amenable to direct observation and experimentation (eg the effect of
decadal- to centennial-scale climate variability on tree population dynamics, legacies of historical land use, cultural eutrophication of
lakes, lake acidification). Broad-scale macrosystems research thus requires the tight integration of contemporary ecological observa-
tions with geohistorical data streams and close collaborations among paleoecologists, modelers, and statisticians. The PalEON team is
integrating long-term data with terrestrial ecosystem models to better understand and model forest dynamics at annual to millennial
timescales.

Example 4
A data-driven approach has been used to upscale carbon (C) fluxes from the AmeriFlux network to the continental scale and to pro-
duce gridded C fluxes with high spatial (1-km) and temporal (8-day) resolutions for temperate North America. The resulting continu-
ous gridded flux dataset – EC-MOD – has been used to assess the magnitude, distribution, and interannual variability of ecosystem C
fluxes at regional and continental scales (Xiao et al. 2008, 2012).

Example 5
Integrating spatial and temporal data to quantify drivers of temporal patterns is a key issue for some MSE research. Dynamic linear
models (DLMs; Pole et al. 1994) provide a framework for understanding how ecological patterns and relationships change over time
(Hampton 2005) and are often more representative of the underlying data structure than traditional approaches (Lamon et al. 1998).
DLMs have the potential to be particularly effective in MSE because they incorporate uncertainty estimates and are sensitive to changes
in relationships through time.
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across multiple scales is that instruments, remote-sensing
platforms, and climate datasets differ in resolution.
Current approaches to combine spatial data with different
resolutions include georectification, resampling, data
fusion, and Bayesian models (Panel 1 Example 2). 

Diverse data objects

Understanding complex macroscale phenomena from the
systems perspective requires ecologists to look for ways to
expand their data resources at both local and regional
scales. With increased availability of data, researchers are
able to use existing data resources. However, these
datasets are usually from different thematic areas, such as
population studies, geology, meteorology, and hydrology.
Moreover, relevant macrosystems data may include (but
are not limited to) remotely sensed imagery, citizen-sci-
ence data, on-the-ground sampling data, laboratory-
derived data, and reconstructed historical records, all dif-
fering in collection protocols, temporal and spatial
resolution, format, quantity, quality, and costs of capture,
curation, and analysis. For instance, to study how CO2

exchange and evapotranspiration change during sec-
ondary succession, Goulden et al. (2006) compared high-
frequency eddy covariance measurements, low-frequency
tree inventories, and tree-ring analyses extending over
decades. 

Integrating such data objects into one unified dataset is a
frequent challenge in MSE, given that traditional ecologi-
cal datasets are characterized by single-investigator studies
in which future applications were not considered during
data collection. Recently, scientists, professional societies,
and research sponsors are recognizing the value of data as a
product of the scientific enterprise and placing increased
emphasis on data stewardship, data sharing, openness, and
supporting study repeatability (reviewed by Michener and
Jones [2012]). When sharing data, ecologists need to pro-
vide complete metadata that includes such information as a
full description of the methods (reviewed by Rüegg et al.
[2014]). In addition, if data collectors use standardization
protocols as well as quality assurance (QA) and quality con-
trol (QC) procedures, their data variables can be easily con-
verted to common variables in another database (Figure 1;
Panel 1 Examples 3 and 4; reviewed by Rüegg et al. [2014]).
Networked sensors and technologies, such as the tower sen-
sors of the US National Ecological Observatory Network
(NEON, www.neoninc.org), the PhenoCam network
(http://phenocam.sr.unh.edu), and the camera traps of the
citizen-science eBird (www.ebird.org) and eMammal
(www.facebook.com/eMammal) projects deliver regional-
to continental-scale arrays of real-time data (Figure 2).
Because data segments arrive from the same equipment,
standardization, QA, and database compilation are rela-
tively straightforward. 

Figure 3. Examples of gradients across (a) broad, (b) intermediate, and (c) fine scales that can be used in macrosystems studies. (a)
Grasslands spanning a gradient of temperature and precipitation give insight into how environmental context and ecosystem attributes
may interact to determine regional patterns of response to climate change (Panel 1 Example 1). (b) The change in vegetation that occurs
from low to high desert in Arizona reveals how regional environmental variability influences biological communities. (c) Elevation- and
slope-related environmental gradients in mountainous areas may indicate how local climate affects the vulnerability of tree species – ones
that currently dominate warm, dry foothill woodlands versus those in cool, moist montane forests – to regional climate change.
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High-dimensional data (ie data containing a large num-
ber of variables relative to the number of observations) are
also common in MSE, requiring specific approaches for
data exploration (eg visualization), statistical inference
(eg model selection and parameter estimation; Johnstone
and Titterington 2009), and intensive computational
power. The use of dynamic graphics enables the display of
many two-dimensional projections of data (Johnstone and
Titterington 2009). Promising approaches for statistical
inference include machine-learning algorithms (eg
Random Forests; Breiman 2001) and parameter-space
sampling optimizations (eg Markov chain Monte Carlo
and piece-wise Laplacian representations) that can use
Distributed Computing frameworks to process large
datasets (eg Hadoop; Shvachko et al. 2010).

Data-intensive approaches

Ecological studies usually gather discrete pieces of infor-
mation over only a few years. Conversely, today’s tech-
nologies are producing exponentially increasing volumes
of broad-scale scientific data with networks that allow
fast sharing, accessing, and collecting. In MSE, such data
objects are often used as input to statistical and simula-
tion models that themselves generate large amounts of
data (ie model output). Such a volume  of data poses new
challenges for ecologists at various stages of study, from
collecting to validating the data, to building statistical
and simulation models (Kelling et al. 2009; reviewed by
Michener and Jones [2012]), and finally to documenting
and sharing data. Many of these datasets contain cor-
rupted, missing, or meaningless sections, making it hard
to obtain the relevant information about the measured
variables. Efficient information management practices are
therefore required to facilitate data consistency and com-
pleteness. Ecoinformatics and information management
practices (and programs such as DataONE,
www.dataone.org) continue to be developed to help ecol-
ogists efficiently process, store, share, integrate, and syn-
thesize their data, while reducing data gaps and noise
(Rüegg et al. 2014). For example, the launch of the
MODIS sensor (Justice et al. 1998), with its near-daily
global coverage and wide spectral range, catapulted the
use of large remote-sensing datasets into ecosystem process
models and in upscaling approaches (eg Xiao et al. 2012).
The archiving of datasets with temporal and spatial con-
sistency has enabled ecologists to take advantage of
MODIS (Justice et al. 1998), without having to deal with
the burdens of volume, noise, and gaps in the raw data.

In most ecological studies, data are collected and
tested against specific hypotheses. However, broad-scale,
multi-dimensional datasets may contain unknown
(sometimes even unexpected) complexities and relation-
ships. When seeking to understand whole-system
processes, the challenges in analyzing large datasets are
pushing ecology (as well as other scientific fields),
toward “data-driven” approaches (Xiao et al. 2008;

Kelling et al. 2009) as opposed to the more traditional,
hypothesis-testing techniques. In data-driven models,
most knowledge is extracted from the data while mini-
mizing the cost and time of model formation as well as
maximizing the accuracy, speed, reliability, and compre-
hensibility of the models produced (Vargas et al. 2011).
Machine-learning algorithms are able to manage multi-
dimensional data with missing observations and to iden-
tify complex interactions among variables. The machine-
learning approach has shown great promise in species
distribution modeling. However, when data are imbal-
anced, these models are often biased toward selections of
variables with more observations, and it is necessary to
use methods – such as Cost Sensitive Learning (Zhou and
Liu 2010) and Active Machine Learning (Settles 2012) –
to artificially balance the data. These algorithms can be
highly computer-intensive when dealing with an exten-
sive amount of input data and may require parallel-pro-
cessing to decrease execution time (Xiao et al. 2008).
Importantly, once ecological knowledge is found, new
hypotheses can be generated and tested using hypothesis-
driven data collection and confirmatory analysis (Kell
and Oliver 2004; Kelling et al. 2009).

Cross-scale interactions 

In ecological systems, processes that occur at one scale
may affect processes at others. For example, broad-scale
precipitation regime and fine-scale soil properties jointly
determine plant-available water both spatially and tem-
porally (Browning et al. 2012). Similarly, warm weather
may be the proximate cause of a wildfire event but factors
such as tree properties and the composition and spacing
within the forest determine longer-term fire dynamics
(Peters et al. 2007). By studying multiple scales, MSE
research helps reveal which interactions among scales are
important features of ecological systems (Peters et al.
2007; Soranno et al. 2014). These “cross-scale interac-
tions” can result in nonlinear dynamics and produce
thresholds with pronounced implications for macrosys-
tems behavior (Peters et al. 2007). However, to date, only
a few examples of these interactions have been quanti-
fied. To explore these interactions, ecologists are carefully
planning field studies (see study design scheme in Peters
et al. [2008]) and developing and exploiting both statisti-
cal and process-based models.

Statistical models that rely on a multi-scaled dataset
can be used to determine the operating scales (eg units of
time or space) for the macrosystem of interest as well as
the interactions that occur across those scales (see Rüegg
et al. [2014] for an example of database compilation and
integration). For example, hierarchical models allow the
incorporation of variables at multiple spatial and tempo-
ral extents (Qian et al. 2010); in particular, Bayesian
hierarchical models that use quantitative inference to
accommodate unbalanced data across space and/or
through time (Cressie et al. 2009) have recently been
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applied to quantify cross-scale interactions
and describe their nonlinear dynamics
(Panel 1 Example 5; Soranno et al. 2014).

A major and critical challenge in ecology is
to understand the processes behind these
interactions, especially for forecasting future
dynamics. Biophysical niche models – which
combine the morphology, physiology, and
behavior of an organism – are being used to
predict species distributions that are solely
based on climate conditions (Figure 4). Such
models, for example, have shown how
macroscale climate limits species distribution
(eg Buckley et al. 2010) and activity times (eg
Sears et al. 2011), or how diel cycles in ambi-
ent temperature may have shaped activity
patterns in small mammals (Levy et al. 2012).
These models may allow for the explicit
assessment of how plasticity or evolutionary
changes at the individual level affect ecologi-
cal communities at coarser scales and may be
a way to determine when and how cross-scale
interactions are shaping species ranges and
behaviors. Modeling across time, space, and
levels of biological organization is an exciting
new direction for MSE research, one that is
needed in order to meet the pressing needs of
global change. 

Hierarchy among scales

Macrosystems can be viewed as one “level”
in a hierarchical system that includes levels
from local to global spatial extents
(Heffernan et al. 2014). There is widespread
consensus that ecological complexity (ie
biocomplexity) emerges from the interactions between
organisms and their biotic and abiotic environments
(Anand et al. 2010). In a bottom-up process, for example,
spatiotemporal patterns of population and community
dynamics are often emergent properties that can only be
captured by studying much finer levels of ecological
detail. On the other hand, in a top-down process, high
fitness costs will be caused by range retractions that
decrease the genetic pool and lead to increased inbreed-
ing. Studying these kinds of hierarchical interactions is
not straightforward; the multi- and cross-scaled nature of
the data is further complicated by the possible interac-
tions among levels of ecological organization, posing seri-
ous statistical challenges (eg Finley et al. 2009).
Moreover, practical constraints of time and space may
limit the ability to observe and manipulate interactions
and emergent processes that occur between ecological
hierarchical levels. Currently, modeling tools, such as
hierarchical Bayesian methods for statistical analysis, and
individual-based models (IBMs) serving as “virtual labo-
ratories” may help solve these problems. 

The use of hierarchical Bayesian methods is particu-
larly well suited to deal with complex dependence struc-
tures in statistical modeling and thus represents a valu-
able analytical framework for making inferences at
macroscales (Panel 1 Example 2). Finley et al. (2009)
used plot-based estimates of the National Forest
Inventories, such as tree species composition in the US,
together with environmental predictors such as climate
variables, to model regional forest tree species composi-
tion and to gain insight into forest ecosystem sustain-
ability, biodiversity, and productivity. Using spatial
multinomial hierarchical Bayesian models, the authors
were able to improve prediction of species composition
by taking into account the spatial proximity between
measurements and showed that space-varying relation-
ships exist between species occupancy and environmen-
tal predictors. This approach presents many difficulties,
including specifying valid probability models, imple-
mentation, and high computational demands (eg
Banerjee et al. [2008] and references therein).

IBMs are also well suited to study emergent properties
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Figure 4. Biophysical niche models are used to study how climate affects animal
survival, growth, and reproduction at macroscales. Because climate and
individuals operate at different scales, information flow between the scales is
necessary. Regional climate datasets (a) are downscaled to local climate datasets
(b), which are combined with knowledge of the morphology, physiology, and
behavior of an organism to predict organismal fitness in one location (ie
parameters such as activity times, growth rate, survival, and reproduction).
Through the use of individual-based models, it is possible to study climate effects
at different levels of ecological organizations; simulating ecological communities
(d) with both climate and interactions among individuals (eg competition and
predation) and allowing movements of organisms between adjacent communities
can help ecologists study how community-level interactions and broad-scale
processes (eg gene flow) may affect individuals’  fitness. At each hierarchical
level, fitness maps can be drawn from model results for each location (e).
Orange arrow = individual-level model; green arrow = community-level model;
white arrow = metacommunity-level model.
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between different organizational levels (Figure 4).
These models can be directly and relatively simply para-
meterized and have the intrinsic ability to include both
temporal and spatial scales, allowing researchers to
observe the outcome on a population of individuals
(Anand et al. 2010). Regional IBMs can be used to study
how different levels of organization, from genes to indi-
viduals to populations, can survive, grow, evolve, and
interact to shape species distributions. In such
instances, improving landscape realism using geographic
information systems and remote-sensing data will
enhance our understanding of the processes shaping
communities (eg Wallentin et al. 2008). Moreover, mul-
tiple species simulations can provide insights into the
functional roles of organisms in an ecological system
and how interspecific interactions that occur locally
may have a broader impact on ecological communities.
Alternatively, comparisons between complex and sim-
plified models (eg by excluding organizational levels,
reducing spatial resolution, relaxing environmental sto-
chasticity) may help identify the most important levels
and interactions of an ecological system. Although indi-
viduals operate at scales of hours and meters, data at
these scales are not yet readily available, making simpli-
fications inevitable in many cases.

n Conclusions and future directions

To investigate how long-term and broad-scale phenomena
influence or interact with ecological patterns and processes
at other scales, ecologists need to collect sufficient data and
use robust techniques of data standardization and analysis
(Figure 1). Many ongoing broad-scale data collection and
integration efforts will provide valuable, standardized data
to support such studies. However, there are many chal-
lenges – from study design, to data collection, to analysis –
that need to be considered. During the study design stage,
there is often incomplete information regarding which fac-
tors operating from global to local scales need to be mea-
sured to understand the process of interest. At the data col-
lection stage, it is necessary to discover the most relevant
data resources that come with various resolutions and col-
lection techniques; these data must then be combined, val-
idated, and standardized. Innovative statistical and simula-
tion techniques provide flexible approaches for explaining
cross-scale and hierarchical dynamics and interactions in
the ecological system.

MSE is in an early stage of development. Many innova-
tive techniques, such as Bayesian hierarchical models,
machine learning, mechanistic simulations, meta-analysis,
and model–data fusion, are currently used. Still, there is
much room for development of novel approaches for data
collection and analysis. For example, to observe natural
multi-scale processes and interactions, ecologists need to
evolve field techniques for multi-scale observational and
experimental studies (eg automated comprehensive field
data collection across networks, experiments like those in

Panel 1 Example 1). In most cases, these approaches
require cross-disciplinary communication among scientists
from many fields, including statistics, geophysics, climatol-
ogy, and computer and information science (Goring et al.
2014; Rüegg et al. 2014).

Macrosystems research is a resource-intensive undertak-
ing that requires sufficient time and funding, typically
scaling beyond traditional single-investigator experimental
work. These requirements can be a substantial limitation
to realizing the potential of larger-scale and more integra-
tive studies. Support from funding agencies and research
institutions for data documentation and long-term access
will be a key to the success of MSE. Scientists, scientific
organizations, and institutions should promote a culture of
data sharing – for example, by giving credit for publishing
data (and metadata) and contributing to data libraries –
and scientists should get into the habit of providing open
access to both raw and processed data (Goring et al. 2014).

In summary, practitioners of MSE studies must use a
suite of approaches and methods to answer questions
across increased scales and levels of complexity, while
dealing with the difficulties inherent in MSE. Continued
innovation in methodologies will allow for the develop-
ment and testing of exciting new hypotheses and theories
across broad spatial and temporal extents.
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WebPanel 1. Example 1: tackling broad and multiple spatial scales in field studies 

Most studies investigating ecosystem responses to climate change are conducted in a single ecosystem type (eg Miao et al. 2009).  As a
result, these studies excel at testing the effects of climate manipulations while holding ecosystem attributes (eg the system’s particular
combination of biotic traits and interactions) and the environmental context (eg climate and edaphic [soil-property-related] factors)
constant. But to understand regional responses to climate change, ecologists must deal with large gradients in both ecosystem attrib-
utes and environmental context (eg Marshall et al. 2008).  At broader spatial scales, substantial temperature and precipitation gradients
are typically encountered that coincide with shifts in species identities, their traits and interactions, and the rates and dynamics of
ecosystem processes. At this scale, site-level ecosystem attributes may still explain responses to climate change, but an alternative
hypothesis is that the environmental context in which climate is changing is more important. Thus, high productivity ecosystems that
occur where precipitation is plentiful may show little response to a 30% decrease or increase in rainfall because mean precipitation lev-
els are relatively high, regardless of the attributes of the system (Pau et al. 2010). In an environmental context of low precipitation, how-
ever, ecosystems may be much more responsive to altered rainfall amounts, again regardless of ecosystem attributes (Fay et al. 2003).
At present, we lack fundamental knowledge of how (or if) site-level mechanisms (ecosystem attributes) that explain ecological
responses to climate change may scale to a regional context. Moreover, we are unable to answer the question: how important is it to
integrate both ecosystem attributes and the relative degree of climate change in determining ecological responses to climate change at
regional scales?

A geographically distributed field experiment is being conducted in grasslands in New Mexico, Colorado, Wyoming, and Kansas that
differ strongly in their ecological attributes; results from this experiment will help to answer the question above and to test predictions
of how environmental context and ecosystem attributes may interact to determine regional patterns of response (WebFigure 1; credit
to principal investigators A Knapp, M Smith, S Collins, W Pockman, and Y Luo). The experiment is being conducted in the central US,
where there are strong temperature gradients from north to south and rainfall gradients from east to west. In this region, the types of
grasslands differ as well: from low productivity short grasslands in the dry plains of Colorado, to tall grasslands in eastern Kansas and
predominantly C4 grasses in the south, to a greater proportion of C3 grasses in the north.  The experiment will simulate a severe multi-
year drought in six grassland sites selected to capture both precipitation and temperature gradients. These sites were specifically
selected because they include four distinct grassland types (desert grassland, shortgrass steppe, mixed grass, and tallgrass prairie) that
when exposed to identical climatic manipulations will permit comparisons of responses (1) in ecosystems with similar climatic contexts
but different biotic attributes, (2) in ecosystems with similar biotic attributes but different climatic contexts, and (3) across a broad
range of edaphic, climatic, and biotic gradients. The results from this coordinated multi-site experiment will be integrated into an
experiment–modeling framework through a data assimilation approach.  With this model, the relative importance of altering ecosystem
attributes versus the environmental context can be explored more comprehensively, with the goal of improving forecasts of regional
responses to climate change by providing a more thorough understanding of the key drivers of ecosystem sensitivity to climate change
at macroscales.

WebPanel 2. Example 2: climate prediction using hierarchical Bayesian model data assimilation 

Example 1 describes the need to explore hypotheses about ecological system response to historical climate change and how the result-
ing insights can help to predict responses to projected or postulated climate change at a range of scales.  Acknowledging and propa-
gating uncertainty in “observed” climate data and change scenarios are critical components for testing hypotheses about ecological
response mechanisms and subsequent forecasts – components of many MSE research topics.

Modern statistical methods use hierarchical Bayesian models to obtain a predictive distribution for variables of interest (eg temper-
ature and precipitation) by assimilating historical weather records and multiple climate model simulations. Such simulations are
assumed to correspond to an unobserved underlying state plus a model-dependent discrepancy. For example, in an effort to provide a
statistically valid forecast of regional climate, Salazar et al. (2011) proposed a hierarchical Bayesian model that assimilates different
regional climate model (RCM) simulations while accounting for space and time discrepancies between the simulations and historical
weather station data. Their model propagates these discrepancies into the future to obtain predictive distributions of 21st-century cli-
mate. Their analysis considers North American Regional Climate Change Assessment Program (NARCCAP) RCM simulations for two
time periods: current climate conditions, covering 1971 to 2000, and future climate conditions under the SRES A2 emissions scenario,
covering 2041 to 2070. By working within a Bayesian paradigm, their proposed model is able to: (1) acknowledge multiple sources of
weather station data and RCM uncertainty, (2) capture complex space–time dependence structures to meet model assumptions and
improve prediction, (3) reduce dimensionality and hence computational burden, and (4) deliver full uncertainty assessment at all space
and time coordinates. The resulting data products of historical and future climate variables can be used to explore hypotheses related
to climate trends and change. For example, WebFigure 2-1 illustrates discrepancy-adjusted averages with 95% credible intervals for two
southwestern US states. Similar confidence bands can be constructed for historical data that were observed with measurement error.
Comparison of current and future climate scenarios can be used to test hypotheses about the degree of climate change at a fine spa-
tial resolution across large geographic domains (eg WebFigure 2-2). These data products, with associated uncertainty, can also serve as
input to ecological response models and thereby effectively provide a more realistic assessment of outcomes.
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WebPanel 3. Example 3: PalEON – integrating geohistorical data into macrosystems research 

Many ecological processes operate at temporal and spatial scales not amenable to direct observation and experimentation (eg the
effect of decadal- to centennial-scale climate variability on tree population dynamics, the legacies of historical land-use change on con-
temporary landscapes, cultural eutrophication of lakes, lake acidification). Collectively, the processes governing ecological systems span
many orders of magnitude, ranging from seconds to millions of years. 

Integrating decadal and longer timescales into the hierarchy of ecological processes encompassed by macrosystems research
requires the tight integration of geohistorical data streams with contemporary ecological observations. Barriers to this integration
include the many different kinds of geohistorical data (eg historical tree surveys, tree rings, fossil pollen, ostracods, diatoms, sedimen-
tary pigments, sedimentary charcoal, stable isotopes, organic biomarkers), the differing temporal resolution of many contemporary
observations and geohistorical variables, the need to translate proxy measurements to ecological variables, and the labor intensiveness
of many kinds of geohistorical data. On the other hand, there is a well-developed literature that describes the process of making quan-
titative inferences from paleodata (eg Telford and Birks 2009) and, due to a long tradition of synthetic, macro-scale paleoecological and
paleoclimatic research, many paleoecological data are well-organized into public data repositories (Brewer et al. 2012). 

PalEON (The Paleo-Ecological Observatory Network, www.paleonproject.org) offers one case study of how geohistorical data
streams are being merged and applied to macrosystems science (WebFigure 3). A major scientific challenge now is that future simula-
tions by terrestrial ecosystem models vary wildly, even when forced by common climate scenarios, in part because there have been few
opportunities to rigorously evaluate the parameterization of decadal to centennial processes against observational data. PalEON is
bringing together paleoecologists, ecological statisticians, and ecosystem modelers with the goals of (1) reconstructing forest composi-
tion, fire regime, and climate variability in northeastern US forests for the past 2000 years, and (2) applying these reconstructions to
develop more realistic simulations of recent and future forest dynamics. 

Initial data–model integration efforts are focusing on model validation (in which simulated forest dynamics over the past 2000 years
are checked against ecological inferences based on paleodata).  The next steps are focused on inference and initialization, in which
paleoecological data are assimilated into terrestrial ecosystem models in order to infer quantities not directly observable from paleo-
data (eg the C balance of northeastern US forests during the Little Ice Age) and provide non-steady-state initial conditions for 20th-
and 21st-century ecosystem simulations, respectively. Finally, paleodata are being used in an iterative cycle of improvement by refining
model parameters and processes and using models to set priorities for future data-collection campaigns.

WebPanel 4. Example 4: tackling broad and multiple spatial scales in modeling  

The quantification of net carbon dioxide (CO2) exchange over regions, continents, or the globe is essential for understanding the feed-
backs between the terrestrial biosphere and the atmosphere. Several methods – including inventory approaches, ecosystem modeling,
and atmospheric inversions – have been widely used to estimate net ecosystem exchange (NEE) over broad regions. The resulting flux
estimates, however, exhibit large differences in both patterns and magnitude (Huntzinger et al. 2012).

The eddy covariance technique offers an alternative approach for estimating NEE. Eddy covariance flux towers have been providing
continuous NEE measurements since the early 1990s. The NEE measurements are routinely partitioned into its two major compo-
nents: gross primary productivity (GPP) and ecosystem respiration (Re). However, these estimates only represent fluxes at the scale of
the tower footprint.  To quantify NEE over regions and continents, or the globe, scientists need to upscale these flux observations from
towers to these broad regions (Xiao et al. 2012).

A data-driven approach has been used to upscale carbon fluxes from the AmeriFlux network to the continental scale and to produce
gridded GPP and NEE with high spatial (1-km) and temporal (8-day) resolutions for temperate North America over the period
2000–2006 (WebFigure 4). The resulting continuous gridded flux fields (EC-MOD) have been used to assess the magnitude, distribu-
tion, and interannual variability of recent US ecosystem carbon exchange at landscape, regional, and continental scales (Xiao et al. 2012).
The analysis based on EC-MOD flux estimates provides an alternative, independent, and novel perspective on ecosystem carbon
exchange across multiple scales (Xiao et al. 2012).
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WebPanel 5. Example 5: integrating time with dynamic linear models 

Processes that shape temporal patterns in ecological data are complex and often change over time. However, classical approaches for
understanding these patterns in ecological time series and the influence of associated drivers often assume that relationships are fixed
and constant through time and space, which may be particularly problematic in some instances. For example, integrating spatial and
temporal data to quantify drivers of temporal patterns within and among geographical regions is a key challenge for some MSE
research. Dynamic linear models (DLMs; Pole et al. 1994) provide one framework for understanding how ecological patterns and rela-
tionships change over time and are often more representative of the underlying data structure than classic regression approaches
(Lamon et al. 1998). DLMs have proven useful in a wide range of studies (eg Hampton 2005) and this approach has the potential to be
particularly effective in MSE because DLMs fit using Bayesian estimation provide robust uncertainty estimates for model parameters
(Pole et al. 1994) and the ability to identify changes in relationships through time (Lamon et al. 1998).

Data from several spatially distributed lakes (WebFigure 5-1) indicate the potential for both temporal variation within systems and
spatial variation between systems (WebFigure 5-2). In some cases, simple linear regression was able to depict the overall temporal pat-
terns relatively well within a lake (WebFigure 5-2a, b, and d), whereas in other instances, time-varying DLMs were critical for identify-
ing temporal evolution in the data that was masked by more traditional approaches (WebFigure 5-2c). The potential for large differ-
ences in temporal patterns between lakes at relatively small spatial scales emphasizes the need to use approaches such as DLMs that
are sensitive to non-monotonic trends, especially if thresholds or abrupt changes in driver-response patterns exist in the data. These
models are likely to be critical for developing predictive understanding of driver–response relationships in long-term data across even
broader spatial scales. 

WebPanel 6. Author contributions 

The idea for the manuscript was developed by Working Group 2 and subsequent discussions in the Macrosystems Biology PI meeting
that took place in Boulder, CO, 2012. OL and BAB conceived and developed the structure of the manuscript, refined the intellectual
content and scope, wrote the introduction and discussion, edited all drafts, prepared the final version of the manuscript, and facilitated
the gathering of contributors. KSC and AOF co-led the early discussions on the structure and the intellectual content of the paper. KSC
coordinated the writing of the “Cross-scale interactions” section, contributed to Panel 1 Example 5, and made editorial comments on
other sections.  AOF coordinated the writing of the “Hierarchy” section and Panel 1 Example 2, and made editorial comments on other
sections. BBL coordinated the writing of the “Diverse data objects” section and made editorial comments on other sections. NL helped
develop the structure of the manuscript, and wrote Panel 1 Example 5. SWP helped develop the structure of the manuscript, conceived
Figure 1, contributed to the introduction, and made editorial comments on other sections. JX wrote Panel 1 Example 4 and made edi-
torial comments on other sections. JZ helped develop the structure of the manuscript, coordinated the writing of the “Data-intensive”
section, and made editorial comments on other sections. LBB helped develop the structure of the manuscript, contributed to the
“Cross-scale interactions” section, and made editorial comments on other sections. JWW and CTF helped develop the structure of
the manuscript, contributed to Panel 1 Example 3, and commented on all drafts of the manuscript. THK helped develop the structure
of the manuscript, contributed to the “Multiple scales” section, and made editorial comments on other sections. JRK helped develop
the structure of the manuscript, coordinated the first draft of the “Multiple scales” section, and made editorial comments on other sec-
tions. AKK wrote Panel 1 Example 1.  ADR helped develop the structure of the manuscript and made editorial comments on other sec-
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WebFigure 1. Depiction of how three hypothetical ecosystems (“A”, “B”, “C”) might vary in
their sensitivity to severe drought in relation to a dominant regional-scale environmental gradient
(MAP). In (a), there is no difference in sensitivity to drought among ecosystems and no
relationship with MAP. The pattern in (b) would be consistent with environmental context as the
dominant driver of differential sensitivity both within and among ecosystems, with an inverse
relationship between sensitivity and MAP. In (c) and (d), environmental context drives the
regional pattern, but ecological attributes associated with particular ecosystem types may also
strongly influence drought sensitivity. Finally, in (d), there is a more complex relationship
between sensitivity and MAP, with intermediate sites being the least sensitive. In addition, the
role of ecosystem attributes varies with MAP, such that they are more important in xeric than
mesic ecosystems. The dashed line or shading for ecosystem “B” indicates how sensitivity will
vary, depending on the relative importance of ecosystem attributes versus environmental context.

WebFigure 2-1. Predictive mean summer temperature across time and in selected US states. The gray
bands correspond to 95% credible intervals. GFDL and CGCM3 are NARCCAP RCM simulations,
NCEP is a historical climate reconstruction product, and “Obs” and “Pred” are observed weather
station averages and model predictions, respectively.
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WebFigure 2-2. Model predicted mean summer temperature for (a) 2010, (b) 2070, and (c) their
difference. (d) Gray indicates area with 85% probability of exceeding 3˚ C difference. 
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WebFigure 3. Overview of the data–model syntheses underway or proposed in PalEON. Each
paleodata stream (fossil pollen, witness trees, sedimentary charcoal, tree rings, paleoclimate data and
simulations) is assembled and combined with a process-based statistical model to predict ecological
variables of interest such as forest composition and structure, fire return interval, and particular fire
events. These data-derived variables can then be used to constrain simulations of past forest dynamics
and carbon balance by meteorology-driven forest ecosystem models (eg SIPNET, ED2), and iteratively
improve both the parameterization of ecosystem models and set priorities for future field campaigns.
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WebFigure 4. Upscaling carbon fluxes from towers to the continental scale and producing continuous,
gridded flux estimates using a data-driven approach: (a) the location and distribution of eddy covariance
flux sites; (b) the continental-scale land-cover map; (c) the resulting gridded flux estimates (annual GPP;
g C m–2 yr–1). The data-driven approach is used to develop predictive flux models using site-specific flux
measurements and explanatory variables (eg land cover, shortwave solar radiation, enhanced vegetation
index, land surface temperature). The predictive models are then used to estimate carbon fluxes for each
grid cell across the continent using spatially explicit information on the explanatory variables.

(a)

(b) (c)

WebFigure 5-1. Study lakes of the North Temperate Lakes
Long Term Ecological Research site located in northern Wis-
consin, US. Lakes highlighted in WebFigure 5-2 are Trout Lake,
Crystal Bog, and Trout Bog.
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