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ECOLOGY OF SHALLOW LAKES
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and Bayesian hierarchical models indicated that 
shallow lakes had higher TP and CHLa than non-
shallow lakes, connected shallow lakes were more 
productive than unconnected shallow lakes, and there 
was regional variation in these patterns. Important 
predictors of TP and CHLa included lake-specific 
watershed:lake area ratio, forested land use/cover, and 
baseflow; unconnected lakes were more difficult to 
predict than connected lakes; and region-specific pre-
dictors were mostly unimportant. Shallow lake TP–
CHLa relationships were less steep than for non-shal-
low lakes and these relationships varied regionally. 
Our results, combined with the facts that only 23% 
of lakes in the study extent have depth data and that 
shallow and unconnected lakes are undersampled, 
have important implications for estimates of lake con-
tributions to global cycles that are based mainly on 
large (and deeper) lakes.

Abstract We conducted a macroscale study of 
2210 shallow lakes (mean depth ≤ 3 m or a maximum 
depth ≤ 5  m) in the Upper Midwestern and North-
eastern USA. We asked the following: What are the 
patterns and drivers of shallow lake total phosphorus 
(TP), chlorophyll a (CHLa), and TP–CHLa relation-
ships at the macroscale, how do these differ from 
those for 4360 non-shallow lakes, and do results dif-
fer by hydrologic connectivity class? Spatial patterns 
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Introduction

Lake productivity, generally assessed as the concen-
tration of pelagic chlorophyll a (CHLa) and modeled 
as a function of nutrients such as total phosphorus 
(TP), is fundamental to our understanding of lake 
ecosystems and their management. Numerous stud-
ies have examined controls on CHLa and TP con-
centrations, in particular regarding relationships with 
lake depth and watershed features such as land use 
and climate (e.g., Taranu & Gregory-Eaves, 2008; 
Read et al., 2015; Stachelek et al., 2020; Shuvo et al., 
2021). Statistical modeling of the TP–CHLa relation-
ship, initiated by Vollenweider’s classic study (1975), 
has continued to the present and greatly contributed 
to the management of lakes. Recent efforts, such as 
Quinlan et al. (2021), have extended studies of indi-
vidual lakes through time and comparative studies 
of lakes across regions to examine the role of hier-
archical controls on lake states and relationships at 
the macroscale (i.e., regions to continents; Heffernan 
et al., 2014).

Such macroscale studies increase the understand-
ing of populations of lakes and improve the ability to 
extrapolate results to unsampled lakes, scale-up local 
results to the globe, and forecast lake responses to 
change through time (Cheruvelil & Soranno, 2018). 
In fact, macroscale applications of hierarchical mod-
els have demonstrated that average TP and CHLa 
differ regionally, and that the drivers of regional 
TP–CHLa relationships can be non-linear, multi-
scaled, and include cross-scale interactions (Jackson 
et al., 2007; Phillips et al., 2008; Wagner et al., 2011; 
Filstrup et  al., 2014; Quinlan et  al., 2021). Macro-
scale research has also demonstrated that lake TP and 
CHLa are related to lake hydrologic location, climate, 
and the level of connectivity to other waterbodies. For 
example, highly connected lakes in North America 
have higher average concentrations of TP and CHLa 
than lakes that are isolated from or form the headwa-
ters of lake chains (Soranno et  al., 1999; Martin & 
Soranno, 2006; Zhang et al., 2012).

To our knowledge, there has been less research 
about the macroscale patterns of shallow lake TP and 
CHLa concentrations and of TP–CHLa relationships. 

Past local to regional-scale shallow lake research 
highlights some key differences between shallow 
lakes and lakes more generally. For example, shallow 
lake productivity is strongly affected by littoral and 
benthic processes and interactions (Vander Zanden 
& Vadeboncoeur, 2020), with the relative impor-
tance of these processes related to lake depth. Shal-
low lakes often do not thermally stratify, have high 
potential for nutrient resuspension from sediments, 
and have a large proportion of lake volume receiv-
ing light penetration sufficient for primary production 
(e.g., Scheffer, 1998; Kalff, 2001), which are factors 
that influence TP and CHLa concentrations, as well 
as the TP–CHLa relationship (Brett & Benjamin, 
2008). Further, primary production is dominated by 
macrophytes and benthic algae when shallow lakes 
are clear, thus affecting the relationship between TP 
and CHLa (Scheffer, 1998; Scheffer et al., 1993). The 
effects of surface water connectivity on shallow lake 
TP and CHLa at the macroscale are not well under-
stood. As a result, there exists a knowledge gap of 
how shallow lake TP, CHLa, and TP–CHLa relation-
ships vary across regions, what drives these states 
and relationships, and whether they differ by surface 
water connectivity.

Newly compiled and harmonized macroscale data-
sets about lakes and their ecological settings provide 
scientists with an opportunity to address these knowl-
edge gaps. We used LAGOS-NE (Soranno et  al., 
2015, 2017), which includes thousands of lakes in 
the Northeastern and Upper Midwestern USA where 
there are wide spatial gradients in many ecological 
setting variables (Collins et al., 2017; Lapierre et al., 
2018; Stachelek et al., 2020). We used these data to 
ask the following: What are the patterns and drivers 
of shallow lake TP, CHLa, and TP–CHLa relation-
ships at the macroscale? Do the patterns and drivers 
of shallow lakes differ from those for non-shallow 
lakes and do they differ by lake connectivity class? 
Based on previous research demonstrating the relative 
importance of lake depth and surface water connec-
tivity for driving lake productivity, we expected lake 
TP and CHLa to be highest and TP–CHLa relation-
ships to be steepest (i.e., larger slope parameter esti-
mates) for connected and shallow lakes. Prior macro-
scale lake research, irrespective of depth, also led us 
to expect shallow lake TP, CHLa, and TP–CHLa rela-
tionships to vary regionally and both fine- and broad-
scale landscape features (and interactions between 
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them) to drive those patterns. Our research can help 
limnologists understand the patterns and drivers, par-
ticularly connectivity, of shallow lakes at the mac-
roscale, which is important during this time of rapid 
global changes.

Methods

Study lakes and ecological setting

Lake TP, CHLa, and geospatial landscape data came 
from the LAGOS-NE database. LAGOS-NE is a 
database that extends approximately 1,800,000  km2 in 
a 17-state region of the Upper Midwestern and North-
eastern United States (Soranno et  al., 2015, 2017). 
This database comprehensively describes the land-
scape, climatic, and surface water context for 51,101 
lakes ≥ 4  ha in surface area. Approximately 25% of 
the LAGOS-NE lakes have at least one observation of 
water quality data compiled from 87 disparate data-
sets and harmonized and documented for regional-
scale limnological study (Soranno et  al., 2015). We 
supplemented lake depth data in LAGOS-NE with a 
new dataset of compiled lake depth data for 17,675 
lakes in conterminous USA (LAGOS-US: DEPTH; 
Stachelek et al., 2021). LAGOS-NE data used for this 
shallow lake research are lake water chemistry from 
 LAGOSLIMNO version 1.087.3 and geospatial data 
from  LAGOSGEO version 1.03 (Soranno et al., 2017) 
and LAGOSclimate (Collins et al., 2019).

To select our study lakes from LAGOS-NE, we 
included lakes with either mean or maximum depth 
data (n = 11,801). The study lakes were further 
restricted to include those with TP or CHLa data from 
either surface or epilimnion water samples collected 
during the summer stratified season (June 15th–Sep-
tember 15th) of 2002–2011, and to lakes within the 
study extent defined by hydrologic subregion (4-digit 
hydrologic unit, HU4; Seaber et  al., 1987) polygons 
defining the study area, resulting in 6570 study lakes 
(Fig. 1). Because we were interested in spatial variabil-
ity in TP and CHLa, we used the median concentrations 
for each lake over the two-decade time period, resulting 
in a single value per lake. We defined ‘Shallow’ lakes 
as the subset of study lakes with a mean depth ≤ 3 m 
(n = 903 lakes) or, where mean depth data were lacking, 
a maximum depth ≤ 5 m (n = 1307 lakes) (sensu Schef-
fer, 1998; Jeppesen et  al., 1997; Padisák & Reynolds, 

2003). This process resulted in 2210 Shallow lakes with 
either TP or CHLa values and wide ranges of charac-
teristics (Table 1). The remaining 4360 ‘non-Shallow’ 
lakes were analyzed separately for comparative pur-
poses. This subset included lakes with mean depths just 
above the shallow lake cutoff to very deep (mean depth 
range = 3.0 to 88.6 m; Table 1).

We quantified each lake’s landscape setting using 
geospatial variables (Supplement 1) that character-
ize sources, transport, and internal processing of 
nutrients (Collins et  al., 2017). The geospatial pre-
dictor variables were derived at two spatial scales 
that characterize local and regional drivers of lake 
TP and CHLa. The 24 local-scale variables were 
derived for the individual lake, the lake’s water-
shed, or, in the case of climate and hydrology vari-
ables, for each lake’s hydrologic watershed (12-digit 
hydrologic unit, HU12; Seaber et al., 1987). Because 
the median and 75th quantile of the number of lakes 
contained within a HU12 was 1 (maximum of 29), 
most lakes had a unique value for all HU12 predic-
tors. Ten regional-scale predictor variables were cal-
culated at the HU4 scale (number of lakes per HU4 
ranged from 1 to 1133, median = 61; total number of 
HU4 was 63; Supplement 1). Lakes were also clas-
sified into two categories of surface water connectiv-
ity. First, ’unconnected’ lakes include isolated and 
headwater lakes. Isolated lakes have no inlet or outlet 
stream connections and headwater lakes have no inlet 
but have an outflowing stream connection (n = 1967). 
Second, ’connected’ lakes include lakes with any 
inflowing streams, regardless of number or whether 
there were also upstream lakes (n = 4603).

Statistical modeling

Identifying drivers of lake TP and CHL

We used hierarchical Bayesian linear models to simul-
taneously identify important local- and regional-scale 
geospatial drivers of TP and CHLa. The hierarchical 
model was as follows:

where yi is natural log-transformed TP or CHLa for 
lake i, �j is the region-specific intercept for HU4 j, 

yi ∼ N
(

�j(i) + �1X1i +⋯ + �pXpi, �
2
)

for i = 1,… n

�j ∼ N
(

�0 + �1Z1j +⋯ + �mZmj, �
2
�

)

for j = 1,… J



3666 Hydrobiologia (2022) 849:3663–3677

1 3
Vol:. (1234567890)

�1 … �p are the estimated effects of local-scale pre-
dictors X1 …Xp , �2 is the residual variance, �0 is the 
fixed intercept, �1 … �m are the estimated effects of 
region-scale predictors Z1 …Zm , and �2

�
 is the condi-

tional among region variance. To accommodate the 
fact that there were many local and regional-scale 

predictors, we fitted parameters using a Bayes-
ian LASSO approach (least absolute shrinkage and 
selection operator; Tibshirani, 1996; Park & Casella, 
2008), which is not particularly sensitive to collin-
earity (Dormann et  al., 2013). Because we divided 
the predictor variables into two groups (local- and 

Fig. 1  Location of the 
6570 study lakes subset by 
depth. Study lakes are those 
LAGOS-NE lakes having 
data on mean or maximum 
depth and CHLa and/or TP 
concentrations. A Shallow 
lakes are those with a mean 
depth ≤ 3 m (n = 903 lakes) 
or, where mean depth data 
were lacking, a maximum 
depth ≤ 5 m (n = 1307 lakes) 
and B non-Shallow lakes 
are all other study lakes. 
HU4s are hydrologic sub-
regions (4-digit hydrologic 
unit, HU4; Seaber et al., 
1987)
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regional-scale), each group received a separate 
double exponential (DE) LASSO prior such that 
�p ∼ DE

(

0, �1
)

 , and �m ∼ DE
(

0, �2
)

 . A diffuse nor-
mal prior was used for �0 , diffuse uniform priors were 
used for � and �� , and �1 and �2 were given diffuse 
gamma priors. Models were fitted for each response 
variable (TP, CHLa), lake connectivity class (con-
nected, unconnected, both classes combined), and 
depth subset (Shallow, non-Shallow) combination 
separately. All predictor variables were transformed 
(natural log or logit-transformed in the case of pro-
portions) and standardized (mean = 0, SD 1) prior to 
analysis.

Identifying cross‑scale interactions affecting the TP–
CHLa relationship

A hierarchical Bayesian model was used to quantify 
potential cross-scale interactions (CSIs; processes 
operating at one spatial or temporal scale interact 
with processes operating at another scale; Heffernan 
et  al., 2014; Soranno et  al., 2014) in the TP–CHLa 
relationships. The model was a varying intercept, 
varying slope model with a single lake-scale predictor 
(i.e.,  loge[TP]) and regional predictors used to model 
the variability in the slopes describing the TP–CHLa 
relationships across regions (Wagner et  al., 2016). 
The hierarchical model was as follows:

where yi is natural log-transformed CHLa for lake i, 
Xi is natural log-transformed TP for lake i, �j and �j 
are intercepts and slopes, respectively, that describe 
the TP–CHLa relationship for HU4 j, ��

0
 is the grand 

mean intercept (across all lakes), ��
0
 and ��

m
 are the 

intercepts and slopes describing the relationships 
between regional-scale predictors and the slopes in 
the relationship between TP–CHLa ( ��

m
 represent the 

estimated CSIs). Diffuse normal priors were used for 
��
0
 and ��

0
 , a LASSO prior was used for ��

m
 , and we 

modeled the variance–covariance matrix (Σ) using the 
scaled inverse-Wishart distribution (Gelman & Hill, 
2007). Because lake connectivity is a categorical var-
iable and we had a priori reasons to believe that these 
classes affect lake states and relationships, models 
were fitted for each lake connectivity class separately. 
All continuous predictor variables were transformed 
(natural log or logit-transformed) and standardized 
(mean = 0, SD 1) prior to analysis.

yi ∼ N
(

�j(i) + �j(i)Xi, �
2
)

for i = 1,… n

(

�j
�j

)

∼ MVN

((

��
0

�
�

0
+ �

�

1
Z1j + ��

m
Zm

)

,Σ

)

for j = 1… J

Table 1  Descriptive statistics of the study lakes, subset by depth (i.e., Shallow and non-Shallow)

Lakes are ≥ 4 ha in surface area, and have mean or maximum depth information as well as summer TP and/or CHLa data collected 
between 2002 and 2011. Shown are the total number of lakes (n), median, mean, minimum (Min), maximum (Max), and 25th and 
75th percentiles
*For the 903 lakes classified as shallow using mean depth ≤ 3 m, there were 391 lakes with a maximum depth > 5 m

n Median Mean Min Max 25th 75th

Shallow Lakes (n = 2210)
 Mean depth (m) 903 2.1 2.0 0.3 3.0 1.5 2.5
 Max depth (m) 2190 3.4 3.9 0.3 32.3* 2.2 4.9
 Lake area (ha) 2210 43 126 4 6905 15 100
 TP (μg/l) 1394 24.0 58.0 3.0 1122.5 14.0 59.0
 CHLa (μg/l) 1955 10.5 28.5 0.3 403.0 4.4 37.0

Non-Shallow Lakes 
(n = 4360)

 Mean depth (m) 1513 5.2 6.2 3.0 88.6 4.0 7.1
 Max depth (m) 4354 12.2 14.4 3.7 198.4 8.5 17.4
 Lake area (ha) 4359 74 429 4 123,780 33 190.5
 TP (μg/l) 2786 13.5 24.1 2.0 600.0 8.5 24.5
 CHLa (μg/l) 3488 5.1 12.3 0.2 198.2 2.9 12.4
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Identifying drivers and CSIs

For both sets of models described above, we ran three 
parallel Markov chains beginning each chain with 
random starting values. Each chain was run for 
60,000 iterations with the first 50,000 iterations dis-
carded as burn-in. This resulted in a total of 30,000 
samples used to summarize the posterior distributions 
of the model parameters. Convergence was assessed 
visually through inspection of trace plots and quanti-
tatively using the Brooks-Gelman-Rubin statistic 
(Brooks & Gelman, 1998). To assess whether inter-
cepts of the TP or CHLa predictive models or inter-
cepts or slopes of the TP—CHLa models differed 
between Shallow and non-Shallow study lakes within 
each connectivity class (connected, unconnected, and 
both), we calculated the posterior difference for each 
paired comparison and then determined whether or 
not the 95% credible interval of the difference over-
lapped with zero. Model intercepts or slopes were 
considered different when credible intervals did not 
overlap zero. Marginal (fixed-effects only; R2

marg
 ) and 

conditional  R2 values (fixed + random effects; R2
cond

 ) 
were calculated for predictive models for TP and 
CHLa (Nakagawa & Schielzeth, 2013). Models were 
fitted by calling the program JAGS (Plummer, 2003) 
using the jagsUI package (Kellner, 2019) in the pro-
gram R (R Core Team, 2021).

Results

Compared to the LAGOS-NE census lake popula-
tion, the study lakes, Shallow lakes, and non-Shallow 
lakes were overly represented by larger lakes (Fig. 2). 
However, shallow lakes tended to be smaller in area 
and thus slightly more representative of the area dis-
tribution of the entire census population compared to 
both the study lakes (Table 1) and non-Shallow lakes 
(Fig. 2).

The study lakes were densest across the north-
ern portion of the study extent, with both Shal-
low and non-Shallow lakes most common along the 
eastern USA border and the northwestern parts of 
the study extent (Fig.  3). Notably, there were fewer 
Shallow compared to non-Shallow lakes with TP or 
CHLa data along the southern edge of the extent, 
especially in the southwestern portion of our study 
extent (Fig.  1). Both connected and unconnected 

lakes showed increasing density gradients from south 
to north. Connected lakes (70% of the study lakes) 
occurred at higher densities than unconnected lakes, 
and unconnected shallow lakes were particularly rare 
in southern parts of the study extent (Fig. 3).

Lake TP and CHLa ranged several orders of mag-
nitude (Fig.  4A, C) with TP and CHLa both higher 
in Shallow lakes compared to non-Shallow lakes, 
and in connected lakes as compared to unconnected 
lakes (Fig. 4A, C). Based on criteria in Dodds et al. 
(2006), the interquartile range of trophic status based 
on TP was mainly mesotrophic. However, CHLa-
based trophic status extended from the mesotrophic to 
eutrophic range. Shallow lakes tended to have higher 
distributions of both TP and CHLa than non-Shallow 
lakes, while connected lakes tended to have higher 
concentrations than did unconnected lakes. These 
patterns were stronger for TP than for CHLa (Fig. 4).

TP and CHLa exhibited a spatial pattern of 
increasing concentration from north to south, with 
HU4 medians of trophic state indicating more oli-
gotrophic conditions in the north central and north-
eastern regions, and hyper-eutrophic regions only in 
the southwest corner of the study extent (Fig.  4B, 
D). With both connectivity classes combined, 
regional (HU4) median trophic status tipped into 
hyper-eutrophic status more often for Shallow lakes 
(e.g., 34% and 24% of HU4s, respectively, for CHLa 

Fig. 2  The density distribution of lake depth by lake surface 
area for the census population of LAGOS-NE lakes; all study 
lakes (those with depth and either TP or CHLa); and all study 
lakes subset by depth into Shallow and non-Shallow lakes
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and TP) than for non-Shallow lakes (14% and 0%; 
Fig. 4B, D, top row of panels).

The predictor variables we modeled exhibited 
broad ranges across the study extent, including 
both the lake-specific variables such as lake area 
and water residence time (as estimated by the ratio 
between watershed and lake area) and the eco-
logical setting variables reflecting land use/cover, 

hydrology, and climate (Supplement 1). For exam-
ple, lake area ranged over four orders of magnitude, 
while the percentage of urban land use and wetland 
cover in the study lake watersheds ranged from 0 to 
100 and 0 to 93, respectively.

For both Shallow and non-Shallow lake subsets, 
hierarchical modeling results (Table 2) suggested bet-
ter predictive power for TP compared to CHLa. For 

Fig. 3  Geographic distribution of study lakes (number per 
HU4) mapped by connectivity class (rows showing both con-
nectivity types, unconnected lakes and connected lakes) for 
Shallow lakes and non-Shallow lakes (left and right columns). 
Unconnected lakes (middle row) lack stream inlets, while con-
nected lakes (bottom row) have inlet streams that may connect 

them to upstream lakes; the top row shows all connectivity 
classes combined. Darker gray lines delineate HU4 regional 
boundaries; white shaded HU4s have no lakes representing the 
specific connectivity class by depth subset combination. Light 
gray lines delineate US states
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example, Shallow lake R2
cond values for TP and CHLa 

were, respectively, 0.60 and 0.50. For both TP and 
CHLa models, R2

cond values for non-Shallow lakes 
were higher for connected lakes than for unconnected 
lakes, but were roughly similar for the two Shallow 
lake connectivity classes. Regional-scale variation 
contributed to predictive models as demonstrated by 
values for R2

cond always exceeding R2
marg (i.e., models 

with both fixed and random effects were a better fit 

than those with fixed-effects only); this difference was 
least pronounced in models of Shallow lake CHLa.

Supporting the patterns in Fig.  4, Shallow lake 
models of both TP and CHLa had higher intercepts 
with non-overlapping 95% credible intervals in all 
paired comparisons with the non-Shallow lake subset, 
regardless of connectivity class (Table 2, Supplement 
2). Intercept estimates were higher for connected than 
unconnected lakes within both lake depth subsets for 

Fig. 4  Boxplots of TP (A) and CHLa (C) concentration and 
maps of HU4-specific values of median lake trophic status for 
TP (C) and CHLa (D). In the boxplots, the boxes represent 
25th and 75th percentiles with the median indicated by a thick 
black line; whiskers indicate values extending to 1.5 times 
the interquartile range, and points represent outliers. Verti-
cal colored lines mark transitions in trophic status along each 
concentration gradient, which are labeled at the top of each 
boxplot. Concentrations are plotted along a natural logarith-
mic scale. HU4-specific median trophic status is mapped for 

TP (B) and CHLa (D), respectively. Boxplots and maps depict 
Shallow lakes and non-Shallow lake subsets divided into con-
nectivity classes of connected, unconnected, and both com-
bined (bottom to top rows in both sets of plots). Trophic status 
categories were defined per Dodds et  al. (2006) with cutoffs 
in µg/l for, respectively, oligotrophic, mesotrophic, eutrophic, 
and hyper-eutrophic of < 10, 10–30, 30–100, and > 100 for 
TP and < 3.5, 3.5–9, 9–25, and > 25 for CHLa. White-shaded 
HU4s do not have any study lakes in that depth by connectivity 
by trophic variable combination
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CHLa. In contrast, intercept differences overlapped 
zero for Shallow lake TP models (Table  2, Supple-
ment 2).

Important predictor variables in hierarchical mod-
els of TP and CHLa (i.e., 95% credible intervals of 
the estimated parameter do not overlap zero) were 
mainly local scale, with regional-scale predictors 
rarely important (Fig.  5). For TP, watershed to lake 
area ratio (+),watershed forest cover (−), and base-
flow (−) were important in models of both Shallow 
and non-Shallow lakes. However, those relation-
ships depended on connectivity class, with fewer 
variables important in models of unconnected lakes. 
Lake area (+) and woody wetlands (−) had effects 
on TP in Shallow connected lakes. Other predictors 
such as spring (−) or summer (+) precipitation, row 
crop agriculture (+), and urban land use (+) were 
occasionally significant in models of non-Shallow 
lakes, although never for unconnected lakes. Simi-
lar to TP, watershed forest cover (−) and baseflow 
(−) were important predictors of CHLa, regardless 

of connectivity class or depth subset. In contrast, 
watershed:lake area ratio, which is associated with 
nutrient loading, was significant only for predicting 
non-Shallow lake CHLa. Winter precipitation (−) 
was important for Shallow and connected lake CHLa 
models. Unlike TP, regional-scale predictors were 
occasionally important for CHLa [emergent wetlands 
(+) and urban land cover (−)], but only in models of 
unconnected Shallow lakes.

For lakes concurrently sampled for both TP and 
CHLa, modeled intercepts of the positive relation-
ship between  loge(TP) and  loge(CHLa) were simi-
lar regardless of lake connectivity or depth class 
(Fig. 6; Supplement 3). However, the 95% CI of dif-
ferences in slope between paired models indicated 
less steep slopes for Shallow compared to non-
Shallow subsets when modeling both connectivity 
classes combined and connected lakes; 95% CI of 
the differences overlapped 0 for unconnected lakes 
(Fig. 6; Supplement 3). All HU4-specific slope esti-
mates (with one exception) from the six models 

Table 2  Posterior mean parameter estimates, 95% credible 
intervals (CI), and model fit statistics (root mean square error 
[rmse], R2

marg, and R2
cond) from individual Bayesian hierarchi-

cal linear models for  loge(CHL) and  loge(TP) for Shallow and 
non-Shallow lakes

Unconn  unconnected lakes, Conn connected lakes, Both conn combined connectivity classes. Further tests comparing intercept esti-
mates between paired models can be found in Supplement 2

Parameters Shallow lakes non-Shallow lakes

Unconn Conn Both Conn Unconn Conn Both Conn

Chlorophyll a
 n 614 1330 1944 952 2497 3449
 rmse 0.98 0.93 0.95 0.84 0.87 0.87
 R2

marg mean 0.48 0.46 0.46 0.24 0.42 0.40
 R2

marg 95% CI (0.43, 0.53) (0.43, 0.50) (0.43, 0.49) (0.20, 0.29) (0.39, 0.45) (0.37, 0.42)
 R2

cond mean 0.49 0.51 0.50 0.42 0.52 0.49
 R2

cond 95% CI (0.44, 0.55) (0.47, 0.55) (0.46, 0.53) (0.33, 0.52) (0.48, 0.56) (0.46, 0.53)
 Intercept mean 2.24 2.63 2.54 1.42 1.93 1.79
 Intercept 95% CI (2.03–2.46) (2.51–2.75) (2.41–2.66) (1.18–1.66) (1.80–2.06) (1.66–1.93)

Total phosphorus
 n 381 1005 1386 749 2016 2765
 rmse 0.68 0.69 0.69 0.55 0.60 0.60
 R2

marg mean 0.51 0.57 0.55 0.30 0.56 0.52
 R2

marg 95% CI (0.43, 0.57) (0.53, 0.60) (0.52, 0.58) (0.25, 0.35) (0.53, 0.59) (0.49, 0.54)
 R2

cond mean 0.64 0.61 0.60 0.42 0.64 0.59
 R2

cond 95% CI (0.56, 0.72) (0.57, 0.64) (0.57, 0.64) (0.32, 0.54) (0.61, 0.66) (0.56, 0.62)
 Intercept mean 3.35 3.52 3.45 2.57 2.83 2.75
 Intercept 95% CI (3.18–3.52) 3.42–3.61) (3.36–3.55) (2.44–2.71) (2.75–2.92) (2.68–2.83)
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had a 95% CI not overlapping zero; the 95% CI for 
HU4-specific intercepts did not overlap 0 for 12% 
to18% and for 25 to 57% of the Shallow and non-
Shallow models, respectively (data not shown). This 
result suggests spatial variation in the HU4-specific 
TP–CHLa relationship for all models (HU4-spe-
cific plots shown in Supplement 4). None of the 
regional-scale predictors we tested explained any of 
the among-HU4 variation, thus no cross-scale inter-
actions were detected (Supplement 5).

Discussion

Our macroscale study of Northeastern and Upper 
Midwestern USA lakes documented differences in 
trophic status between Shallow and non-Shallow 
lakes and between connected and unconnected lakes. 
The results support our expectations that Shallow 
and connected lakes tend to have higher levels of 
TP and/or CHLa compared to non-Shallow lakes 
and unconnected lakes. Further, we found regional 
variation contributed to predictive models of TP and 

Fig. 5  Effects plots for predictor variables in Bayesian hier-
archical models of lake  loge(TP) (left panel) and  loge(CHLa) 
(right panel) for Shallow and non-Shallow lake subsets. Pos-
terior mean effect sizes and the corresponding 95% credible 
interval (CI) for predictor variables are plotted for each con-
nectivity group (diamonds are unconnected lakes, circles are 
connected lakes, and squares are both connectivity classes). 

Parameters with 95% credible intervals not overlapping zero 
have either a positive (blue) or negative (red) effect on either 
TP or CHLa concentration; gray symbols indicate that the 
credible intervals overlap zero. Predictors are arranged with 
local or lake-specific scale variables at the top and regional-
scale variables at the bottom of each panel. See Supplement 1 
for more information about predictor variables
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CHLa concentrations and that the slope of TP-CHLa 
relationships varied regionally. Many of the predic-
tor variables that accounted for variation in TP and 
CHLa among lakes were the same for Shallow and 
non-Shallow lakes and were consistent with previ-
ous macroscale research of lakes across broad spatial 
gradients. For example, watershed forest cover had 
a negative effect on TP and CHLa across connectiv-
ity classes and depth subset. However, other impor-
tant predictor variables differed by connectivity or 
lake depth class. For example, baseflow had a sig-
nificant negative effect on lake TP in connected but 
not unconnected lakes, variation among unconnected 
lakes was not as well explained by our models than in 
connected lake models, and the regional-scale varia-
bles were unimportant with the exception of emergent 
wetland and urban land use in models of CHLa for 
unconnected Shallow lakes.

Across all models, TP–CHLa relationships were 
positive and were not affected by cross-scale interac-
tions. Others found that non-linear models were more 
appropriate across wide ranges of TP and CHLa (Fil-
strup et  al., 2014; Quinlan et  al., 2021), with CHLa 
potentially limited by nitrogen at very low TP (e.g., 
in alpine settings) and co-limited by nitrogen at very 
high TP concentrations (Filstrup & Downing, 2017; 
Quinlan et  al., 2021). However, ultra-oligotrophic 
lakes were not present in our study lakes. In fact, the 
majority of lakes were within the intermediate range 
of 4–230 ug/l TP, within which the TP–CHLa rela-
tionship is relatively linear (Quinlan et  al., 2021). 
Although this fact supports our use of a linear hier-
archical modeling approach, our finding that shallow 
lakes are more commonly hyper-eutrophic suggests 

that non-linear models of TP–CHLa are likely more 
appropriate in future studies across a wide range of 
trophic status. Our linear TP–CHLa models had 
steeper slopes for non-Shallow lakes than Shallow 
lakes, which is opposite that found by Quinlan et al. 
(2021). This discrepancy could be an artifact of our 
linear model being more influenced by relatively 
higher TP and CHLa in Shallow than non-Shallow 
lakes, a result not observed in the asymptotic models 
used by Quinlan et al. (2021).

The distributions of TP and CHLa concentration 
across our study extent were characterized by increas-
ing concentrations and trophic status from north to 
south, very similar to that observed at the continental 
US scale for Secchi transparency (Bigham Stephens 
et al., 2015). Lapierre et al. (2018) quantified the spa-
tial structure of lake and ecological setting variables 
found weak spatial structure for lake-specific vari-
ables such as depth, intermediate spatial structuring 
of TP and CHLa, and strong spatial structuring of 
ecological setting variables characterizing climate, 
runoff, and land use/cover. Despite finding similarly 
strong spatial patterns in TP and CHLa, we detected 
no relationships between region-specific slopes and 
regional-scale predictors of land use/cover and base-
flow. This result contrasts with other studies that sug-
gest the yield of CHLa per unit TP differs according 
to both local and regional settings. For example, stud-
ies have detected relationships between region-spe-
cific slopes of the TP–CHLa relationship and regional 
predictor variables such as percent pasture (Wagner 
et al., 2011) and wetland cover (Filstrup et al., 2014).

Our results support other studies that found lake 
trophic states and relationships were related to climate 

Fig. 6  Scatterplots of TP–
CHLa relationships plotted 
on a natural logarithmic 
scale comparing non-
Shallow lakes (purple) and 
Shallow study lakes (pink) 
for both connectivity types 
(left panel), connected lakes 
(middle panel), and uncon-
nected lakes (right panel). 
Lines and shading indicate 
the posterior mean and 95% 
credible interval for the 
linear relationships defined 
by each hierarchical model
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variables, which are spatially structured. For exam-
ple, recent studies of global patterns of the TP–CHLa 
relationship (Quinlan et al., 2021) and on CHLa spa-
tial patterns (Shuvo et al., 2021) suggest that not only 
do deeper lakes have lower CHLa per unit TP than 
predicted, but also that complex north–south patterns 
related to climate produce higher CHLa in extremely 
warm climates. Although our study extent is consid-
ered north temperate, climate-related variables such 
as winter precipitation (CHLa) and baseflow (both TP 
and CHLa) were important local drivers of concentra-
tion. Research also suggests potential for increasing 
CHLa production under climate warming scenarios 
(Collins et al., 2017; Quinlan et al., 2021; and Shuvo 
et al., 2021). Because shallow lakes are influenced by 
complex interactions between macrophytes, foodweb 
structure, and humic substances, all of which may be 
related to large-scale climate gradients (Kosten et al., 
2009), it follows that responses to climate change 
may be particularly critical for shallow lakes.

Differences in model results between Shallow 
and non-Shallow lakes reinforce the importance of 
accounting for lake depth in future macroscale stud-
ies of lake states and relationships. Only 23% of lakes 
within our study extent had depth data, and although 
40% of those lakes were shallow, only 34% of those 
lakes had measurements of either TP or CHLa (with 
only 26% having both TP and CHLa). Efforts to quan-
tify the biases present in compiled datasets such as 
LAGOS-NE have found that larger lakes are more 
likely to be sampled (Wagner et  al., 2008; Stan-
ley et  al., 2019). The bias against sampling shallow 
lakes may be even larger for the entire population of 
lakes within our study extent since the smallest lakes, 
which are thought to be disproportionately shallow, 
are not included in LAGOS-NE (the minimum lake 
area equal to 4 hectares; Soranno et al., 2017). In fact, 
the 2012 US National Lakes Assessment that includes 
lakes > 1 ha in surface area estimates that 61% of US 
lakes may be shallow (USEPA, 2016). In addition to 
the bias toward deeper lakes, depth data were more 
available for connected than for unconnected lakes in 
the LAGOS-NE study extent, which is biased toward 
both larger and connected lakes (Stanley et al., 2019). 
Therefore, our understanding of lake TP and CHLa 
in this lake-dense area of the world is affected by the 
disproportionate under-sampling of shallow, uncon-
nected lakes. Given that small lakes, which are often 
shallow, are important for carbon cycling and other 

global processes (Downing, 2010; Holgerson & Ray-
mond, 2016; Biggs et al., 2017), the need to increase 
our understanding of the controls on nutrient status of 
these lakes is even more pressing.

Taking a macroscale approach to study thousands 
of lakes in the Northeastern and Upper Midwestern 
USA allowed us to demonstrate the generality of shal-
low lakes having higher TP and CHLa than deeper 
lakes, as well as nuances associated with connectiv-
ity and region. There are many newly compiled and 
created macroscale datasets quantifying connectivity 
and regional predictor variables important for mod-
eling TP and CHLa and their relationships (e.g., Hill 
et al., 2018; Cheruvelil et al., 2021; King et al., 2021). 
However, we lack lake depth data for most ecosys-
tems in the USA (Stachelek et al., 2022; Webster et al. 
2022) and lake depth cannot be remotely sensed, is 
time intensive to generate, and is notoriously difficult 
to estimate using predictive models (e.g., Hollister 
et al., 2011; Sobek et al., 2011; Oliver et al., 2016). 
This general paucity of lake depth data has important 
implications. Estimates of global lake contributions 
to carbon and water cycles based on only large (and 
mostly deep) lakes are missing an important popu-
lation of lakes (Downing, 2010; Holgerson & Ray-
mond, 2016; Biggs et  al., 2017). Because shallow 
lakes experience frequent turnover and have tightly 
linked benthic-pelagic processes, TP and CHLa con-
centrations may be more sensitive to and respond dif-
ferently and at different rates to land use intensifica-
tion and climate change than deeper lakes. Therefore, 
this lack of depth data may be affecting limnologists’ 
understanding of basic patterns and drivers, as well 
as responses to global changes. If better understand-
ing the response of shallow lakes to global change 
and their contribution to global cycles is a research 
objective, then future research prioritizing lake depth 
as a variable to quantify and the study of shallow and 
unconnected lakes may be warranted.

Acknowledgements Thanks to the members of the CSI Lim-
nology and Continental Limnology research groups, the organ-
izing committees and participants of the 2014 and 2021 Shal-
low Lakes Congresses, Patricia Soranno, and the anonymous 
reviewers. Funding was provided by the US National Science 
Foundation (2011–2017: EF-1065786; 2016-present: DEB-
1638679 and DEB-1638539). Any use of trade, firm, or prod-
uct names is for descriptive purposes only and does not imply 
endorsement by the US Government.



3675Hydrobiologia (2022) 849:3663–3677 

1 3
Vol.: (0123456789)

Author contributions The initial conception for this manu-
script came from KSC’s preparation for the 2014 Shallow 
Lakes Congress in Antalya, Turkey. KSC and KEW are co-lead 
authors and led the team in writing. KSC, KEW, and TW led 
the team in analysis and model interpretation, with TW writing 
the statistical modeling methods. Using earlier versions of the 
data, KBSK and ACP conducted data processing, data analy-
sis, made tables and figures, and assisted with literature review 
under KSC’s mentorship. KEW conducted final model runs 
and made the final figures and tables. All co-authors reviewed 
and revised the entire manuscript.

Funding Funding was provided by the US National Science 
Foundation (2011–2017: EF-1065786; 2016-present: DEB-
1638679 and DEB-1638539).

Data availability Cheruvelil, K.S., K.E. Webster, K.B. 
King, A.C. Poisson, and T. Wagner. 2022. LAGOS-NE Shal-
low Lakes: a dataset of lake variables and multi-scaled eco-
logical context variables used to predict and compare trophic 
status and TP:CHLa relationships between shallow and non-
shallow lakes in the Upper Midwest and Northeastern United 
States. ver 1. Environmental Data Initiative. https:// doi. org/ 10. 
6073/ pasta/ be495 07b94 1815d 7a680 7a273 ee02d 1e (Accessed 
2022-02-09).

Code availability Available at the same location as the data.

Declarations 

Conflict of interest The authors have not disclosed any com-
peting interests.

Consent to participate N/a.

Ethical approval N/a.

References

Bigham Stephens, D. L., R. E. Carlson, C. A. Horsburgh, M. 
V. Hoyer, R. W. Bachmann & D. E. Canfield Jr., 2015. 
Regional distribution of Secchi disk transparency in 
waters of the United States. Lake and Reservoir Manage-
ment 31(1): 55–63. 

Brett, M. T. & M. M. Benjamin, 2008. A review and reassess-
ment of lake phosphorus retention and the nutrient load-
ing concept. Freshwater Biology 53: 194–211.

Biggs, J., S. von Fumetti & M. Kelly-Quinn, 2017. The impor-
tance of small waterbodies for biodiversity and ecosystem 
services: implications for policy makers. Hydrobiologia 
793: 3–39.

Brooks, S. P. & A. Gelman, 1998. General methods for moni-
toring convergence of iterative simulations. Journal of 
Computational and Graphical Statistics 7: 434–455.

Cheruvelil, K. S. & P. A. Soranno, 2018. Data-intensive eco-
logical research is catalyzed by open science and team sci-
ence. BioScience 68(19): 813–822.

Cheruvelil, K. S., K. E. Webster, K. B. King, A. C. Poisson, 
& T. Wagner. 2022. LAGOS-NE Shallow Lakes: a data-
set of lake variables and multi-scaled ecological context 
variables used to predict and compare trophic status and 
TP:CHLa relationships between shallow and non-shallow 
lakes in the Upper Midwest and Northeastern United 
States. ver 1. Environmental Data Initiative. https:// doi. 
org/ 10. 6073/ pasta/ be495 07b94 1815d 7a680 7a273 ee02d 
1e. Accessed 09 02 2022.

Collins, S. M., S. K. Oliver, J. Lapierre, E. H. Stanley, J. R. 
Jones, T. Wagner & P. A. Soranno, 2017. Lake nutrient 
stoichiometry is less predictable than nutrient concentra-
tions at regional and sub-continental scales. Ecological 
Applications 27: 1529–1540.

Collins, S. M., S. Yuan, P. N. Tan, S. K. Oliver, J. F. Lapierre, 
K. S. Cheruvelil, C. E. Fergus, N. K. Skaff, J. Stachelek, 
T. Wagner & P. A. Soranno, 2019. Winter precipitation 
and summer temperature predict lake water quality at 
macroscales. Water Resources Research 55: 2708–2721. 
https:// doi. org/ 10. 1029/ 2018W R0230 88.

Cheruvelil, K. S., P. A. Soranno, I. M. McCullough, K. E. 
Webster, L. K. Rodriguez & N. J. Smith, 2021. LAGOS-
US LOCUS v1.0: data module of location, identifiers, and 
physical characteristics of lakes and their watersheds in 
the conterminous U.S. Limnology and Oceanography Let-
ters 6: 270–292.

Dodds, W. K., E. Carney & R. T. Angelo, 2006. Determin-
ing ecoregional reference conditions for nutrients, Secchi 
depth and chlorophyll a in Kansas lakes and reservoirs. 
Lake and Reservoir Management 22(2): 151–159.

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. 
Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. 
Leitao & T. Münkemüller, 2013. Collinearity: a review of 
methods to deal with it and a simulation study evaluating 
their performance. Ecography 36: 27–46.

Downing, J. A., 2010. Emerging global role of small lakes and 
ponds: little things mean a lot. Limnetica 29(1): 9–24.

Filstrup, C. T. & J. A. Downing, 2017. Relationship of chlo-
rophyll to phosphorus and nitrogen in nutrient-rich lakes. 
Inland Waters 7(4): 385–400.

Filstrup, C. T., T. Wagner, P. A. Soranno, E. H. Stanley, C. A. 
Stow, K. E. Webster & J. A. Downing, 2014. Regional 
variability among nonlinear chlorophyll-phosphorus 
relationships in lakes. Limnology and Oceanography 59: 
1691–1703.

Gelman, A. & J. Hill, 2007. Data analysis using regression and 
multilevel/hierarchical models, Cambridge University 
Press, New York:

Heffernan, J. B., P. A. Soranno, M. J. Angilletta, L. B. Buckley, 
D. S. Gruner, T. H. Keitt, J. R. Kellner, J. S. Kominoski, 
A. V. Rocha, J. Xiao, T. K. Harms, S. J. Goring, L. E. 
Koenig, W. H. McDowell, H. Powell, A. D. Richardson, 
C. A. Stow, R. Vargas & K. C. Weathers, 2014. Macrosys-
tems ecology: understanding ecological patterns and pro-
cesses at continental scales. Frontiers in Ecology and the 
Environment 12: 5–14.

Hill, R. A., M. H. Weber, R. M. Debbout, S. G. Leibowitz & 
A. R. Olsen, 2018. The Lake-Catchment (LakeCat) data-
set: characterizing landscape features for lake basins 
within the conterminous USA. Freshwater Science 37(2): 
208–221.

https://doi.org/10.6073/pasta/be49507b941815d7a6807a273ee02d1e
https://doi.org/10.6073/pasta/be49507b941815d7a6807a273ee02d1e
https://doi.org/10.6073/pasta/be49507b941815d7a6807a273ee02d1e
https://doi.org/10.6073/pasta/be49507b941815d7a6807a273ee02d1e
https://doi.org/10.6073/pasta/be49507b941815d7a6807a273ee02d1e
https://doi.org/10.1029/2018WR023088


3676 Hydrobiologia (2022) 849:3663–3677

1 3
Vol:. (1234567890)

Holgerson, M. & P. Raymond, 2016. Large contribution to 
inland water  CO2 and  CH4 emissions from very small 
ponds. Nature Geoscience 9: 222–226. https:// www. 
nature. com/ artic les/ ngeo2 654.

Hollister, J. W., W. B. Milstead & M. A. Urrutia, 2011. Predict-
ing maximum lake depth from surrounding topography. 
PLOS ONE Public Library of Science 6: e25764.

Jackson, L. J., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 
2007. A comparison of shallow Danish and Canadian 
lakes and implications of climate change. Freshwater 
Biology 52: 1782–1792.

Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. 
Pedersen & L. Jensen, 1997. Top-down control in fresh-
water lakes: the role of nutrient state, submerged macro-
phytes and water depth. Hydrobiologia 342: 151–164.

Kalff, J., 2001. Limnology: inland water ecosystems, Prentice 
Hall, Hoboken:

Kellner, K., 2019. jagsUI: a wrapper around ’rjags’ to stream-
line ’JAGS’ analyses. R package version 1.5.1. https:// 
CRAN.R- proje ct. org/ packa ge= jagsUI

King, K. B. S., Q. Wang, L. K. Rodriguez & K. S. Cheruvelil, 
2021. Lake networks and connectivity metrics for the con-
terminous U.S. (LAGOS-US NETWORKS v1). Limnol-
ogy and Oceanography Letters 6: 293–307.

Kosten, S., G. Lacerot, E. Jeppesen, D. da Motta Marques, E. 
van Nes, N. Mazzeo & M. Scheffer, 2009. Effects of sub-
merged vegetation on water clarity across climates. Eco-
systems 12(7): 1117–1129.

Lapierre, J.-F., S. M. Collins, D. A. Seekell, K. S. Cheruvelil, 
P.-N. Tan, N. K. Skaff, Z. Taranu, C. E. Fergus & P. A. 
Soranno, 2018. Similarity in spatial structure constrains 
ecosystem relationships: building a macroscale under-
standing of lakes. Global Ecology and Biogeography 
27(10): 1251–1263.

Martin, S. L. & P. A. Soranno, 2006. Lake landscape position: 
Relationships to hydrologic connectivity and landscape 
features. Limnology and Oceanography 51: 801–814.

Nakagawa, S. & H. Schielzeth, 2013. A general and simple 
method for obtaining  R2 from generalized linear mixed-
effects models. Methods in Ecology and Evolution 4: 
133–142.

Oliver, S. K., P. A. Soranno, C. E. Fergus, T. Wagner, L. A. 
Winslow, C. E. Scott, K. E. Webster, J. A. Downing & 
E. H. Stanley, 2016. Prediction of lake depth across a 
17-state region in the United States. Inland Waters 6: 
314–324.

Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the abso-
lute, the relative, the functional and the pragmatic. Hydro-
biologia 506–509: 1–11.

Park, T. & G. Casella, 2008. The Bayesian Lasso. Journal of 
the American Statistical Association 103: 681–686.

Phillips, G., O.-P. Pietiläinen, L. Carvalho, A. Solimini, A. 
Lyche Solheim & A. C. Cardoso, 2008. Chlorophyll–
nutrient relationships of different lake types using a large 
European dataset. Aquatic Ecology 42: 213–226.

Plummer M., 2003. JAGS: A program for analysis of bayesian 
graphical models using gibbs sampling. In K. Hornik, F. 
Leisch, & A. Zeileis (eds), Proceedings of the 3rd interna-
tional workshop on distributed statistical computing (DSC 
2003). Vienna, Austria. ISSN 1609-395X. http:// www. ci. 
tuwien. ac. at/ Confe rences/ DSC- 2003/.

Quinlan, R., A. Filazzola, O. Mahdiyan, A. Shuvo, K. Bla-
grave, C. Ewins, L. Moslenko, D. K. Gray, C. M. O’Reilly 
& S. Sharma, 2021. Relationships of total phosphorus and 
chlorophyll in lakes worldwide. Limnology and Oceanog-
raphy 66: 392–404.

R Core Team. 2021. R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https:// www.R- proje ct. org/.

Read, E. K., V. P. Patil, S. K. Oliver, A. L. Hetherington, J. 
A. Brentrup, J. A. Zwart, K. M. Winters, J. R. Corman, 
E. R. Nodine & R. I. Woolway, 2015. The importance of 
lake-specific characteristics for water quality across the 
continental United States. Ecological Applications 25: 
943–955.

Scheffer, M., 1998. Ecology of Shallow Lakes, Springer, Ber-
lin, Germany.

Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. 
Jeppesen, 1993. Alternative equilibria in shallow lakes. 
Trends in Ecology and Evolution 8: 275–279.

Seaber, P. R., F. P. Kapinos & G. L. Knapp, 1987. Hydrologic 
unit map, United States Geological Survey, Reston, VA, 
USA.

Shuvo, A., C. M. O’Reilly, K. Blagrave, C. Ewins, A. Filaz-
zola, D. Gray, O. Mahdiyan, L. Moslenko, R. Quinlan 
& S. Sharma, 2021. Total phosphorus and climate are 
equally important predictors of water quality in lakes. 
Aquatic Sciences 83(1): 1–11.

Sobek, S., J. Nisell & J. Fölster, 2011. Predicting the depth 
and volume of lakes from map-derived parameters. Inland 
Waters 1: 177–184.

Soranno, P. A., K. E. Webster, J. L. Riera, T. K. Kratz, J. S. 
Baron, P. A. Bukaveckas, G. W. Kling, D. S. White, N. 
Caine, R. C. Lathrop & P. R. Leavitt, 1999. Spatial varia-
tion among lakes within landscapes: ecological organiza-
tion along lake chains. Ecosystems 2: 395–410.

Soranno, P. A., K. S. Cheruvelil, E. G. Bissell, M. T. Bremi-
gan, J. A. Downing, C. E. Fergus, C. T. Filstrup, E. N. 
Henry, N. R. Lottig, E. H. Stanley, C. A. Stow, P.-N. Tan, 
T. Wagner & K. E. Webster, 2014. Cross-scale interac-
tions: quantifying multi-scaled cause–effect relationships 
in macrosystems. Frontiers in Ecology and the Environ-
ment 12: 65–73.

Soranno, P. A., E. G. Bissell, K. S. Cheruvelil, S. T. Christel, 
S. M. Collins, C. E. Fergus, C. T. Filstrup, J.-F. Lapierre, 
N. R. Lottig, S. K. Oliver, C. E. Scott, N. J. Smith, S. Sto-
pyak, S. Yuan, M. T. Bremigan, J. A. Downing, C. Gries, 
E. N. Henry, N. K. Skaff, E. H. Stanley, C. A. Stow, P.-N. 
Tan, T. Wagner & K. E. Webster, 2015. Building a multi-
scaled geospatial temporal ecology database from dispa-
rate data sources: fostering open science and data reuse. 
GigaScience 4: 28.

Soranno, P. A., L. C. Bacon, M. Beauchene, K. E. Bednar, E. 
G. Bissell, C. K. Boudreau, M. G. Boyer, M. T. Bremi-
gan, S. R. Carpenter, J. W. Carr, K. S. Cheruvelil, S. T. 
Christel, M. Claucherty, S. M. Collins, J. D. Conroy, J. A. 
Downing, J. Dukett, C. E. Fergus, C. T. Filstrup, C. Funk, 
M. J. Gonzalez, L. T. Green, C. Gries, J. D. Halfman, S. 
K. Hamilton, P. C. Hanson, E. N. Henry, E. M. Herron, C. 
Hockings, J. R. Jackson, K. Jacobson-Hedin, L. L. Janus, 
W. W. Jones, J. R. Jones, C. M. Keson, K. B. S. King, S. 
A. Kishbaugh, J.-F. Lapierre, B. Lathrop, J. A. Latimore, 

https://www.nature.com/articles/ngeo2654
https://www.nature.com/articles/ngeo2654
https://CRAN.R-project.org/package=jagsUI
https://CRAN.R-project.org/package=jagsUI
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/
https://www.R-project.org/


3677Hydrobiologia (2022) 849:3663–3677 

1 3
Vol.: (0123456789)

Y. Lee, N. R. Lottig, J. A. Lynch, L. J. Matthews, W. H. 
McDowell, K. E. B. Moore, B. P. Neff, S. J. Nelson, S. 
K. Oliver, M. L. Pace, D. C. Pierson, A. C. Poisson, A. 
I. Pollard, D. M. Post, P. O. Reyes, D. O. Rosenberry, 
K. M. Roy, L. G. Rudstam, O. Sarnelle, N. J. Schuldt, 
C. E. Scott, N. K. Skaff, N. J. Smith, N. R. Spinelli, J. J. 
Stachelek, E. H. Stanley, J. L. Stoddard, S. B. Stopyak, 
C. A. Stow, J. M. Tallant, P.-N. Tan, A. P. Thorpe, M. 
J. Vanni, T. Wagner, G. Watkins, K. C. Weathers, K. E. 
Webster, J. D. White, M. K. Wilmes & S. Yuan, 2017. 
LAGOS-NE: a multi-scaled geospatial and temporal data-
base of lake ecological context and water quality for thou-
sands of US lakes. GigaScience 6: 1–22.

Stachelek, J. J., W. Weng, C. C. Carey, A. R. Kemanian, K. M. 
Cobourn, T. Wagner, K. C. Weathers & P. A. Soranno, 
2020. Granular measures of agricultural land use influ-
ence lake nitrogen and phosphorus differently at macro-
scales. Ecological Applications 30(8): e02187.

Stachelek, J., L. K. Rodriguez, J. Díaz Vázquez, A. Hawkins, 
E. Phillips, A. Shoffner, I. M. McCullough, K. B. King, J. 
Namovich, L. A. Egedy, M. Haite, P. J. Hanly, K. E. Web-
ster, K. S. Cheruvelil & P. A. Soranno, 2021. LAGOS-US 
DEPTH v1.0: data module of observed maximum and 
mean lake depths for a subset of lakes in the conterminous 
U.S. ver 1. Environmental data initiative. Limnology and 
Oceanography Letters 6: 270–292.

Stachelek, J., P. J. Hanly & P. A. Soranno, 2022. Imperfect 
slope measurements drive overestimation in geometric 
cone model of lake and reservoir depth. Inland Waters. 
https:// doi. org/ 10. 1080/ 20442 041. 2021. 20065 53.

Stanley, E. H., S. M. Collins, N. R. Lottig, S. K. Oliver, K. E. 
Webster, K. S. Cheruvelil & P. A. Soranno, 2019. Biases 
in lake water quality sampling and implications for mac-
roscale research. Limnology and Oceanography 64: 
1572–1585.

Taranu, Z. E. & I. Gregory-Eaves, 2008. Quantifying relation-
ships among phosphorus, agriculture, and lake depth at an 
inter-regional scale. Ecosystems 11: 715–725.

Tibshirani, R., 1996. Regression shrinkage and selection via 
the Lasso. Journal of the Royal Statistical Society Series 
B 58: 267–288.

USEPA, 2016. National lakes assessment 2012: a collaborative 
survey of lakes in the United States. EPA 841-R-16–113. 
U.S. Environmental Protection Agency, Washington, 
D.C., USA.

Vander Zanden, M. J. & Y. Vadeboncoeur, 2020. Putting the 
lake back together 20 years later: what in the benthos have 
we learned about habitat linkages in lakes? Inland Waters 
10(3): 305–321.

Vollenweider, R. A., 1975. Input-output models with special 
reference to the phosphorus loading concept in limnology. 
Schweizerische Zeitschrift Für Hydrologie 37: 53–84.

Wagner, T., P. A. Soranno, K. S. Cheruvelil, W. H. Renwick, K. 
E. Webster, P. Vaux & R. J. F. Abbitt, 2008. Quantifying 
sample biases of inland lake sampling programs in rela-
tion to lake surface area and land use/cover. Environmen-
tal Monitoring and Assessment 141: 131–147.

Wagner, T., P. A. Soranno, K. E. Webster & K. S. Cheruve-
lil, 2011. Landscape drivers of regional variation in the 
relationship between total phosphorus and chlorophyll in 
lakes: relationship between total phosphorus and chloro-
phyll. Freshwater Biology 56: 1811–1824.

Wagner, T., C. E. Fergus, C. A. Stow, K. S. Cheruvelil & P. A. 
Soranno, 2016. The statistical power to detect cross-scale 
interactions at macroscales. Ecosphere 7: e01417.

Webster, K. E., I. M. McCullough & P. A. Soranno, 2022. 
Deeper by the Dozen: Diving into a Database of 17,675 
Depths for U.S. Lakes and Reservoirs. Limnology and 
Oceanography Bulletin. https:// doi. org/ 10. 1002/ lob. 
10482.

Zhang, T., P. A. Soranno, K. S. Cheruvelil, D. B. Kramer, M. 
T. Bremigan & A. Ligmann-Zielinska, 2012. Evaluating 
the effects of upstream lakes and wetlands on lake phos-
phorus concentrations using a spatially-explicit model. 
Landscape Ecology 27: 1015–1030.

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

https://doi.org/10.1080/20442041.2021.2006553
https://doi.org/10.1002/lob.10482
https://doi.org/10.1002/lob.10482

	Taking a macroscale perspective to improve understanding of shallow lake total phosphorus and chlorophyll a
	Abstract 
	Introduction
	Methods
	Study lakes and ecological setting
	Statistical modeling
	Identifying drivers of lake TP and CHL
	Identifying cross-scale interactions affecting the TP–CHLa relationship
	Identifying drivers and CSIs


	Results
	Discussion
	Acknowledgements 
	References




