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Scientific Significance Statement

Naturally formed lakes differ from human-made lakes (i.e., reservoirs) in many ways. Although well distributed across the
globe, it has not been possible to classify lakes into these two broad categories across broad geographic scales due to the lack
of detailed information on lake origins. As a result, there has been no regional- to continental-scale data source that differenti-
ates between natural lakes (NLs) and reservoirs, except for the very largest of lakes globally. LAGOS-US RESERVOIR v1, a
research-ready data module, fills this gap with a machine learning model-based classification for all 137,465
U.S. conterminous lakes ≥ 4 ha. These data facilitate the macroscale study of both reservoirs and NLs, which is needed to better
quantify and understand the role of surface water in global cycles and to test conventional wisdom about how NLs and reser-
voirs differ from each other across the broad scales that represent their full diversity.

Abstract
The LAGOS-US RESERVOIR data module classifies all 137,465 lakes ≥ 4 ha in the conterminous U.S. into three
categories using a machine learning predictive model based on visual interpretation of lake outlines and a lake
shape classification rule. Natural Lakes (NLs) are defined as naturally formed, lacking large, flow-altering struc-
tures; Reservoir Class A’s (RSVR_A) are defined as lakes likely human-made or human-altered by a large water
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control structure; and Reservoir Class B’s (RSVR_Bs) are lakes likely human-made but are not connected to
streams and have a shape rare in NLs. We trained machine learning models on 12,162 manually classified lakes
to predict assignment as an NL or RSVR, then further classified RSVRs based on NHD Fcodes, isolation, and
angularity. Our classification indicates that > 46% of lakes ≥ 4 ha in the conterminous U.S. are reservoir lakes.
These data can be easily combined with other LAGOS-US modules and U.S. national databases for the broad-
scale study of reservoir lakes and NLs.

Background and motivation
Both NLs and reservoirs provide important and often dis-

tinct ecosystem services to humans (Lehner et al. 2011). For res-
ervoirs, water-control structures direct water supply for
irrigation, facilitate flood control, aid navigation, create hydro-
power, and increase tourism, fisheries, or recreation (Thornton
et al. 1990; Lehner et al. 2011; Doubek and Carey 2017;
Mamun et al. 2020). In the United States, most reservoirs are
less than 90 years old (Thornton et al. 1990) and as water con-
trol structures have aged, some are now being removed (Habel
et al. 2020). As new dams continue to be constructed and old
reservoirs altered, there have been calls for dam construction
and removal to be based on the most up to date and reliable
data available and for a balance between sustainability of fresh
waters and human needs (Lehner et al. 2011). For example,
although gross emissions of greenhouse gases (GHGs) from res-
ervoirs may account for 1.5% of the global warming potential
of GHGs (Deemer et al. 2016), reservoirs also have the potential
to positively influence human-impacted nutrient cycles. Harri-
son et al. (2009) showed the importance of including small NLs
and reservoirs in models predicting the global nitrogen removal
by surface waters and Tranvik (2009) found that carbon burial
rates in reservoirs could be one to two orders of magnitude
higher than in NLs. Therefore, accurately quantifying the role
of both NLs and reservoirs on such global cycles requires accu-
rately differentiating between these two types of lakes and
accurately documenting their location and numbers at broad
spatial scales (Lehner et al. 2011).

Defining lakes and reservoirs
Although reservoir lakes are overwhelmingly under-

studied compared to NLs, there are some studies that docu-
ment differences between these two types of lakes (Doubek
and Carey 2017). For example, compared to NLs, reservoirs
tend to be warmer in temperature (Thornton et al. 1990),
have larger watershed sizes that are heavily influenced by
both nutrient and sediment runoff from their surrounding
agricultural landscapes (Knoll et al. 2003), and have larger
ratios of basin to lake/reservoir surface area (Lehner and
Döll 2004; Doubek and Carey 2017). However, an impor-
tant recent study found that many differences between
NLs and reservoirs depended on latitude, making clear dif-
ferences between them difficult to quantify (Doubek and
Carey 2017). In addition, reservoirs vary in both form and
function and range from run-of-the-river high-flow

reservoirs to very still and less-connected reservoirs,
including entirely artificial water bodies with very angular
shapes. Given this diversity, there are many definitions of
“reservoir” and little standardization. For example, rela-
tively simple descriptions include “engineered systems”
(Thornton et al. 1990), “[hu]man made lakes” (Lehner and
Döll 2004), and “constructed impoundments” (Doubek and
Carey 2017). However, what constitutes human influence is
subjective and other characteristics in addition to the pres-
ence of an artificial construct or impoundment are impor-
tant for differentiating reservoirs from other lakes. For
example, reservoirs can be characterized by their position
and placement within the river network, outlet control
presence and type (i.e., water control structure or dam),
and origin (Hayes et al. 2017). There is also a variety of
dam types and sizes that influence reservoir shapes and
sizes. In addition to the challenges in defining reservoirs,
there is also a lack of data available to classify lakes as
either natural or human-made. Such a classification
requires information on the water control structure,
including its presence, hydrologic location, height, man-
agement, and history. As a result, existing reservoir
datasets are mainly for either very large water bodies, for
water bodies with very large dams, or for individual reser-
voirs studied for long time periods (e.g., Birkett and
Mason 1995; Lehner 2011). There is currently no classifica-
tion system differentiating between NLs and reservoir lakes
at broad spatial extents and for smaller lake, which severely
limits the regional to continental study of reservoirs and
their comparisons to NLs.

Although there is yet to be a single agreed-upon and used
reservoir definition, we use the definition described in Hayes
et al. (2017) as a starting point and refine it based on data that
is widely available at broad spatial extents—lake outlines and
shape—to indicate function (Box 1). Furthermore, similar to
the definition of “lake” used in the LAGOS-US data platform
(Cheruvelil et al. 2021), we used the generic term “lake” to
refer to both NLs and reservoir lakes in this database and data
paper (Box 1).

Data description
The LAGOS-US RESERVOIR v1 data module and its associ-

ated User Guide (Polus et al. 2022) fills the above data gaps by
classifying all lakes greater than or equal to 4 ha in the conter-
minous U.S. (n = 137,465) into one of three classes: natural
lake (NL), reservoir lake class A (RSVR-A), or reservoir lake class
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B (RSVR-B). The lake polygons, locations, and identifiers were
obtained from the LAGOS-US LOCUS data module (Smith
et al. 2021), which obtained the lake base layers from the
NHD snapshot that was downloaded January 2017 (NHD;
USGS 2017). RESERVOIR provides model-based prediction
probabilities for all three lake classes, and characteristics of
lakes such as location, geometry, and lake hydrologic connec-
tivity. RESERVOIR can be linked with other LAGOS-US mod-
ules using the common lake identifier lagoslakeid. RESERVOIR
consists of one data table that includes observation-level flags,
two metadata tables (source table, data dictionary table;
Fig. 1), a polygon layer of all lakes labeled by class, and a
detailed User Guide (Polus et al. 2022).

Overview of model approach
We manually classified 12,162 lakes (natural [NL] and reser-

voir [RSVR] lakes), then used those to train a machine learn-
ing model to predict the whether all lakes ≥ 4 ha in the
conterminous U.S. were either natural or reservoir lakes based
on lake shape. We used lake shape as a determining factor
based on the conventional wisdom that reservoir lakes are
more dendritic than NLs, which has some recent support from

the literature (Doubek and Carey 2017). This process resulted
in the machine learning classification of 77,667 NLs and
59,798 RSVRs along with prediction probabilities associated
with each lake being one of these two classes. We then further
refined this classification using information from the NHD
Fcodes, isolation, and angularity. The final classification
resulted in 73,053 NLs, 61,042 RSVR_As, and 3370 RSVR_Bs
(Fig. 2). RESERVOIR also includes information such as loca-
tion, lake shape, surface water connectivity class, and lake
name. This macroscale dataset of both large and small NLs
and reservoir lakes is designed to be combined with other
LAGOS-US data modules and national databases using unique
lake identifiers to allow for the study of reservoirs at the
regional to conterminous U.S. scale.

Metadata tables
LAGOS-US RESERVOIR has a source table (source_table_rsvr)

and a data dictionary table (data_dictionary_rsvr). The source
table includes official names, descriptions, citations, and other
relevant metadata related to each of the source datasets in
which variables from RESERVOIR were obtained. The data

BOX 1. Definitions of lake, natural lake, and reservoir used for the LAGOS-US RESERVOIR data module.
Lake—A perennial body of relatively still water with a geographically defined polygon in the high-resolution National
Hydrography Dataset (NHD) that is either completely natural, modified natural (i.e., a water control structure on a natural
lake), or highly modified (i.e., a fully impounded stream or river). Lakes that are extremely high-intensity and artificial as
indicated by the NHD, such as sewage treatment points, aquaculture ponds, and retention ponds, are not included
(Cheruvelil et al. 2021).

The above definition applies to all 137,465 lakes ≥ 4 ha in the conterminous U.S. Then, we divided all lakes into one of
three categories based on model interpretation of lake outlines and a metric of lake shape that indicates the angularity of
the lake using the definitions below. Although it would be preferred to base the classification on lake function and the
exact degree of human modification, such detailed information is not available on the hundreds of thousands of lakes in
the conterminous U.S. (or globally). Therefore, these definitions are based on a machine learning model that predicts the
probability of a lake being human-made versus natural using lake shape. To further differentiate reservoirs, we used a met-
ric of angularity of lake outlines. The three categories in this data module and their definitions are as follows:

Natural lake (NL)—A lake that is likely to be entirely or mostly naturally formed and that does not have a relatively large,
flow-altering structure on it or near it based on visual interpretation of imagery. Such lakes may have a small human-made
water-control structures on it that appear to be physically small relative to the size of the lake shoreline, or that are down-
stream of the lake and so are assumed to have minimal impacts on the lake, such as those that can influence water
levels only.

Reservoir Class A (RSVR_A)—A lake that is likely to be either human-made or highly human-altered by the presence of a
relatively large water control structure that appears to significantly change the flow of water based on a machine learning
model prediction with lake outlines as model input.

Reservoir Class B (RSVR_B)—A lake that is likely to be entirely human-made based on a highly angular shape that is
rarely, if ever, seen in natural lakes. Angularity is defined as a shape that nearly conforms to a rectangle, defined as the ratio
between the lake area and the area of the minimum bounding rectangle area that is close to 1 (Smith et al. 2021). Most
angular lakes are also not connected to other water bodies through stream connections (i.e., isolated) and do not fit tradi-
tional definitions of reservoirs as dammed rivers. These lakes have been defined as impoundments located outside of river
networks by Hayes et al. (2017).
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dictionary table includes the names, units, and other relevant
metadata related to each variable in RESERVOIR.

Data table: Lake reservoir
The RESERVOIR data table (lake_reservoir) includes variables

related to the lake classification (e.g., method, class, model,
probability), lake characteristics, common identifiers linking
RESERVOIR to other LAGOS-US data modules and to other
key U.S. datasets, locational information of lakes and dams,
and flags associated with observations. In addition to identify-
ing each lake as either a NL, RSVR_A, or RSVR_B and provid-
ing locational information (Fig. 2), the data table includes
whether the class was assigned manually using aerial imagery
or was predicted by the machine learning model that used
lake outlines as model input, the model it was predicted from
(based on location in the United States), and the probability
associated with each classification. These probabilities give
users information about which predictions may be associated
with a higher degree of confidence (i.e., may have been cor-
rectly classified).

RESERVOIR includes two additional metrics that help to
understand and interpret the lake classification. First, a metric
of lake shape (shoreline development factor) is included in the

data table because it has long been assumed that reservoirs are
differently shaped from NLs. Our data support this assumption
to some degree by showing that both manually classified and
model-classified RSVRs have a higher shoreline development
factor (indicating a larger deviation from a perfect circle) than
NLs (Fig. 3). However, there is large overlap in shape between
NLs and RSVRS, suggesting that it is not possible to differenti-
ate NLs from RSVRs using this simple shape metric alone.

Second, we include a measure of lake surface water connec-
tivity, which is based on upstream and downstream and lake
connections. These connectivity metrics are fully described in
LAGOS-US LOCUS (Cheruvelil et al. 2021). There are six clas-
ses of connectivity determined from the stream network
(made up of both permanent and intermittent/ephemeral
stream flow; Fergus et al. 2017) using data from NHDPlus HR
Beta 2021 snapshot. There are two classes of lakes that have
inflow(s) and outflow(s)—“Drainage”, in which there are no
upstream lakes ≥ 10 ha or “DrainageLk”, in which there are
one or more upstream lakes ≥ 10 ha. There are two classes of
lakes that have only inflow(s)—Terminal, in which there are
no upstream lakes ≥ 10 ha or “TerminalLk”, in which there is
one or more upstream lakes ≥ 10 ha. The last two classes are
less connected to other surface waters, with “Headwater” hav-
ing only an outflow and “Isolated” having no inflows or

Fig. 1. LAGOS-US RESERVOIR v1 map and histograms depicting locations of 137,465 lakes ≥ 4 ha as NL (purple, n = 73,053), RSVR_A (orange,
n = 61,042), or RSVR_B (green, n = 3370) in the conterminous U.S. states (black outlines). RSVR polygons were the first GIS layer to be plotted; there-
fore, some NL polygons may overlap or hide the true spatial extent of all RSVRs.
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outflows. Because reservoirs are assumed to be created from
the damming of rivers and streams, we expected that RSVRs
would be connected to streams only, whereas NLs would be
well represented in all six of these lake connectivity catego-
ries. As expected, the largest number of RSVRs were in the
Drainage class. However, beyond this result, our expectations
were not met. The next highest number of RSVRs were found
in the least connected Isolated class (Fig. 4). Data exploration
found that many of these systems are in highly populated
areas and appear to be human-made detention and retention
ponds, as well as constructed ponds with highly modified
stream connections that may be underground or not represen-
ted in the NHD stream dataset.

RESERVOIR also includes LAGOS-US lake identifiers,
National Inventory of Dams (NID) IDs, NHD IDs, and official
lake names, when available. Although RSVRs and NLs are offi-
cially named at approximately the same proportions (43%
and 44%, respectively; Fig. 5), the most common names given
to these two types of water bodies differ (Fig. 6). For NLs, the

most common name is “Mud”; whereas, for RSVRs, the most
common name is “Long” (Fig. 6). “Horseshoe” was found to
be prominent across both classes (Fig. 6). Finally, both NLs
and RSVRs share the term “lake” or “pond” as common lake
types used during naming. However, RSVRs are also com-
monly termed “reservoirs” (data not shown).

Methods
Data sources

The LAGOS-US RESERVOIR data module was created
using existing datasets from a variety of sources: the NID
(USACE 2015), the National Agriculture Imagery Program
(U.S. Department of Agriculture Farm Service Agency Aerial
Photography Field Office 2016), Google Earth Imagery, and
LAGOS-US LOCUS v1.0 that is based on the high-
resolution NHD that was downloaded in January 2017
(LOCUS; Cheruvelil et al. 2021; Smith et al. 2021) with
code and images made publicly available (Wang
et al. 2021). All 479,950 lake polygons greater than or equal
to one hectares within the spatial extent of the contermi-
nous U.S. were obtained from the LAGOS-US LOCUS v1.0
geodatabase (gis_locus.gpkg; Smith et al. 2021). However,
the study lake population for LAGOS-US RESERVOIR is a
subset of these polygons (n = 137,465) that are ≥ 4 ha. The
minimum lake area of 4 ha was selected because of

Fig. 2. The RESERVOIR schema. RESERVOIR includes two metadata tables
(in the form of a source table and a data dictionary) and a data table
(lake_reservoir) that includes observation-level flags (blue text). The tables
are connected to each other and other LAGOS-US modules via
lagoslakeid, depicted with red text. The variables in black text included in
the data tables are representative examples, rather than exhaustive. The
census population of lakes ≥ 4 ha is N = 137,465. Not shown: Detailed
user guide and polygon layer of natural lakes and reservoirs.

Fig. 3. Violin plots of the shape metric “shoreline development factor”
(SDF) plotted following log10 transformation. Violin plots show the kernel
density distribution of shoreline development factor for manually classi-
fied lakes, model predicted lakes, and all lakes separated by natural lakes
(NL, blue) and reservoirs (RSVR, orange). Embedded boxplots show the
median value and the interquartile range (25th and 75th percentiles) of
the log10 transformed data. The SDF is calculated as the ratio between
the perimeter of a circle with area equal to the lake area and the mea-
sured perimeter. Lakes that are circular have an SDF approaching 1, while
very reticulate lakes have a greater SDF. For this analysis, we did not dif-
ferentiate the RSVR classes since the sample size of the B class was
extremely small.
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limitations associated with interpreting aerial imagery for
smaller water bodies that prevented definitive manual
interpretation of the presence of water control structures

on these smaller lakes. Details of these sources and how
they were used are included in the LAGOS-US RESERVOIR
User Guide (Polus et al. 2022).

Fig. 4. Stacked bar chart of the frequency of natural lakes (NL) and reservoirs lakes (RSVR_A and RSVR_B) according to lake connectivity class (A). Lakes
are further differentiated according to whether they were manually classified via aerial imagery (dark purple, dark orange, and dark green) or were
predicted with a machine learning model light purple, light orange, and light green). Not included: 292 water bodies classified as “NULL” due to data
that prevented quantifying their hydrologic connections. Images demonstrating examples of RSVRs in each of the six lake connectivity classes (B–G):
B = headwater, C = drainage, D = terminal, E = isolated, F = DrainageLK, G = TerminalLK (service layer credits. Source: Esri, Maxar, GeoEye, earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS user community).
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Classification method overview
There were four main steps to classify all lakes ≥ 4 ha in the

conterminous U.S. as either a NL or RSVR (Fig. 7). We describe
the details of each step below.

Step 1: Compile and query lake dataset by region
We divided the United States into two model regions

(Fig. 8). The first region, the “NE model,” has a high lake den-
sity (both NLs and reservoirs) and includes lakes that were

predominantly glaciated (Fig. 2). This region includes
17 northeastern and upper midwestern U.S. states obtained
from the LAGOS-NE v1 database (Soranno et al. 2015, 2017).
The second region, the “U.S. model” includes the remaining
31 states and Washington D.C. This region has lower overall
densities of NLs and reservoirs, and includes many states that
are dominated by RSVRs (Fig. 8). We selected a subset of lakes
within each model region (NE and U.S.) for manual classifica-
tion. However, the approach was slightly different between
the two regions. For the NE model, we selected � 200 NLs and
� 200 RSVRs per state for all 17 states; but, for the U.S. model,
this approach was prohibitive because of the large geographic
area and larger number of states. Therefore, we grouped the
remaining states according to the National Ecological Obser-
vatory Network domains that have ecological boundaries
based on similar climatic characteristics (NEON; Keller
et al. 2008). We selected 15 of the 31 states that we thought
best represented those NEON domains (Fig. 8). Our goal was
to manually classify � 200 NLs and � 200 RSVRs per NEON
domain for the U.S. model; however, this threshold was not
met in every region due to low numbers of NLs in some
NEON domains in the U.S. study region, leading to some
domains containing fewer manually classified lakes than
others (Fig. 8).

Step 2: Build training dataset
For both regional training datasets, we manually classified

lakes using aerial imagery to examine lake outlines and to
identify the presence of dams or other water control structures
(Polus et al. 2022). We first subset all lakes into two possible
categories (potential RSVRs or NLs) by overlaying a GIS point
layer of over 90,000 dam locations from the NID
(USACE 2015) over our GIS polygon layer of lakes to identify
dams that were within 50 m of a lake. We used the 3D dis-
tance tool in ArcMap, which considers the elevation of input

Fig. 5. The frequency of lakes with and without official names,
according to whether they are natural lakes (NL) or reservoirs (RSVR_A
and RSVR_B).

Fig. 6. Word clouds depicting the 25 most common official lake names for (A) reservoirs (RSVR_A) and (B) natural lakes ≥ 4 ha in the conterminous
U.S. for both natural lakes and reservoirs (RSVR_A), names often include three parts—a descriptive adjective, a primary name, and a lake type. For these
word clouds, only the primary name is depicted (such as “mud,” “long,” “round,” “twin,” “horseshoe”). The descriptive adjective portion of the names
(such as big/little, south/north) and the lake type (such as a “lake,” “pond,” “reservoir,” “tank,” “impoundment”) were not included in this analysis so that
primary names could be analyzed and visualized. A word cloud was not visualized for RSVR_B water bodies since just 113 were named and almost all of
these were uniquely named.
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data (i.e., the dam points) to maintain a realistic view of local
topography. We identified candidate RSVRs in each region by
selecting water bodies that were within 50 m of a dam and we
identified candidate NLs by the absence of a dam within
50 m. We tested other distances to screen the data and found
that larger distances included too many NLs that were not res-
ervoirs, and smaller distances excluded too many NLs that
were reservoirs. Regardless of the distance chosen, we used
this step only to screen the data to find candidate RSVRs and
NLs that were then manually identified using imagery.

The manual processing of the above two classes of candi-
date lakes involved visual interpretation of aerial imagery
using Google Earth’s historical imagery tool that allowed
inspection during all times of the year including leaf-off to
allow better identification of dams on lake shorelines. This
manual step was important because although most dams
within 50 m from a lake from the NID dataset were found to
be what appeared to be true dams on lake shorelines, there
were some instances where dams were located on inflowing
(or outflowing) streams very close to the lake shoreline, were
small relative to the size of the lake shoreline, and that simply
appeared visually to slow down water flow, rather than result
in significant damming of water based on a combination of
size relative to the size of the lake, and location of the dam
relative to the lake shoreline and incoming streams. There-
fore, we classified such lakes as NLs. In fact, although RSVR

shapes are thought to be dendritic, with one straight side
(where the dam is assumed to be), while NL shapes are thought
to be more rounded (Fig. 9), we found this simplification was
only sometimes the case (Fig. 10). Lakes form via different nat-
ural processes that may influence the presumed “circular” shape
of NLs. Our assumption was that these water bodies would be
ecologically more similar to NLs than RSVRS because the water
control structure was very small relative to the size of the lake,
so likely would not greatly alter the lake basin nor affect the
natural hydrology and ecology (see definitions in Box 1;
Fig. 10). Because the NID dataset did not indicate whether a
lake basin was present prior to the construction of the dam, we
were not able to use a more quantitative metric for this manual
assessment. Furthermore, simply using visual interpretation has
the advantage of being a method that can be replicated in
other regions of the world that lack detailed data on dams,
which is part of the justification for developing a visual-only
metric of RSVR classification.

Each of the manually classified water bodies in the two
training datasets (NE and U.S.) was exported as an individual
polygon file depicting the physical lake outline that included
the label of manually classified NL or RSVR (n = 12,162). The
sample sizes for the training and test datasets are in Table 1,
along with the total number of water bodies classified by each
model. Sixteen percent (n = 7127) and 6% (n = 5035) of the
polygons were manually classified for the NE and U.S. models,

Fig. 7. Flow diagram depicting the four steps to predict natural lakes (NL) and reservoir lakes (RSVRs) in conterminous U.S. NHD is National Hydrogra-
phy Dataset.
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Fig. 8. Map showing the spatial extent of the NE and U.S. models (upper panel) and the lakes that were manually classified as either NL (blue) or RSVR
(red) (lower panel). NEON domain boundaries are outlined in black and gray. The blue area is the boundary of the NE model; the red area is the bound-
ary of the U.S. model. Darker red areas are states for which a subset of the lakes was manually classified. For the NE model, all states had � 400 lakes
manually classified. Light red areas indicate areas for which no manual classification was done.
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respectively. Users can be confident in the results of the
U.S. model based on only a 5% training dataset because the
probabilities associated with correct classification were simi-
larly high between the two models (see Technical Validation).

Step 3: Train and run the machine learning classification
model

We trained the two machine learning models (NE and U.S.)
using the 12,162 manually classified lakes described in Step 2.
Each model analyzed the shape of the input lake boundaries
(via individual polygons; Fig. 10) to quantify the probability
that the geometry of an unclassified lake better fit that of a NL
or RSVR (lake_prob_nl and lake_prob_rsvr). These two proba-
bilities sum to one (e.g., a lake with lake_prob_nl = 0.25 has a
lake_prob_rsvr = 0.75). Model output includes two predic-
tions for every lake. Therefore, a lake with a high probability
of being a RSVR subsequently has a lower probability of being
a NL (Fig. 11; Polus et al. 2022). Given the complexity of lakes
and reservoirs, as well as the scale and scope of this dataset,
there may be situations where the probabilities are approxi-
mately equal. Therefore, we provide prediction probabilities
and overall model accuracy estimates so that users may assess
the confidence of the model predictions for each lake and
choose their own probability cutoff.

We used the ResNet18 machine learning model, which is
a pretrained deep convolutional neural network model
based on image geometry (Krizhevsky et al. 2012; He
et al. 2016). We chose this pretrained model because it was
trained on a very large image dataset and is quite sensitive
to shapes, and we wanted to avoid overfitting the model.
All lake polygon PNG file images were rescaled to be
224 � 224 pixels (without changing the aspect ratio), a
requirement of the ResNet18 model, and were exported
using the ArcGIS data-driven pages tool. After inputting all
classified lake polygon images into the ResNet18 model, we
fine-tuned (trained) the fully-connected layer of the net-
work to fit our manually classified “labeled data.” The out-
puts of the models were the probabilities of lakes to be
classified as NLs and RSVRs (Fig. 11).

The models (NE and U.S.) were trained on a compute clus-
ter with a GeForce GTX TITAN X graphics card and CUDA
10.2. The deep learning library we used was PyTorch 1.5.0
(Paszke et al. 2019) coded in Python 3.7.6. We used a standard
cross-validation procedure (Stone 1974) to train and evaluate
our models. The data were loaded with the DataLoader class
provided by PyTorch. We randomly split our labeled data into
a training set (90% of data) and a validation set (10% of data)
that was used to evaluate the models. Because there were

Fig. 9. Images and polygons depicting examples of two reservoirs (left) and two natural lakes (right) that demonstrate a range in the degree of human
impacts caused by water control structures and our process for manually (i.e., visually) classifying reservoirs and natural lakes. Left to right: A highly modi-
fied lake with a large dam creating a characteristically dendritic reservoir on a mainstem river, a less modified lake that includes a dam on an incoming
stream that results in a reservoir, a natural lake that includes a water level control structure at one location, and a natural lake with no structure that is
characteristically round.
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different numbers of RSVRs and NLs in the training datasets,
we downsampled the data to make the two classes balanced.
When training the models, the epoch number was set to be
50, and the batch size was 32. In each epoch, the data were
randomly shuffled. When finishing the training, we predicted
the labels for the validation data.

After completing this model-training process, we compared
the predicted NL and RSVR labels against the manually classi-
fied labels and computed the model accuracy as the number
of correct predictions divided by the total number of predic-
tions. We repeated the cross-validation procedure 10 times to
obtain average overall model accuracies. The mean validation
accuracy for both models was approximately 0.8, indicating
that both models were able to predict a lake belonging to
either NL or RSVR 80% of the time (Fig. 12).

Once we had well-performing models, we reran the models
using the full dataset (i.e., we did not need the 10% validation
dataset) to make predictions for lakes that were not in the
training datasets. We calculated a metric of the difference

between the probability of the lake being RSVR
(lake_prob_rsvr) and the probability of the lake being NL
(lake_prob_nl) so that users can assess the likelihood of
classification. When the difference is large, the classifica-
tion has a high probability of being correct (e.g., 0.9 for NL
and 0.1 for RSVR would indicate a high likelihood that the
lake is a NL). When the probabilities are both around 0.50,
with a difference close to 0, then the correct classification is
basically a coin-flip.

Step 4: Refine the lake classification
The final step in our classification effort was to use two addi-

tional rules to refine the classification. The first rule stated that
for any lake that was classified as an NL by our model, but that
had an NHD Fcode indicating it is a reservoir (43,600–43,626),
we reclassified as a RSVR. There were � 4000 out of a total of
77,667 NLs that fell in this category. We inspected many of the
named RSVRs in this category and found that they did indeed
meet our definition of reservoirs. Note that the vast majority of

Fig. 10. Randomly selected (A) natural lake (blue) and (B) reservoir (red) PNG files used in training the classification model and demonstrating the simi-
larity in shapes of NLs and RSVRs. The model used outlines only; filled polygons are displayed for easier visualization.

Table 1. Summary statistics of northeast (NE) and United States (U.S.) model results.

Model
Number of lake polygons

in training dataset
Number of states
used in model

Number of lake polygons in
test dataset

NE 7118 17 45,443
U.S. 5044 15 79,860
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Fig. 11. Map showing probabilities associated with the classification of all lakes ≥ 4 ha as either natural lakes (high confidence NL: lake_prob_NL = 0.75–
1.00, dark blue; low confidence NL: lake_prob_NL = 0.50–0.74, light blue) or reservoirs (high confidence RSVR: lake_prob_NL = 0.00–0.25, dark red;
low confidence NL: lake_prob_nl = 0.26–0.49, light red) by the machine learning models. Note that the 1 and 0 indicates lakes that were manually clas-
sified in step 2 (i.e., visually). Darker shading indicates higher confidence of classification. Below are large-scale maps of the southeastern U.S. (left) and
the north-central region of the U.S. (right) showing finer resolution imagery of model classifications.
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lakes in the NHD are classified as “natural” (� 125,000 out of our
total dataset of 137,465). Therefore, NHD Fcodes can be used to
identify lakes that were incorrectly predicted to be natural when
they are reservoirs, but not to identify NLs that are incorrectly
labeled as reservoirs (see also Technical Validation). Moreover,
since the subset of lakes coded as “natural” by NHD likely
includes reservoir, the actual false negative rate for machine clas-
sification as a reservoir is unknown.

The second rule related to the angularity of the lake shore-
line. Using this rule, we subdivided the RSVR class into 2 sub-
classes. Subclass RSVR_A includes reservoirs with non-angular
shapes whereas subclass RSVR_B from includes reservoirs that
are angular and often isolated from rivers. To identify those
reservoirs in RSVR_B, we used one of the data flags that was
created in the LAGOS-US LOCUS v1 data module that indi-
cates whether the shape of the lake is strongly angular, which
is indicative of being artificial (Cheruvelil et al. 2021; Smith
et al. 2021). An angular lake is defined as one with a shape
that nearly conforms to a rectangle using the ratio between
the lake area and the area of the minimum bounding rectan-
gle area that is close to 1 (Smith et al. 2021). Many of the lakes
with the highest angular values are also isolated (3042 out of
3370) and so are likely not to fit the traditional definition of
reservoirs that assumes they result from a dammed river. We
also found 1334 lakes that our model classified as NLs but that
were flagged as angular, which we reclassified as RSVR_B. Even

though such lakes are in the NHD dataset as “NLs,” we did
not include such angular lakes in the manually classified
datasets because these lakes are not particularly common and
do not fit our definitions.

Technical validation
Although it is not possible to conduct technical validation of

the source datasets that were used in this study, instead we
describe the different steps of our workflow in which we attempt
to ensure data quality of the variables that we have created. Fur-
thermore, as for the other LAGOS-US data products that have
been created, we do not always definitely differentiate between
“good” or “bad” data during technical validation, and instead
ensure that our intended processes are doing what we intended
through data checks during all input or processing stages, and to
identify where caution should be taken by future users by creat-
ing data flags for them (see next section). Finally, we validate our
dataset against other known data products for large reservoirs.

Data flags
We created two data flags that describe potential data qual-

ity issues for future users to consider (Table 2). First, we
flagged RSVRs with the connectivity class of “Isolated.” It is
likely that some of these isolated RSVRs are human-
constructed water bodies that do not meet our definition of
reservoir (Box 1), but have high levels of human modification

Fig. 11. Continued

Rodriguez et al. Lagos-us reservoir
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(as evidenced by straight lines; Fig. 13). In fact, many of these
systems are human-constructed ponds in highly populated
areas. Second, we flagged NLs that were less than 50 m from a
dam in the NID, which should not be the case but is likely a
reflection of the fact that we allowed some lakes with water
control structures to be classified as NLs (Fig. 13).

Nevertheless, this (and the previous) flag provides cautionary
information on potentially misclassified waterbody polygons.

Validation
We validated LAGOS-US RESERVOIR using both the Reser-

voir Morphology Database (Rodgers 2017) and the Global Res-
ervoir and Dam (GRanD), The Reservoir Morphology Database
includes 904 unique LAGOS lakes that our machine learning
model classified as a reservoir in each case with a median
probability of reservoir classification of 90.5%. The 2019
GRanD v1.3 classifies 2320 LAGOS lakes ≥ 4 ha as reservoirs
(Lehner et al. 2011; Messager et al. 2016). Of the lakes com-
mon to both databases, 1992 (85.9%) were classified as reser-
voirs (either RSVR-A or RSVR-B) by LAGOS-US RESERVOIR.
Some of the 14.7% of lakes differently classified between
GRanD and RESERVOIR are a result of our definition of reser-
voir, rather than inaccuracy in our model predictions. For
example, Lake Cayuga, the longest of the Finger Lakes in New
York, has a water regulating lock but was naturally formed.
Therefore, although the lake is included in GRanD, we con-
sider it a NL in RESERVOIR. It should be noted that our vali-
dation step was conducted for lakes that are present in the
GRanD dataset and that are generally larger (for shared lakes:
median surface area = 682 ha, 1st quartile = 276 ha, 3rd

quartile = 2397 ha), and so future efforts should focus on
external validation for smaller lakes.

Data use and recommendations for reuse
Users of RESERVOIR should make note of four important

points. First, we strongly encourage the use of the detailed User
Guide (Polus et al. 2022) and the data flags as described above to
identify lakes that might warrant further inspection. For exam-
ple, it is likely that the RSVR_B class includes reservoirs with high
levels of human modification. In fact, we analyzed the land use
within a 500 m buffer surrounding such water bodies and found
them to be dominated by non-natural land uses (i.e., agriculture
or urban land cover) rather than natural land uses (i.e., forest,
grassland, or wetland). The median non-natural cover was

Fig. 12. Model validation accuracy for the 10 model iterations for the
two models (NE and U.S.).

Table 2. Summary showing the number and percent of lakes
with cautionary data flags. The complete dataset includes
137,465 NLs and RSVRs.

Flag
Number of
occurrences

Percent of flags
in each class
(RSVR or NL)

lake_rsvr_rsvrisolated_flag 15,475 26%
lake_rsvr_nlneardam_flag 5485 7%

Fig. 13. Examples of RSVRs with “isolated” connectivity class. These lakes are not connected to any other lake, river, or stream. See text for further
details.
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� 90% for RSVR_B lakes vs. less than 30% for both NL and
RSVR_A lakes (Polus et al. 2022). Second, users may want to use
the prediction probabilities to select the RSVRs that are very
likely to be correctly classified as such (e.g., lake_rsvr_probrsvr
> 0.85) rather than the 0.50 cutoff that is included in this mod-
ule. Third, this module does not include reservoirs smaller than
4 ha. Fourth, two of the data sources used to create this module
are dynamic. The dam data in NID changes through time with
the building and removal of dams, and there are continuous
updates to the NHD. Therefore, the snapshot used for the dam
locations and the lake polygons in RESERVOIR may not exactly
match future iterations of the NHD and NID.

LAGOS-US RESERVOIR v1 will be the first research-ready
dataset of its scope and scale. However, those wanting to use
the data for local or single-state purposes will want to com-
plete additional manual checking of the data prior to use. RES-
ERVOIR can be linked with other LAGOS-US modules as well
as additional national-scale datasets via common identifiers to
enable scientists to conduct a wide range of reservoir and NL
studies. This module will facilitate the study of both NLs and
reservoirs at regional- to conterminous-scale in the U.S. for
lakes as small as 4 ha, allowing scientists and environmental
managers to better understand the similarities and differences
between NLs and reservoirs, estimate the role of both in global
cycles, and predict lake responses to global changes.

Comparison with existing datasets
RESERVOIR is the first to classify lakes as either NL or RSVR at

a very broad spatial extent and for all lakes above a relatively
small area threshold (i.e., ≥ 4 ha). Several datasets exist that
include both NLs and reservoirs (Table 3). However, the majority
of national or global lake datasets do not differentiate between
these two types of lakes. Additionally, they do not define their
classification criteria of reservoirs, or use “lake” and “reservoir”
interchangeably without defining what constitutes each
(e.g., ICOLD 1998, ILEC 2002; Table 3). For example, although
the MSSL Global Lakes Database classifies them, it does not clas-
sify NLs explicitly (Birkett and Mason 1995). The HydroLAKES
Database (Messager et al. 2016) does not independently differen-
tiate between NLs and reservoirs; however, it is co-registered with
the Global Reservoir and Dam (GRanD) database (Lehner
et al. 2011; Messager et al. 2016). Finally, the Survey of the State
of World Lakes (ILEC 2002) is unique in its global scale but does
not differentiate between NLs and reservoirs.

The NHD includes Fcodes that indicate lake types (e.g., lake/
pond or reservoir). In constructing the LAGOS-US database some
subcategories of NHD reservoirs that are typically outside the pur-
view of limnological research were prefiltered out (e.g., Fcode
43601: aquaculture, Fcode 43608: swimming pool) whereas
others were not (e.g., Fcode 43615: water storage reservoirs; Che-
ruvelil et al. 2021). In addition, the lack of a reservoir NHD Fcode
does not preclude the possibility that a lake is a reservoir. Only
8622 lakes in RESERVOIR are coded as reservoirs by the NHD and
4043 of those are classified as NLs. Inspection of these lakes with

conflicting classifications found that they are generally small lakes
(median size = 7 ha). Generally, our machine learning classifica-
tion appears to perform best on visually classifying large reservoirs
and the large dams associated with their creation, which aligns
with a lack of false negatives when compared to the > 101 ha sur-
face area Reservoir Morphology Database (Rodgers 2017). We
conducted a manual evaluation of the 100 largest named lakes
with conflicting RESERVOIR and NHD classifications. While
some lakes lacked sufficient information to determine the correct
class, the vast majority were humanmade reservoirs rather than
NLs. In fact, just one lake was confirmed to be a NL, which
appeared to have been enlarged through damming. Therefore, we
gave preference to the NHD classification, when available.

Beyond the NHD, only three existing datasets include a clas-
sification that identifies all lakes as either a NL or reservoir
(Birkett and Mason 1995; Pollard et al. 2018; Fang et al. 2019).
However, these three studies include a relatively small number
of lakes or include only very large lakes (Table 3). There are also
some reservoir-only datasets; however, those often focus on
large reservoirs with sizable impoundments or dams. For exam-
ple, the World Register of Dams, a global database containing
25,000 reservoirs, limits the reservoirs in its database by only
containing those with a dam height ≥ 15 m (ICOLD 1998). The
Reservoir Morphology Database of the United States includes
detailed information about reservoirs such as dam height, dates
for construction of dams, as well as the storage, discharge and
volume, but is only for reservoirs ≥ 101 ha (Rodgers 2017;
Table 3). Therefore, RESERVOIR will facilitate studying a wider
range of reservoirs based on waterbody and dam size, as well as
the regional-conterminous U.S. study of reservoirs and NLs.
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