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Broad-scale temporal or spatial scientific investiga-
tions, such as those represented by macrosystems

ecology (MSE) projects, address very complex problems
that require the collection and synthesis of data from
many sources, the collaboration of people from diverse
disciplines, and the application of highly complex analyt-
ical approaches (Goring et al. 2014; Heffernan et al. 2014).
The thorough and transparent documentation of proce-
dures for data collection, processing, and analysis is criti-
cal for the success of such projects, and effective informa-
tion management strategies are required. A wide range of
approaches to information management are currently in

use, from modest informal information management by
individual investigators, to one or more information man-
agers supporting a multi-investigator project (eg a Long
Term Ecological Research [LTER] site), to an entire infor-
mation technology department supporting research plat-
forms (eg National Ecological Observatory Network
[NEON]). Most MSE projects fall somewhere on the con-
tinuum between the extremes of a single investigator and
a NEON-type platform in their information management
needs, protocols, and procedures.

Data are valuable beyond the original MSE project and
should be preserved and made accessible, particularly if
public funds were used in their creation (eg National
Science Foundation [NSF]). Time, effort, and potentially
expensive equipment are needed to collect data that, in a
changing world, quickly become irreplaceable (Wolko-
vich et al. 2012), and many MSE projects rely on previ-
ously collected data. However, publishing data requires
offering other researchers and the public unfettered and
full access to those data (Molloy 2011). For the researcher
this means relinquishing complete control over one’s data,
as well as exposing the data and research to a greater
degree of scrutiny than in the past. This prospect, and the
reluctance felt by some researchers regarding “open sci-
ence”, is as old as scientific discoveries themselves. The
advent of scientific journals facilitated an openness with
regard to information, as long as all the data and proce-
dures could be published in a journal article (Nielsen
2012). Yet contemporary science has long surpassed the
ability to include all the data in journal articles, and com-
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In a nutshell:
• Large research collaborations distributed across space, time,

and disciplines require careful documentation of the scientific
process, from beginning to end

• As scientific research expands the scales of analysis and syn-
thesis, data re-use becomes vitally important; information
management is critical when combining data from various
sources

• Additional incentives, support, and training are needed to
encourage scientists to publish data that are well-documented
in terms of their origin, accuracy, and any manipulations
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plex models and computationally intensive tools currently
used in ecological analyses are often difficult or impossible
to convey in a verbal or written description (Ince et al.
2012). Consequently, most research results currently
being published are not transparent enough to be repeat-
able (Michener and Jones 2011).

Fostering an open science environment requires con-
sideration of information management components
within the life cycle of a project. We describe such a cycle
in Figure 1, where a traditional research project (depicted
in dark blue) includes planning and executing data col-
lection, ensuring data quality, and analyzing data.
Usually, this cycle ends with a dataset stored on a desktop
computer of one or more project participants following
data analysis, with little or no documentation describing
data characteristics or methods used. Unfortunately, such
data are typically lost sooner or later. The tools and
approaches needed to efficiently manage the large
amounts of data generated by a project have generally not
kept pace with the overall data deluge, the increased
complexity of scientific questions asked, and the diversity
of collaborating disciplines (Reichman et al. 2011).
Furthermore, most environmental scientists lack train-
ing, or interest, in these areas, which results in a shortage
of individuals with expertise in both the underlying sci-
ence and the needed information management tools. As
a result, data management practices frequently become
an (unfunded) afterthought rather than a carefully
planned process that can improve complex science. 

Two steps that should be adopted by the scientific com-
munity to complete the data life cycle and ensure the
long-term availability and re-use of this material are
“describe/document” and “preserve/publish” (Figure 1).
Data must be associated with metadata that describe the
“how, what, when, where, and who” and then archived so
that they remain available (Michener et al. 1997;
Whitlock 2011). This enables the data to retain value
beyond the life of a project, creating additional opportu-
nities for research. Although the concept of a closed data
life cycle is not new, data documentation and publication
are particularly critical in facilitating research at broad
spatial and temporal scales, such as that associated with
MSE research, in addition to allowing the steps
“Discover”, “Integrate”, and “Analyze” (light blue section
in Figure 1) to be integrated across many projects. 

Rigorous data management requires resources and funds
for each project. The value of the data can increase
throughout and beyond the termination of a project but
only if data are properly described, preserved, and made
available for future research projects. Therefore, there is
clearly immense value in the inclusion of financial sup-
port from funding agencies and institutions for data man-
agement and preservation activities (Kueffer et al. 2011).
In addition, researchers should receive credit (from hiring
and promotion committees as well as funding agencies)
for data publication as an intellectual contribution to the
scientific enterprise (Weltzin et al. 2006). Unfortunately,

few scientists are satisfied with the current levels of data
sharing or long-term archiving, due in part to lack of
funding to gain the expertise needed to properly manage
data (Tenopir et al. 2011). 

Here we provide examples that demonstrate how incor-
poration of and interaction with professionals in the
environmental information management field are essen-
tial at every step of a given project’s data life cycle.
Specifically, we highlight strategies in four important
areas that are being used in current MSE projects: (1)
data collection, (2) integration of data from many
sources, (3) data integration across scales and from mod-
eling, and (4) provision of access to and documentation
about data. 

n Data collection: incorporating information
management early

Integrating information management into a project early
on, before and during the data collection phase, is partic-
ularly important when a large volume of data is collected
and/or the data are complex, when many people in differ-
ent places are involved in the data collection, and/or
when the data are collected over an extended time
period. It is imperative that data are collected through
methods recognized by the scientific community
(WebPanel 1). Quality control and data aggregation

Figure 1. The data life cycle includes the description and
preservation of data. A traditional project (dark blue
background) includes planning, data collection, data quality
control, and analysis. Projects relying on existing data (light blue
background) for all or part of their analyses go through the steps
of planning, collecting, quality assurance and quality control
(QA/QC), additional data discovery, data integration, and
finally analysis. To complete the data life cycle (white back-
ground), one must add the steps of data documentation
(metadata) and data archiving in a publicly accessible repository.
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approaches need to be transparently documented and
data should be labeled according to a standardized vocab-
ulary. Without this degree of coordination, it is difficult
to integrate data and assess the quality and fitness thereof
for use. Two current MSE projects – “Climate Forcing of
Wetland Connectivity in the Great Plains: An
Exploratory Study Using Graph Theory” (Wetland
Connectivity) and “Grassland Sensitivity to Climate
Change at Local to Regional Scales: Assessing the Role
of Ecosystem Attributes vs Environmental Context”
(EDGE) – exemplify the advantages of addressing data
management early in a project’s life cycle. 

Both projects involve the collection of large amounts
of high-frequency sensor data (eg air and soil tempera-
ture, carbon dioxide flux, land cover) in addition to other
parameters across multiple grassland sites in the US
(McIntyre et al. 2014). They differ in that the Wetland
Connectivity project is using data collected by other
entities (including the US Geological Survey and US
Fish and Wildlife Service) whereas the EDGE project is
placing sensors in the field and managing the raw data,
with the additional task of monitoring sensor perfor-
mance for high-quality data collection. However, both
projects require data to be quality controlled, stored, and
secured. The Wetland Connectivity project is using pre-
viously curated data with “cloud technology” (ie offsite
commercial technologies for storing, securing, and shar-
ing the information) and manages the analytical products
but does not store the raw data (this is managed by other
entities). In contrast, the EDGE project relies on a sensor

network and stores and shares data on a
local server. 

The EDGE project must develop
automated approaches for quality con-
trol of the high volume of streaming
sensor data. EDGE participants are
using a Data Toolbox for MATLAB
(The MathWorks Inc, Denver, Colo-
rado) developed by the Georgia Coastal
Ecosystem LTER site (Sheldon 2008).
This system has many built-in functions
for performing data manipulation tasks
that would otherwise require custom
coding, and provides a user-friendly
graphical interface for applying quality
assurance/quality control (QA/QC)
rules. The toolbox generates a log file of
all operations performed for inclusion
in the metadata to document any data
transformations. EDGE also employs
the Open Source DataTurbine (OSDT)
server – a real-time streaming data
engine that receives data from sensors
and then transmits that data to other
programs, such as Real-Time Data
Viewer (RDV) – to examine sensor per-
formance (Fountain et al. 2012). The

RDV provides an interface for viewing time-synchronized
plots of the data, thus facilitating the detection of anom-
alous patterns that indicate sensor malfunctions (Figure 2;
Daugherty et al. 2011).

The researchers managing these two MSE projects aim
to provide preprocessed data to their collaborators and to
demonstrate the importance of well-conceived informa-
tion management strategies. To allow for meaningful
analysis by project members, we argue that community-
developed – preferably peer-reviewed – and well-docu-
mented standards for gap-filling, aggregating, converting,
and modeling of data need to be followed. Data should be
provided using defined, controlled vocabularies for vari-
able names to ensure a high degree of clarity and eventual
automation of analyses. These information management
strategies can enable project participants to access and
store preprocessed datasets in a central location with
well-documented provenance for access and determina-
tion of usability for subsequent analyses by collaborators
from different disciplines. 

n Data integration: integrating data from many
sources

Complete databases on ecological variables that span
broad spatial and/or temporal scales are rare (eg Fitter and
Fitter 2002; Bond-Lamberty and Thomson 2010). The
datasets that would be included in such databases either
do not exist or are too often hidden away in the comput-
ers or filing cabinets of many different researchers

Figure 2. The Real-Time Data Viewer (RDV), a visualization environment for
scientific data, can be used to view remotely collected sensor data streamed through
DataTurbine. Researchers can quickly learn if a sensor is not functioning correctly, as
shown here in a plot of three soil moisture probes.
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(Rosenthal 1979). Compiling such datasets into a single,
integrated database is one strategy to conduct MSE
research across broad scales. By definition, each dataset
originates from a different source but is of the same gen-
eral thematic type (eg lake chemistry but not stream
biota). In creating an overarching database, it is assumed
(though not always true) that the heterogeneous datasets
found in ecology share, or can be converted to, common
variables, contain spatially explicit location data, and
include information about general methods for sample
collection and processing. 

Broad-scaled, integrated ecological databases compiled
from discrete, individual datasets have enormous value.
First, the database provides the necessary ecological obser-
vations for new analyses by extending the spatial and tem-
poral extents beyond those commonly studied. With suffi-
cient numbers and distribution of comparable datasets,
and appropriate analytical approaches (Gurevitch and
Hedges 1999), new research questions that span multiple
scales can be addressed (a key aspect of MSE research;
Heffernan et al. 2014). Additionally, the database can be
integrated with biogeochemical, geophysical, and climatic
datasets already available at broad scales (Figure 3).
Moreover, statistical analyses using such data may uncover
subtle patterns or effects only visible because of the large
number of observations, the extent of which may be
beyond the capability of any one study to collect.
However, common data integration problems that com-
plicate database compilation include the lack of a consis-
tent coordinate reference system, taxonomic naming
inconsistencies, and the semantics of variable names.

Developing integrated databases from individual datasets
can be greatly facilitated by federated data repositories (eg
DataONE; Michener et al. 2012), the use of standard meta-
data and data exchange formats (eg WaterML; Zaslavsky et
al. 2007), existing database formats (eg CUAHSI ODM;

Tarboten et al. 2008), the development of workflow tools
(Jones and Gries 2011; Michener and Jones 2011), and the
development of ontologies (WebPanel 1; Madin et al.
2008). Such information and tools can help ameliorate the
problem of integration, but not (yet) automate it.
Integration is still extremely time consuming and cannot
typically be achieved with off-the-shelf software. The
development of such an integrated database is the goal of
the MSE project “The Effect of Cross-Scale Interactions
on Freshwater Ecosystem State Across Space and Time”, in
which a database of lake chemistry will be constructed
using data collected from approximately 15 000 lakes
across 17 US states. The data were obtained from state,
tribal, and federal natural resource agencies, university
researchers, citizen groups, and environmental consulting
agencies. Each of the steps in creating an integrated data-
base presents its own challenges:

• Discover potential datasets: datasets are often not pub-
licly available and have to be identified based on
insider knowledge. 

• Obtain datasets: generally, the dataset owner should be
identified and contacted, and data access and use,
including the form of acknowledgement, must be nego-
tiated.

• Develop a database schema: data integrity and logical
consistency must be ensured, but the inclusion of differ-
ent types of data requires flexibility.

• Develop a strategy for tracking data provenance: the
origin and metadata for each dataset need to be inte-
grated into the database, documenting data manipula-
tion steps and QA/QC approaches. 

• Integration into one data model and comparable mea-
surement units: importing datasets into the schema
requires both programming skills and domain knowl-
edge.

Figure 3. Description of how multiple individual ecological databases distributed across broad geographic areas can be integrated with
broad-scaled, single-themed databases to create a multi-themed macrosystems ecology database.
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It is critical that informatics professionals and ecologists
collaborate during all steps of data consolidation. Data inte-
gration across datasets highlights some of the issues that
would be addressed through improved documentation and
the use of metadata at the individual project level by
knowledgeable individuals, such as information managers. 

n Data integration: from local observations to
models and back

Many MSE research projects need to integrate large-scale
data products with site-based observational data. One area
with particularly high levels of demand for such products
is in large-scale biogeochemical and ecological modeling.
Typical input variables for global biogeochemical models
(eg the Terrestrial Ecosystem Model [Hayes et al. 2011] or
the Community Land Model [Oleson et al. 2010]) include
locally measured fields such as surface-level ozone (O3)
indices and nitrogen deposition, land use and cover, and
climate data products based on decades- to centuries-long
monthly or daily point measurement datasets (eg Kistler et
al. 2001). However, datasets differ in resolution and accu-
racy and to prepare them all as input to a particular model
at a predetermined resolution provides an information
management challenge. The MSE project “The Future of
Ecosystems and Extremes: Using Diverse Environmental
Data Sets in Support of Regional to Global Earth-System
Models and Predictions” will be using different datasets as
inputs to several biogeochemical models to determine the
ecosystem response to climate extremes. A goal of this
project is to reduce model uncertainty due to model struc-
ture by comparing ecological outputs from different mod-
els based on common meteorological and environmental
input conditions.

Difficulties involved in developing gridded (ie cell-based)
datasets from point-based observational and model data
include, among others, spatial and temporal interpolation.
Interpolation involves scaling spatially from sites to grids,
scaling temporally from longer (ie monthy) to shorter (ie
hourly) timescales, and considering how to condense infor-
mation available at the subgrid scale (Reilly et al. 2012;
Levy et al. 2014). For instance, monthly or seasonal indices
for O3 (eg SUM06 or AOT40 indices) are often used to rep-
resent the detrimental effects of O3 on vegetation and must
be developed from O3 data collected hourly (Felzer et al.
2004, 2005). Gridded data products (eg Climatic Research
Unit gridded data products; Mitchell et al. 2004), as well as
tools for developing such products, are now available from a
diverse and growing array of sources, including modern sen-
sor networks and historical data. New research continues to
lead to the development of improved data products, such as
the atmospheric and land-use data representing the eddy
covariance footprint measured at Ameriflux (http://ameri
flux.ornl.gov) or NEON (www.neoninc.org) sites. Several
recent projects have combined eddy covariance data with
either remote-sensing coverage from Moderate Resolution
Imaging Spectroradiometer or biogeochemical model data

to provide gridded datasets of gross primary productivity
and net ecosystem exchange for the contiguous US at reso-
lutions of 1 km (Xiao et al. 2008, 2010, 2011) and for the
globe at half-degree resolution (Jung et al. 2009, 2011).
These types of datasets provide an invaluable resource for
modelers to validate their ecosystem function output or
optimize model parameters via Bayesian approaches (Tang
and Zhuang 2009), thus reducing uncertainty in these para-
meters. Currently, most gridded data products exist as man-
aged resources that are produced, updated, and distributed
by specific research and monitoring groups and agencies (eg
the National Atmospheric Deposition Program,
http://nadp.sws.uiuc.edu). While management by specific
groups works well for creating standardized, quality-con-
trolled data products, such products are unique to a dataset
and not necessarily flexible in terms of accessibility and use.

Research projects, including MSE studies, that aim to
improve model representation of how climate change
affects ecosystems will rely heavily on these datasets, and it
is particularly important to carefully document procedures
used for interpolation and/or aggregation, as well as the
provenance of incorporated data. Users of any datasets,
gridded or otherwise, must be able to judge a dataset’s fit-
ness of use for the question under consideration and to be
able to assess data quality based on this documentation. 

n Completing the data life cycle: documentation
and sharing facilitate analysis

There are several ongoing efforts to develop cyberinfra-
structure that facilitates access to data resources. Some
data repositories are providing direct access to data
within statistical packages and workflow systems (eg see
WebPanel 1) via web-based services, facilitating stream-
lined analysis of data and documentation of procedures,
while others are developing more specialized analytical
tools that are available online along with the data. For
instance, the Isoscape Modeling, Analysis, and
Prediction (IsoMAP) toolkit, which focuses on environ-
mental isotope data and is being developed by a collabo-
rative team of ecologists, Earth scientists, information
managers, computer scientists, and statisticians, provides
grid-supported geospatial analytical capacity linked
directly to diverse data collections. The resulting
resources are being integrated into the MSE project
“Inter-university Training for Continental-scale Ecology”
in support of research and graduate education. IsoMAP
will be used as a platform, making spatial data analysis
and modeling accessible to students in intensive interdis-
ciplinary courses where the diversity of student back-
grounds and expertise would prohibit hands-on research
with many other toolkits (Bowen et al. 2012b). 

Examples of the application and use of IsoMAP vary in
scope and level of user knowledge. Among IsoMAP’s
most widely useful aspects is a geostatistical toolkit that
supports predictive modeling of continuous spatial fields
and creation of gridded data products. Applications of
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this tool include converting regional
observations of groundwater isotope ratios
into raster maps showing the contribution
of re-evaporated lake water to precipita-
tion (Bowen et al. 2012a) and mapping
continental-scale patterns of variation in
the hydrogen isotope ratios of precipita-
tion that can be used to discern patterns of
bird migration based on measurements of
the same isotope in feathers (Hobson et al.
2012). 

Development and use of data resources
within IsoMAP encompasses many of the
information management practices intro-
duced above. The data have been compiled
from multiple sources by the development
team, and each data subset is documented
by metadata stored within a metadata cata-
logue (Bowen et al. 2012b). IsoMAP imple-
ments automated data-processing workflows
to facilitate the extraction, manipulation,
and preparation of data requested by users,
and queries to the metadata catalogue allow
this system to identify and retrieve appropri-
ate datasets. The users’ interaction with the
data processing system is simplified through
a set of interactive, browser-based workflow components
(Figure 4). These simplifications increase the accessibility
and efficiency of IsoMAP geoprocessing operations but also
limit the system’s flexibility relative to desktop geographic
information system applications.

The provisioning of data analysis and advanced visualiza-
tion tools through an interface like IsoMAP improves open
science and collaboration. Analyses can be standardized and
documented because IsoMAP data resources and tools are
versioned and all processes conducted within the system are
automatically documented and archived in metadata.
Finally, IsoMAP analyses are conducted on NSF-XSEDE
(www.xsede.org) grid computing resources. Although cur-
rent IsoMAP tools exploit a small fraction of the computing
power available, the potential exists to drastically increase
analytical complexity and data intensity as additional func-
tionality is developed and implemented.

n Conclusions

Macrosystems research involves the collection of large
amounts of raw data, mobilization of previously unavail-
able data, scaling of data products, and custom analytical
tools, as well as challenges in data validation, documenta-
tion, visualization, and storage. Robust information man-
agement must be part of any MSE research project, and the
full engagement of specially trained personnel is indispens-
able for project success. While training researchers in data
management is necessary, the inherent complexity of the
diverse tools and products necessitates that skilled profes-
sionals be included on MSE teams. Publishing project data,

as well as aptly rewarding team participants for such publi-
cation, should be part of a project’s definition of success
and supported by both funding agencies and institutions
(Goring et al. 2014). Recognizing the importance of data as
the foundation upon which science is built clearly demon-
strates that information managers are key members of a sci-
entific team. Data documentation and preservation are
critical; scientific data are irreplaceable, particularly in a
changing global environment, and will likely become,
either alone or as part of a future integrated analysis, the
basis for new research and discoveries.
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