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Abstract. Agricultural land use is typically associated with high stream nutrient concentra-
tions and increased nutrient loading to lakes. For lakes, evidence for these associations mostly
comes from studies on individual lakes or watersheds that relate concentrations of nitrogen
(N) or phosphorus (P) to aggregate measures of agricultural land use, such as the proportion
of land used for agriculture in a lake’s watershed. However, at macroscales (i.e., in hundreds to
thousands of lakes across large spatial extents), there is high variability around such relation-
ships and it is unclear whether considering more granular (or detailed) agricultural data, such
as fertilizer application, planting of specific crops, or the extent of near-stream cropping,
would improve prediction and inform understanding of lake nutrient drivers. Furthermore, it
is unclear whether lake N and P would have different relationships to such measures and
whether these relationships would vary by region, since regional variation has been observed in
prior studies using aggregate measures of agriculture. To address these knowledge gaps, we
examined relationships between granular measures of agricultural activity and lake total phos-
phorus (TP) and total nitrogen (TN) concentrations in 928 lakes and their watersheds in the
Northeastern and Midwest U.S. using a Bayesian hierarchical modeling approach. We found
that both lake TN and TP concentrations were related to these measures of agriculture, espe-
cially near-stream agriculture. The relationships between measures of agriculture and lake TN
concentrations were more regionally variable than those for TP. Conversely, TP concentrations
were more strongly related to lake-specific measures like depth and watershed hydrology rela-
tive to TN. Our finding that lake TN and TP concentrations have different relationships with
granular measures of agricultural activity has implications for the design of effective and effi-
cient policy approaches to maintain and improve water quality.
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INTRODUCTION

Freshwaters are vulnerable to eutrophication in areas
of high agricultural land use and land cover because
agricultural activities are associated with high nutrient
runoff and loading to groundwater and streams
(Arbuckle and Downing 2001, Allan 2004, Taranu and
Gregory-Eaves 2008 , Daniel et al. 2010). High runoff
and loading in these areas is a result of high rates of
nutrient input combined with hydrologic modifications

that decrease the travel time of these inputs from the
land surface to lakes (Blann et al. 2009). Surprisingly,
while some studies have found strong relationships
between agricultural land use and land cover (hereafter
referred to as “land use” or LULC) and lake nutrient
concentrations (Arbuckle and Downing 2001, Taranu
and Gregory-Eaves 2008), others have found more
mixed results (Jones et al. 2008), particularly in studies
that include many lakes located in multiple regions (Sor-
anno et al. 2015). Further examples of such macroscale
studies (see Heffernan et al. 2014) in which lakes are
spread across many regions at distances spanning hun-
dreds to thousands of kilometers include Collins et al.
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(2017) and Read et al. (2015), who found that the
strength of agriculture and lake nutrient relationships
varied depending on geographic region and lake charac-
teristics.
Mixed results from prior studies may be due to two

difficulties in quantifying lake nutrient and agricultural
land use relationships. First, the pathways of nutrients
from fields to streams and ultimately to lakes are com-
plex and indirect (Heathwaite et al. 2003, King et al.
2005, Cherry et al. 2008). For example, in order for
nitrogen applied as fertilizer to reach a lake, it must be
transported to streams or groundwater in excess of
microbial denitrification, plant use, and microbial
uptake. Then, it must travel, again, often undergoing
repeated chemical transformation as it passes through
riparian buffers and along stream networks before
finally entering the lake (Maranger et al. 2018). Each
step of the journey represents an opportunity for those
nutrients to be sequestered or removed. Further, overall
hydrologic transport is influenced by soil type (Naiman
et al. 2010) and topography. Thus, the nutrients that ulti-
mately enter a lake are a function of filtering by the
landscape as well as geochemical transformation pro-
cesses that are difficult to capture at broad scales (Can-
ham et al. 2012, Maranger et al. 2018).
Second, much of our evidence for a connection

between agricultural land use and increased nutrient
concentrations comes from studies focusing on a single
watershed or on several watersheds within a single geo-
graphic region (Renwick et al. 2008, Daniel et al. 2010,
Hayes et al. 2015, Capel et al. 2018a). These studies tend
to focus on very detailed measures of agricultural activ-
ity such as tillage and other practices, nutrient amend-
ments, and their spatial arrangement. However, studies
at broader spatial scales (i.e., the macroscale; Heffernan
et al. 2014), which aim to provide a more general view of
relationships between lake nutrient concentrations and
agriculture, tend to focus only on relatively coarse mea-
sures of agricultural activity (Read et al. 2015, Fergus
et al. 2017, Filstrup et al. 2018, Schmadel et al. 2019).
As a result, it is unclear to what extent the mixed results
from prior broad-scale studies might be due to the lim-
ited use of detailed measures of agricultural activity or
simply from regional variation.
There are two ways in which detailed (i.e., granular)

measures of agricultural activity may be substituted for
their coarse (i.e., aggregate) counterparts. The first is by
using granular measures that are recorded in the same
locations as their aggregate equivalents but are more
descriptive. For example, in broad-scale studies, the pro-
portion of land used for agriculture in a lake watershed
is sometimes replaced by separate representations of the
land used for pasture and the land used for row-crops
(Abell et al. 2011, Collins et al. 2017). The second is by
using granular measures that have the same description
as their aggregate equivalents, but that are measured in
more specific locations. For example, a small number of
lake studies have compared the proportion of land used

for agriculture in near-stream buffers vs. the watershed
as a whole (G�emesi et al. 2011, Soranno et al. 2015).
Although the term granular can be used in a general
sense to describe any detailed agricultural measure, we
define the term more narrowly as only those that have a
specific aggregate counterpart (Table 1).
Prior use of granular data in broad-scale studies of

lake water quality has been limited. For this reason,
findings from broad-scale studies may be less useful in
applied management settings because coarse (i.e., aggre-
gate) land-use and land-cover change metrics have
become less widely used policy instruments (Morefield
et al. 2016). Instead, recent policy interventions go
beyond aggregate measures of agricultural activity to
target more specific measures such as implementation of
specific farming practices, no-till agriculture, and con-
struction of riparian buffer strips (Yang et al. 2005,
NRC 2010, Capel et al. 2018b). Thus, broad-scale studies
could be made more relevant for informing policy inter-
ventions if they used covariates that have a similar level
of granularity to those used in fine-scale studies. For
example, implementation of no-till agriculture policies
may be better informed by covariates at the granular
crop level rather than solely by aggregate covariates like
land used for agriculture (Appendix S1: Fig. S1).

TABLE 1. Medians followed by first (Q25) and third (Q75)
quantiles of predictor variables for 928 lakes.

Granularity and variable Median Q25 Q75

Aggregate
Agriculture (%) 42 25 63

Granular
Pasture (%) 14 7 24
Corn (%) 7 2 17
Soybeans 4 1 14
Buffer agriculture 25 11 48
Buffer natural 41 23 59
Fertilizer N 55 32 91
Fertilizer P 10 6 16
Manure N 27 17 45
Manure P 7 5 12

Other
Forest 25 12 46
Wetlands 3 1 8
N deposition 6 5 7
Precipitation 910 830 1000
Baseflow 49 33 62
Wetland potential 15 5 26
Soil organic carbon 4000 2900 5300
Clay 10 5 17
Maximum depth 9 6 14
Watershed-lake ratio 15 6 34

Notes: Also shown is whether each predictor is defined as an
aggregate or granular measure of agriculture or as a non-agri-
culture (other) predictor. Dashed entries for the granularity cat-
egory indicate an identical categorization as the preceding
predictor.
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One likely reason that broad-scale studies have rarely
used granular agricultural data is that until recently,
such data have not been available with corresponding
lake nutrient concentration data over large geographic
extents. Although a few examples exist of studies con-
necting granular agricultural data to either stream nitro-
gen or phosphorus concentrations at the macroscale
(Boyer et al. 2002, Metson et al. 2017, Bellmore et al.
2018), most studies have focused on either nitrogen (N)
or phosphorus (P) but not on both at the same time
(Alexander et al. 2008). Crucially, we are not aware of
prior work examining relationships between a multiple
granular measures of agricultural activity on either lake
N or P concentrations at macroscales.
There are several plausible expectations, which are

based on the findings of broad-scale stream studies as
well as the findings of fine-scale lake studies, for the
type of relationships between such measures and lake
nutrient concentrations that may emerge at macroscales.
First, we expect that increased nutrient inputs to the
land surface as fertilizer and manure will increase lake
nutrient concentrations (Renwick et al. 2008, Bellmore
et al. 2018). Second, we expect that lakes with water-
sheds that have high soil clay content and high soil
organic carbon content will have higher lake nutrient
concentrations. This will occur because clay soils tend
to have higher rates of surface runoff and have higher
organic matter content relative to sandy soils, despite
the tendency for higher organic matter content to
increase water storage and reduce surface runoff (Capel
et al. 2018a). Finally, we expect that lakes with stream
networks characterized by extensive near-stream agri-
culture will have higher nutrient concentrations because
there will be less interception of agricultural runoff
(Naiman et al. 2010).
Although we can formulate potential expectations for

relationships between agricultural activities and lake
nutrients at the macroscale by building on the findings of
prior studies, several key uncertainties remain. The first
key uncertainty is the extent to which lake and watershed
characteristics, such as watershed hydrology and soil type,
affect relationships between granular measures of agricul-
tural activity and lake nutrient concentrations at the
macroscale. For example, macroscale studies have found
that lake P concentrations are strongly dependent on lake
depth (Collins et al. 2017), but the degree to which granu-
lar agricultural data provide additional explanatory
power is unknown. Similarly, Abell et al. (2011) found
that watershed to lake area ratio (i.e., lake water residence
time) was positively related to lake N concentrations after
controlling for aggregate measures of agricultural land
use, but it is unknown whether this mediation effect
would also affect relationships with more granular mea-
sures of agriculture.
The second key uncertainty is the extent to which rela-

tionships between granular measures of agricultural
activity and lake nutrient concentrations vary regionally.
For example, previous macroscale studies on lake

nutrient concentrations have found that relationships
between lake chlorophyll and nutrient concentrations
vary regionally according to hydrologic subregions
(Wagner et al. 2011, Qian et al. 2019). Models in which
separate relationships (e.g., slopes) are estimated for dif-
ferent regions, such as those used by Wagner et al.
(2011), can be used to test differences among regions in
the sensitivity to nutrient predictors. Wagner et al.
(2011) found that the slope of the chlorophyll to P rela-
tionship was notably higher in several of their study
regions and found that lakes with high pasture land use
in their watershed were more sensitive to changes in P
concentrations (larger, positive slope estimate). They
suggest that elevated sensitivity in high pasture regions
is due to dual N and P nutrient enrichment associated
with this land cover type. Given the findings of this and
other studies in stream ecosystems (Alexander et al.
2008), it follows that other relationships in lakes may
vary regionally, but whether or not this includes relation-
ships with granular measures of agricultural activity
remains unknown.
We addressed the knowledge gaps described above by

asking two questions using data from approximately 900
lakes in the northeastern and midwestern United States:
(1) How do granular measures of agricultural activity
relate to lake N and P concentrations? And (2) how do
relationships between agricultural activities and lake
nutrients vary regionally among hydrologic and climatic
regions? To answer these questions, we fit statistical
models of lake nutrient concentrations as a function of
granular measures of agricultural activity such as the
proportion of watershed area land use of specific crops,
and near-stream land use, as well as fertilizer and manure
applications. We also included a variety of lake and water-
shed characteristics as predictors to account for the influ-
ence of other drivers. Finally, our models included a
hierarchical component where relationships between
watershed land use and lake nutrient concentrations were
allowed to vary among hydrologic subregions to examine
potential regional variation in these relationships.

METHODS

Data description

We analyzed data on lake total nitrogen (TN) and
total phosphorus (TP) concentrations from the LAGOS-
NE data product (Soranno and Cheruvelil 2017a). The
LAGOS-NE nutrient data are limited to surface (or epil-
imnetic) samples and were derived from federal, state,
tribal, and non-profit agencies, as well as university
researchers and citizen scientist data collections (Sor-
anno et al. 2017). We collapsed lake nutrient data to
long-term median values computed using all data from
the summer stratified period (i.e., 15 June–15 Septem-
ber) available for each lake between 2000 and 2010. For
the lakes that met our selection criteria (see below) the
median number of samples per lake was nine
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(range = 3–94) and the median number of years sampled
was four (range = 2–10).
Our first source for granular agricultural information

was the 2010 Cropland Data Layer (CDL; USDA 2019),
which we used to generate lake watershed and stream
buffer estimates of the proportion of land cover due to
specific crops such as corn and soybeans. We used the R
package cdlTools to access CDL products (Chen 2018).
We used the 2010 CDL data because this was the first
year of high resolution (30 9 30 m) CDL data collec-
tion that matched our lake nutrient data collection win-
dow. Because the CDL contains detailed coverage for
dozens of crops, including rare crops with little to no
coverage, we recategorized CDL data based on Lark
et al. (2015) to a more limited set of categories
(Appendix S1: Table S1).
As a more granular representation of watershed agri-

cultural land use, we measured the proportion of land
cover in agricultural and “natural” land uses in 100-m
buffers of lake shorelines and streams for each lake
watershed. We chose a 100-m buffer width because this
width is inclusive of nearly all riparian buffers (Mayer
et al. 2007). Here agricultural land use is defined in the
aggregate sense as the proportion of land used for agri-
culture in a lake’s watershed whereas “natural” land uses
include the sum of all non-agriculture and non-devel-
oped CDL classes. We identified the streams associated
with each lake using the stream network extraction tool
in the nhdR interface (Stachelek 2019a,b) to the
National Hydrography Network (USGS 2019). We com-
piled soil characteristics for each lake watershed using
the Gridded Soil Survey Geographic Database
(gSSURGO; USDA 2019) where we used the python
package gssurgo (Stachelek 2019a,b) to access
gSSURGO products. One such product was wetland
potential, defined as the percentage of the soil grid that
meets the criteria for hydric soils formed under condi-
tions of saturation, flooding, or ponding long enough to
develop anaerobic conditions but not so long as to be
classified as a permanent waterbody (USDA 2019).
Finally, we compiled mean annual nutrient inputs via
fertilizer and manure to lake watersheds from 1982 to
2001 using county level data provided by Ruddy et al.
(2006). We spatially aligned these county level estimates
to lake watershed polygons provided by LAGOS-NE
(Soranno and Cheruvelil 2017b) using the area-weighted
interpolation functions provided by the sf R package
(Pebesma 2018). All of our data and data processing
code are available online (see Data Availability).

Location information

We restricted the lakes included in the study to those
located within the footprint of LAGOS-NE which
includes lakes located in 17 northeastern and midwest
U.S. states (Soranno et al. 2017). We excluded lakes from
our analysis if they had a surface area >400 km2 or a
maximum depth >35 m. These removals resulted in

exclusion of ~40 lakes which we regarded as outliers that
would likely have undue influence on model results
because such large and deep lakes are likely to respond
differently to enrichment as a result of enhanced stratifi-
cation. To ensure an adequate comparison between
aggregate and granular measures of agriculture, we fur-
ther limited lakes in our study to those with at least 10%
of the total watershed area devoted to agricultural land
use and those that were sampled at least three times
between 2000 and 2010. A total of 928 lakes met these
selection criteria (Fig. 1). Because we focused on lakes
in agricultural watersheds, more than 35% of lakes in
our study are considered eutrophic to hypereutrophic
using chlorophyll a as a diagnostic vs. only 15% for all
lakes from Soranno et al. (2017) located within our study
extent (Appendix S1: Fig. S3). For the regional terms in
our models, we used hydrologic regions at the sub-basin
(i.e., HUC4) level because this level was small enough to
give a sense of overall spatial variation but large enough
to encompass sufficient numbers of lakes to estimate
within region variance.

Model overview

We evaluated the effects of agricultural activities on
lake TN and TP concentrations using a Bayesian hierar-
chical modeling approach. A list of lake and watershed
covariates with their summary statistics is available in
Table 1. In the first part of our model evaluation, we
compared models that each had only a single measure of
watershed land use along with all remaining non-water-
shed land-use predictors. These non-watershed land-use
predictors were included in every fitted model and were
defined as measures of near-stream land use, soil charac-
teristics, and lake and watershed characteristics. We took
this approach of evaluating one watershed land-use mea-
sure at a time for two reasons: (1) because measures of
watershed land use were highly correlated and (2)
because it allowed us to more rigorously test our expec-
tation that granular measures of agriculture provide
additional explanatory power beyond that offered by
more typical aggregate measures of agriculture.
In the second part of our model evaluation, we

selected the top-ranked watershed land-use model
according to our selection criteria for lake N and P for
further inspection of their standardized coefficient val-
ues (See Table 1). Our models were of the form:

yi�N aj ið Þþb1�X1i ...bn�Xniþc1j ið Þ�W1iþcmj ið Þ�Wmi

� �

aj
c1j

� �
�MVN

la
lc1

� �
;R

� �

where yi is either TN or TP concentration for lake i, and
b are “global” (i.e., fixed effect) coefficients. This set of
global coefficients included estimates for watershed soil
characteristics, near-stream land use, as well as fertilizer
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and manure inputs for each lake (Xi). Whereas b coeffi-
cients were estimated as fixed effects, c coefficients and a
intercepts were estimated as varying (i.e., random) slopes
and intercepts respectively among m hydrologic regions j
on watershed land-use (Wij). Region-specific intercepts a
and c slopes were assumed to come from a multivariate
normal distribution (MVN) where la and lc1 are their
respective grand mean (i.e., population level) estimates.
We tested a variety of watershed land-use types for Wij,
including both granular and more aggregate measures of
agricultural activity. Our only aggregate measure of agri-
cultural activity was agricultural land use whereas we
used several granular measures of agricultural activity.
These included both detailed measures of watershed
land use such as corn and soybean cover as well as more
detailed measures of nutrient inputs and near-stream
land use (Table 1). We included measures of both N and
P inputs in both N and P models because of the possibil-
ity for stoichiometric interaction. Given our regulariza-
tion scheme (i.e., our use of “horseshoe priors” described
below) there was little reason to exclude P inputs from N
models (and vice versa) because unless P inputs are
strongly related to lake TN concentration, their coeffi-
cient will be forced close to zero.
All models had the same set of fixed effect coefficients

while each individual model used a single different
watershed land-use variable as a random effect. This
modeling strategy is supported by our view that water-
shed land use is an indirect proxy (sensu King et al.
2005, Burcher et al. 2007, Hayes et al. 2015) for other
unquantifiable agricultural activities. Therefore, we
expect the makeup of specific activities represented by
this indirect measure to vary regionally. This contrasts
with other predictor variables like lake depth, where we
have little evidence from prior studies that its effect on
lake nutrient concentrations is spatially variable.
Prior to model fitting, we examined the bivariate rela-

tionships between lake nutrient concentrations and all
predictor variables using Pearson’s correlation coeffi-
cients (Appendix S1: Fig. S5) to determine the overall

structure of the predictor dataset. We did not use the
results of this exercise for building our model, perform-
ing model selection, or variable selection. For qualitative
analysis of our model results, we classified predictor
variables following Collins et al. (2017) into categories
based on the dominant mechanism affecting lake nutri-
ent concentrations, which includes nutrient inputs, nutri-
ent transport, spatial configuration of land use in stream
buffers (spatial configuration), lake characteristics, and
watershed land use (LULC).
We fit all models in a Bayesian framework using the

brms R package interface to the Stan statistical program
(B€urkner 2017, Stan Development Team 2017). We used
horseshoe shrinkage priors on all fixed-effect coefficients
to evaluate variable importance (Carvalho et al. 2010).
We considered a response variable sensitive to a given
predictor if the predictor’s 95% credible interval did not
overlap 0. We standardized all predictor variables by
subtracting the mean of each variable and dividing by
their respective standard deviation so that model coeffi-
cients could be compared on roughly the same scale. As
a result, the relative sensitivity of a response variable to
a particular predictor is related to the relative magnitude
of its coefficient estimate.
We evaluated model fit of each watershed land-use

variable (i.e., each model having one regionally varying
coefficient) in two ways. First, we computed a Bayesian
R2 following the method of Gelman et al. (2017) and
second, we computed differences in expected log predic-
tive density (ELPD) using the leave-one-out cross-vali-
dation routines provided by the loo R package and
implemented in brms (Vehtari et al. 2017). The loo pack-
age uses leave-one-out cross-validation to estimate over-
all model error by computing the average error of
models iteratively trained on all the data except for a sin-
gle point. ELPD values have a similar interpretation to
information criterion measures such as Akaike informa-
tion criterion (AIC) or Watanabe-Akaike information
criterion (WAIC) except that values are on a different
scale (Gelman et al. 2013). Typically, models are

A B

FIG. 1. (A) Map of lake locations and (B) hydrologic (HUC4) regions.
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considered to be different if they are separated by an
AIC value of >2 (Anderson and Burnham 2002), which
is equivalent to an ELPD value of �1 (Gelman et al.
2013). We report differences in ELPD among models
using the notation DELPD. We selected the model with
the lowest absolute value ELPD as the top-ranked
model for detailed reporting and discussion as this signi-
fies the model with the lowest leave-one-out cross-valida-
tion error for N and P, respectively.
We used the default settings of brms to generate poste-

rior estimates using four chains of 4,000 iterations each
with no thinning and discarding the first 1,000 iterations.
We examined model fits to ensure that all models had
acceptable convergence of MCMC chains and had
approximately normal model residuals. We further tested
for spatial correlation among model residuals using the
spind R package (Carl et al. 2018). All of our code for
model fitting and evaluation is available online (see Data
Availability).

RESULTS

Effects of agriculture on lake nitrogen and phosphorus

Lake characteristics (e.g., maximum depth and water-
shed to lake area ratio) along with measures of nutrient
transport (e.g., baseflow) and near-stream agriculture
were significant predictors in all lake N and P models
that we fit. When we compared among different models
for each nutrient individually, we found that those with
agricultural watershed land use (in the aggregate sense)
were top ranked (i.e., had the lowest absolute value
leave-one-out cross-validation score) for models of both
TN and TP concentrations (Fig. 2, Table 2). Although
we observed no difference in the specific watershed land-
use predictor used in each top-ranked model, we found
differences in the extent to which each top-ranked model
was substantially different from lower ranked models.
For example, in the case of P, all models had nearly iden-
tical R2 (0.63) and the difference between the top-ranked
model and second-ranked model was modest
(DELPD = 0.41). For N models, however, agricultural
and corn land-use models had higher R2 (0.58) com-
pared to other models and the difference between the
top-ranked and second-ranked model was more substan-
tial (DELPD = 2.58, Fig. 2, Table 1).
When we looked more closely at each top-ranked model,

we found similarities in the types of predictors that con-
tributed significantly to the top-ranked N and P models
(Fig. 3). First, both N and P models included measures of
lake characteristics such as maximum depth and watershed
to lake area ratio as significant predictors, with the sign of
these associated coefficients matching our conventional
understanding, in which shallower lakes and lakes with
greater hydrologic loads have higher TN and TP concen-
trations. Second, both models included measures of nutri-
ent transport such as baseflow and precipitation, in which
lakes with a “flashier” hydrology (i.e., having lower

baseflow) where incoming water is primarily from surface
runoff rather than from groundwater, had higher TN and
TP concentrations. Finally, both models indicated that
high near-stream agriculture (i.e., a high proportion of the
area adjacent to the stream network was in agricultural
land use) was associated with lakes having higher TN and
TP concentrations. Where N and P models differed was in
the effect of soil clay content, in which soils with low clay
content were associated with high lake N but had no signif-
icant relationship with P.
Although top-ranked N and P models shared some simi-

larities in the type of predictors that contributed signifi-
cantly to each model, the coefficients of these models
differed in magnitude, and thus the top-ranked models var-
ied in their sensitivity to specific predictors (Fig. 3). For
example, the top-ranked P model was more sensitive to
lake characteristics, whereas the top-ranked N model was
more sensitive to watershed land use. Quantitatively, lake
TP concentrations were more sensitive to maximum depth
(bdepth: median = �0.39, SD = 0.04) compared to lake TN
concentrations (bdepth: median = �0.14, SD = 0.04);
whereas lake TN concentrations were more sensitive to
watershed agriculture land use (bag: median = 0.44,
SD = 0.11) compared to lake TP concentrations (bag:
median = 0.10, SD = 0.08). Finally, although we found
that near-stream agriculture was associated with both
higher TN and TP concentrations (i.e., a source effect of
near-stream agriculture), there was not a significant differ-
ence in the magnitude (i.e., sensitivity) of this coefficient
between N (bbufferag: median = 0.16, SD = 0.06) and P
(bbufferag: median = 0.12, SD = 0.06) models.
No predictors in the nutrient input category appeared

to be strongly related to either TN or TP concentrations.
One explanation may be that these variables covaried
with watershed and near-stream land-use variables
(Appendix S1: Fig. S5). In an attempt to further investi-
gate this possibility, we fit alternative models excluding
all land-use predictors. The results show that, at least in
the case of N, removing these predictors caused model
variance to be apportioned from watershed and buffer
land-use predictors to N input and P fertilizer predictors
(Appendix S1: Fig. S4). However, this non-land-use N
model had a relatively poor fit (R2 = 0.40) compared to
the top-ranked model that included land use as a predic-
tor (R2 = 0.58).

Regional variation in agriculture sensitivity

Both TN and TP concentrations were sensitive to mea-
sures of watershed land use as well as near-stream agricul-
ture (Fig. 2, Table 1). Despite these similarities, we found
differences in both the magnitude of these effects and the
extent to which we observed regional variation in water-
shed land-use sensitivity for N and P models (Fig. 4). For
P, there was little evidence that sensitivity to watershed
land use was regionally variable. More specifically, the
credible intervals for the slope of each individual region
overlapped the global slope estimate (Fig. 4). In contrast,
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for N, we found evidence for regional variation in sensitiv-
ity to watershed land use. For this nutrient, the credible
intervals for 2 of the 37 regions did not overlap the global
estimate (Fig. 4). These regions were found in parts of
Iowa, Minnesota, and Illinois and appear to be more sensi-
tive to watershed land use, i.e., lake N increases at a faster
rate per unit increase in agricultural land use compared to
other regions (Fig. 5). The median soil clay content of
watersheds in these regions was higher than the median
across watersheds in all other regions (Fig. 6). Further-
more, these two regions had a unique combination of both
high soil clay content and extensive tile drainage
(Appendix S1: Fig. S6).

DISCUSSION

Effects of granular measures of agriculture on lake
nitrogen and phosphorus

There is substantial unexplained variation around
simple linear relationships between aggregate
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FIG. 2. Population-level slope estimates (lc) for the effect of watershed land-use cover on lake total nitrogen (TN) and total
phosphorus (TP) from six candidate models. Values shown are posterior medians (filled circles) and 95% credible intervals (solid
lines). Also shown is a comparison to a zero effect (solid vertical line). Values that do not overlap zero are shaded in red. Coefficient
estimates are reported relative to standardized predictor variables centered at zero with unit variance.

TABLE 2. Diagnostics for each model listed by regionally
varying coefficient

Response Term R2 LOO-ELPD

TP agriculture 0.63 0.0
TP wetlands 0.63 �0.41
TP corn 0.63 �0.59
TP pasture 0.63 �0.75
TP forest 0.63 �0.76
TP soybeans 0.63 �1.43
TN agriculture 0.58 0.0
TN corn 0.58 �2.58
TN wetlands 0.54 �16.41
TN soybeans 0.53 �20.88
TN pasture 0.53 �21.01
TN forest 0.53 �22.37

Notes: Table is sorted by decreasing R2 and leave-one-out
cross-validation (LOO) estimate of expected log predictive den-
sity (ELPD). ELPD has a similar interpretation to information
criterion measures like AIC. Typically models are considered to
be different if they are separated by an Akaike information cri-
terion (AIC) value of >2, which is equivalent to an ELPD value
of �1. TN, total N; TP, total P.
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representations of watershed land use in agriculture and
both lake N and P (Appendix S1: Fig. S2). Our study
was designed to examine these relationships in greater
detail by testing whether more granular measures of
agriculture could help explain some of this uncertainty
for both N and P, and whether there were regional differ-
ences in these relationships. In sum, all models for TN
and TP concentrations included at least one granular
measure of agriculture, but there were also important
differences between N and P related to the type of mea-
sures that were important to each. For example, we
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zero are shaded in red. Horizontal bars separate coefficients in distinct predictor categories. Coefficient estimates are reported rela-
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FIG. 5. Location of hydrologic regions sensitive to water-
shed land-use cover corresponding to highlighted credible inter-
vals in Fig. 4.
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found little benefit of increased granularity of descrip-
tion (i.e., where measures are recorded in all the same
locations as their aggregate equivalents) but consistent
benefit of granular representation of the spatial configu-
ration of land use in near-stream buffers.

Spatial configuration

The result showing that lake TN and TP concentra-
tions are sensitive to the spatial configuration of land use
in near-stream buffers is consistent with our expectation
and prior research. Specifically, our finding that model
coefficients on near-stream agriculture (i.e., agricultural
land use in stream buffers) in all N and P models were sig-
nificant and positive indicates a nutrient-delivery effect of
stream buffer agriculture and suggests that the spatial
configuration of agriculture with respect to stream buffers
has a detectable influence on both lake N and P at macro-
scales. This is consistent with prior studies conducted over
more limited spatial extents which examined relationships
between lake or stream nutrient concentrations and agri-
cultural land use in stream buffers (Baker et al. 2006, Die-
bel et al. 2009, G�emesi et al. 2011, Soranno et al. 2015).
In contrast to near-stream agriculture, we found that
near-stream “natural” land use was not significant in
either N or P models. While we cannot definitively answer
why, it may be related to the role that natural buffers play
in nutrient cycling for N and P (Alexander et al. 2008,
Canham et al. 2012). In the case of N, natural buffers
may reduce stream loading by facilitating denitrification,
whereas, in the case of P, natural buffers may trap particu-
late bound material without necessarily removing it
(Mayer et al. 2007, Naiman et al. 2010). An alternative
possibility is that we are observing a scale effect whereby
the delivery effect of near-stream agriculture is spatially
consistent whereas the trapping and removal effects of N
and P by natural buffers is more spatially variable (P€arn

et al. 2012). Finally, we may not have observed a protec-
tive effect of natural buffers because natural land use in
buffers is too coarse of a proxy for “riparian buffers”
composed of forest or herbaceous vegetation (Mayer
et al. 2007).

Crop type

We found that for N models, land use of specific crops
was significant, although it was not found in the top-
ranked model. Specifically, we found that watershed
land use in corn production was a significant predictor
in the second-ranked N model (Table 2). In the case of P
by contrast, neither aggregate nor granular measures of
watershed land use were significant in any models
(Fig. 2). This can be explained by our finding that all
watershed land-use metrics had weak relationships with
lake P, especially relative to the strong relationships we
observed between P and other factors like lake depth,
hydrology, and near-stream agricultural land use. Here,
our finding is consistent with prior studies in stream
ecosystems showing that the influence of hydrology
exceeds that of agricultural land use or anthropogenic P
inputs (Metson et al. 2017).

Nutrient inputs

None of the nutrient input variables were significant
for either N or P models. On the surface, this would seem
to contradict the findings of prior research such as that
of Bellmore et al. (2018), who found that stream TN
concentrations were more strongly controlled by N input
predictors relative to measures of either watershed or
near-stream land use. However, our finding has several
alternative explanations. First, differences between our
lake study and the Bellmore et al. (2018) stream study
may simply point to differences in the controls on stream
nitrogen concentrations relative to lake nitrogen concen-
trations (Allan 2004, Canham et al. 2012). Second, our
finding that N and P were insensitive to nutrient input
variables may be a result of shared variance between
nutrient input variables and watershed land use. This
makes sense given that agricultural land uses and corn
land use in particular are associated with high rates of
fertilizer and manure application (Powers 2007). To test
this explanation, we formulated N models without a
watershed land-use term and observed that model vari-
ance was transferred from watershed land use to the
nutrient input terms total N input and P fertilizer
(Appendix S1: Fig. S4). While the positive coefficient on
total N input has a straightforward interpretation, the
negative coefficient on P fertilizer is unclear. Rather than
evidence of a true inverse relationship between P fertil-
izer and N (or evidence for stoichiometric interaction
sensu Paerl et al. 2016), we interpret the negative coeffi-
cient on P fertilizer as evidence of either model misspeci-
fication (i.e., model fit was poor compared to the model
with land use because N was very sensitive to land use)
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FIG. 6. Histograms showing the distribution of soil clay
content for watersheds in regions sensitive to watershed land
use (see highlighted credible intervals in Fig. 4) relative to
watersheds all other regions. Medians for each group are shown
as vertical dashed lines.
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or as evidence of multicollinearity among nutrient input
variables (Appendix S1: Fig. S5). Thus, we think that it
is likely that the removal of one of the key drivers of N
(being land use) caused model variance to be transferred
to nutrient input predictors generally such that the speci-
fic highlighting of P fertilizer is a result of noise rather
than a true relationship.

Nutrient transport

An important category of predictors in our models was
nutrient transport. For example, we found that baseflow
was a significant predictor in all N but especially all P
models. This is consistent with prior research at macro-
scales showing the sensitivity of lake nutrients to this met-
ric (Collins et al. 2017). In contrast to baseflow, we found
that watershed soil clay content was a significant predic-
tor in all N models but not in any P models. Furthermore,
we found that the coefficient on soil clay content was neg-
ative, which was contrary to our expectation, and prior
research. It seems to suggest a negative correlation
between clay content and N. However, upon closer
inspection, we did not find evidence for such a relation-
ship. Instead, we found evidence for a non-linear relation-
ship, which may explain the negative coefficient on clay,
whereby clay and TN were positively correlated over most
of the range of watershed clay content but were negatively
correlated in watersheds with very high soil clay content
(>20%; Appendix S1: Fig. S7). This non-linear relation-
ship may be an artifact of the specific non-random sam-
pling of our lakes whereby the lakes with extremely high
soil clay content watersheds happen to have extremely
long water residence times leading to extensive removal of
N loads due to denitrification (Groffman et al. 2009).
Overall, granular measures of agriculture were signifi-

cant in both N and P models. However, the contribution
of such measures relative to other non-agricultural pre-
dictors was greater for N models (Figs. 2, 3). One reason
why granular measures of agricultural activity had a
greater effect on N models may be that variation in N is
less effectively captured solely by lake and watershed
characteristics owing in part to the more complex nature
of transformations in the nitrogen cycle. This finding is
consistent with that of Collins et al. (2017) and Wagner
and Schliep (2018) who found that lake depth coeffi-
cients were of a much higher magnitude for P relative to
N. This is expected since depth strongly controls internal
P loading (i.e., recycling), which is a dominant control
on lake phosphorus dynamics (Søndergaard et al. 2013).

Regional variation in agriculture–nutrient relationships

The macroscale nature of our study motivated our sec-
ond research question examining how relationships
between agricultural activities and lake nutrients vary
regionally. This is because recent research has shown that
analyzing macroscale lake datasets without considering
the possibility of regionally varying relationships runs the

risk of drawing imprecise or incorrect conclusions because
it can lump together lakes with fundamentally different
responses to a given predictor variable (Qian et al. 2019).
Additionally, we looked at this question because prior
studies have shown regional variation in the relationship
of lake nutrient concentrations to aggregate measures of
agriculture (Wagner and Schliep 2018).
In our study, we found mixed evidence for regional

variation in relationships with watershed land use,
depending on the lake nutrient response variable. For N,
we found evidence for regional variation whereby lakes in
two of the 37 regions were more sensitive to changes in
agricultural land use relative to other regions. The reasons
for this elevated sensitivity are unclear, but one possible
reason may be that watersheds in these more sensitive
regions had higher median soil clay content than the med-
ian soil clay content of watersheds in less sensitive regions
(Fig. 6). Higher soil clay content in particular may ulti-
mately control the nitrogen content of field runoff
because it is associated with more direct (i.e., tile) drai-
nage. For example, maps produced by Capel et al. (2018b)
suggest that our more sensitive regions correspond
roughly with areas where field exports of nutrients are
likely to bypass trapping by riparian buffers. As evidence
of this association, data from Nakagaki and Wieczorek
(2016) indicate that watersheds in these two sensitive
regions had a unique combination of high soil clay con-
tent and extensive tile drainage (Appendix S1: Fig. S6).
For P, we found no evidence for regional variation in

its relationship with watershed land use. This finding,
that watershed land use can be modeled as a global
(fixed) effect, is consistent with that of Taranu and Gre-
gory-Eaves (2008), who found no statistically significant
differences in region-specific relationships between lake
P and agricultural land use. However, it is inconsistent
with that of Wagner et al. (2011), who found regionally
variable relationships between lake P and agricultural
land use using a multilevel modeling framework. One
reason that both our analysis and the Taranu and Gre-
gory-Eaves (2008) study did not observe regional varia-
tion in the watershed land use vs. P relationship may be
that P is so strongly controlled by lake depth that there
is little additional explanatory power offered by includ-
ing a watershed land use term. In addition, if lake P is
controlled primarily by lake depth, which we can assume
does not change with time, then our results may explain
the finding of Oliver et al. (2017) that lake P trends are
spatially consistent whereas lake N trends have distinct
regional variability.

Management implications

Knowledge of differences in the drivers of lake N and
P can support the design of effective and efficient policy
approaches to maintain or improve water quality. For
instance, our finding of regional variation in the rela-
tionship between lake TN concentrations and watershed
land use in agriculture suggests spatial targeting of best
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management practices (BMPs) to specific regions known
to be highly sensitive (Holmes et al. 2016). In addition,
our finding of strong relationships between lake TP con-
centrations and lake characteristic predictors contrasts
with the strong relationships we observed between
watershed land use and lake TN. Given that watershed
land use, rather than lake characteristics, is a more feasi-
ble management target, our results suggest that the cost-
effectiveness of BMPs could differ depending on
whether the goal is to protect against excess N, P, or
both (Paerl et al. 2016). For P, our analysis suggests that
nutrient control policies are likely to be especially effec-
tive in shallow lakes and lakes with low baseflow (i.e.,
those with flashier hydrology). Conversely, phosphorus
control in deeper lakes and reservoirs with long resi-
dence times will likely require recovery efforts in addi-
tion to prevention efforts due to the long time scales of
stored (i.e., legacy) P (Powers et al. 2015). In contrast to
P, our results show that lake TN concentrations are
more sensitive to watershed land use. This suggests that
policies to enhance the use of BMPs to reduce N inputs
to lakes are likely to require a greater degree of stake-
holder involvement, possibly through consideration of
tradeoffs between land retirement and working lands
programs (NRC 2010, Capel et al. 2018b).

Future research priorities

Due to a lack of temporally resolved data, our study
focused on spatial patterns in sensitivity of lake TN and
TP concentrations to measures of agricultural activity
and did not examine the possibility that such relation-
ships could be temporally variable. A consequence of this
was that we assumed that relationships between lake N
and P relative to agricultural drivers did not change over
our data collection window (2000–2010). However, there
are several instances where time may be important, and
these would likely be fruitful areas for future research.
For example, Lark et al. (2015) showed marked conver-
sion of conservation reserve program (CRP) lands to
cropland throughout the footprint of our study from 2008
to 2012. Such changes in land use could make it more dif-
ficult to quantify lake sensitivity to agriculture if relation-
ships vary through time especially if relationships are
subject to threshold effects (Renwick et al. 2008). A more
subtle illustration of when time may be important is when
field-scale nutrient export is highly dependent on episodic
hydrology. For example, a number of previous studies
have shown that field-scale nutrient export of N is great-
est when a series of dry years is followed by a wet spring
(Motew et al. 2017, Strickling and Obenour 2018). It
might make sense then to organize modeling around
whether lake watersheds are generally subject to slow
flow, fast flow, or drain flow (Capel et al. 2018b) nutrient
transport rather than solely taking a spatial regionaliza-
tion approach (i.e., using HUCs). Barriers to more
detailed temporal approaches include greater demands of
spatiotemporally resolved data products. Overall, our

results point to hydrology predictors like baseflow as an
instance where we only have spatially coarse information
and development of more granular estimates of watershed
hydrology, possibly using the output of hydrology models,
would likely improve future research efforts.

CONCLUSION

We show that granular measures of agricultural activ-
ity are related to both lake N and P and that these rela-
tionships are regionally variable for lake N. Taken
together, our results suggest that lake TP concentrations
are more strongly driven by lake characteristics; whereas,
lake TN concentrations are more strongly driven by
watershed land use. A consequence of our finding is that
lake TP concentrations are largely predictable from lake-
specific measures such as near-stream land use, lake
depth, and transport metrics like baseflow; whereas,
accurate predictions of lake N likely requires not only
lake-specific information (including granular measures
of agriculture) but also consideration of regional context
due to complex regional variation of soil characteristics.
Such differences in lake nutrient model sensitivity to
measures of agricultural activity may affect the outcome
of policies to enhance water quality depending on
whether they focus on lake N or P.
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