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Abstract5

The effect of nutrients on phytoplankton biomass in lakes continues to be a subject6

of debate by aquatic scientists. However, determining whether or not chlorophyll a7

(CHL) is limited by phosphorus (P) and/or nitrogen (N) is rarely considered using8

a probabilistic method in studies of hundreds of lakes across broad spatial extents.9

Several studies have applied a unified CHL-nutrient relationship to determine nutrient10

limitation, but pose a risk of ecological fallacy because they neglect spatial heterogeneity11

in ecological contexts. To examine whether or not CHL is limited by P, N, or both12

nutrients in hundreds of lakes and across diverse ecological settings, a probabilistic13

machine learning method, Bayesian Network, was applied. Spatial heterogeneity in14

ecological context was accommodated by the probabilistic nature of the results. We15

analyzed data from 1382 lakes in 17 US states to evaluate the cause-effect relationships16

between CHL and nutrients. Observations of CHL, total phosphorus (TP), and total17

nitrogen (TN) were discretized into three trophic states (oligo-mesotrophic, eutrophic,18

and hypereutrophic) to train the model. We found that although both nutrients were19

related to CHL trophic state, TP was more related to CHL than TN, especially under20

oligo-mesotrophic and eutrophic CHL conditions. However, when the CHL trophic21

state was hypereutrophic, both TP and TN were important. These results provide22

additional evidence that P-limitation is more likely under oligo-mesotrophic or eutrophic23

CHL conditions and that co-limitation of P and N occurs under hypereutrophic CHL24

conditions. We also found a decreasing pattern of the TN/TP ratio with increasing25

CHL concentrations, which might be a key driver for the role change of nutrients.26

Previous work performed at smaller scales support our findings, indicating potential for27

extension of our findings to other regions. Our findings enhance the understanding of28

nutrient limitation at macroscales and revealed that the current debate on the limiting29

2



nutrient might be caused by failure to consider CHL trophic state. Our findings also30

provide prior information for the site-specific eutrophication management of unsampled31

or data-limited lakes.32

Keywords: Bayesian Network, eutrophication, limiting nutrient, macroscale, data-33

limited lakes34
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Introduction35

Nutrients, including phosphorus (P) and nitrogen (N), are considered as main36

drivers of phytoplankton growth (Conley et al. 2009). However, which nutrient is37

the primary limiting nutrient remains a topic of substantial debate. Generally, debate38

focuses on whether or not lakes are solely P limited or co-limited by P and N. Some39

researchers propose that P is the only limiting nutrient, based on results of whole-lake40

experiments and historical observations (Schindler 1974, Correll 1999, Schindler et al.41

2016). They found that N fixation was sufficient for phytoplankton growth in proportion42

to P (Schindler et al. 2008). Other researchers challenged the P control paradigm,43

mainly based on results of bottle or mesocosm experiments, in which they found that44

the addition of N could also significantly promote phytoplankton growth (Elser et al.45

2007, Xu et al. 2009). While these small-scale experiments of short duration were46

criticized to give spurious and confusing results (Schindler 2012), a few recent studies47

used long-term observations to reveal N limitation in summer, which was believed to48

support the notion of co-limitation by P and N (van Gerven et al. 2019, Shatwell and49

Köhler 2019). However, short-term N limitation as the evidence for controlling N has50

long been doubted (Schindler et al. 2008, Carpenter 2008).51

Although whole-lake experiments or historical observations provide useful52

information for informing lake eutrophication management (Schindler et al. 2016),53

previous studies typically focused on a few, selected lakes, e.g. lakes in the Experimental54

Lakes Area of Canada (Schindler 2012), the Laurentian Great Lakes (Chaffin et al. 2013,55

Dove and Chapra 2015), and Lake Taihu (Xu et al. 2009, Paerl et al. 2011). However,56

several studies have shown that the spatial heterogeneity of ecological contexts,57

including lake characteristics and phytoplankton and fish community structure, could58

impact the relationship between chlorophyll a (CHL) and nutrients (Malve and Qian59
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2006, Phillips et al. 2008, Wagner et al. 2011). The CHL-nutrient relationship could60

vary among lakes even in the same ecoregion and under the same trophic conditions61

(Liang et al. 2019). The variation of CHL-nutrient relationships might further change62

relative limitation strength of nutrients (Kolzau et al. 2014). Moreover, the spatial63

heterogeneity of other factors, e.g. climate and residence time, could determine the64

availability of nutrients and thereby impact the limiting nutrient for phytoplankton65

(Genkai-Kato and Carpenter 2005, Lewis et al. 2011, Maranger et al. 2018). Therefore,66

inferences deduced from a limited numbers of lakes might be constrained to certain67

ecological contexts.68

Large datasets of lakes located across varied ecological contexts have long been used69

to explore CHL-nutrient relationship (Dillon and Rigler 1974, Canfield and Bachmann70

1981, Rast et al. 1983, Oliver et al. 2017). A few studies also determined the limiting71

nutrient based on the performance of CHL-nutrient log-linear regressions. For example,72

Seip (1994) explored the limiting nutrient of 46 north temperate lakes based on the73

predictive ability of the CHL-nutrient model. Abell et al. (2012) found that the CHL-74

nutrient relationship varied with latitude and further explored the nutrient limitation75

patterns based on the statistical significance of regression coefficients. Similarly, Zou76

et al. (2020) determined the limiting nutrient of lakes in the Chinese Eastern Plains.77

These aforementioned studies always spatially aggregated data and then developed a78

unified CHL-nutrient relationship (space-for-time substitution) that was believed to79

be suitable for all lakes in the analysis. As such, the deduced limiting nutrient(s)80

for aggregated lakes are the same. However, because of the spatial heterogeneity of81

ecological contexts of lakes, the regional relationship might be not applicable for some82

lakes. More importantly, as revealed in some recent studies (Qian et al. 2019, Liang83

et al. 2020), the regional relationship might entirely over- or under-estimate the nutrient84

effect of all the lakes, which is a typical phenomenon of ecological fallacy (Maashebner85
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et al. 2015). The deduced regional limiting nutrient could be thereby misleading.86

Classifying lakes into several types based on the ecological contexts, e.g. lake87

characteristics, land use, meteorological factors, and phytoplankton community88

structure, could improve CHL-nutrient model performance (Phillips et al. 2008, Yuan89

and Pollard 2014, Hayes et al. 2015) and thereby provide more accurate information90

for the limiting nutrient deduction. However, the number of potential factors effecting91

nutrient limitation could be large. In practice, it is extremely difficult to collect data92

for many drivers and across hundreds of lakes. As such, if only a limited number of93

drivers are included in the modeling exercise, there is still no guarantee that ecological94

fallacy won’t occur. Therefore, it is critical to apply effective tools to accommodate95

the spatial heterogeneity in ecological contexts that exists for inland lakes, and at the96

same time, help to overcome the data-limitation often present when exploring nutrient97

limitation of lakes at macroscales.98

As a probabilistic machine learning method, Bayesian Network (BN) can implicitly99

reflect the impacts of drivers in a probabilistic manner (Rigosi et al. 2015), rather than100

including many potential drivers in the model. BN is therefore suitable for handling101

the spatial heterogeneity of ecological contexts and does not require additional data for102

potential drivers. In a BN, it is straightforward to conduct an analysis that provides103

easily communicated probability distributions of the response given the predictors’104

conditions. BN is also capable of accommodating nonlinear relationships (Chen and105

Pollino 2012). In this study, our objective was to examine whether or not CHL is limited106

by P, N or both nutrients in hundreds of lakes located across diverse ecological settings.107

We applied BN to analyzed data from a temporally and spatially extensive database108

for lakes in 17 Northeastern and Midwest US states (LAGOS-NE; Soranno et al. 2017).109

The usage of BN in developing CHL-nutrient relationships of one or multiple lakes is not110

new (Nojavan et al. 2017), but its application as a tool to explore nutrient limitation111
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of lakes that span a range of ecological contexts at macroscales is novel.112

Methods113

Although nutrients have many different forms, total phosphorus (TP) and total114

nitrogen (TN) were used here as the indicators of nutrients due to data availability. Also,115

TP and TN are the most widely used indicators in determining the limiting nutrient116

of phytoplankton (Cha et al. 2016, Søndergaard et al. 2017, Liang et al. 2019). In117

north temperate lakes, summer is the most sensitive season for phytoplankton growth,118

so we focused our analysis on the summer period (June 15 to September 14) (Wagner119

and Schliep 2018). Because there might be interannual dynamics of nutrient limitation120

even in the same lake, we averaged TP, TN, and CHL concentrations in the summer121

period of each year to obtain yearly lake-summer average values. This resulted in 6424122

average values of TP, TN, and CHL from 1382 lakes. The lake-summer average values123

were then used to determine the trophic state of TP, TN, and CHL, according to the124

classification method of the National Lake Assessment (NLA) (Table 1) (USEPA 2009).125

Table 1 should be here.

Bayesian Network126

A BN model is a probabilistic machine learning method. It is defined in terms of a127

directed acyclic graph and conditional distributions (Aguilera et al. 2011). BN models128

are based on a relatively simple causal graphical structure, making it easy to build129

and understand (Chen and Pollino 2012). In addition, the probabilistic representation130

of a BN model enables it to be a proper method to deal with uncertainties (Aguilera131

et al. 2011). Moreover, the belief propagation makes BN models an effective tool for132
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reasoning, which makes them useful for helping to inform and support decision making133

(Chen and Pollino 2012). As such, BN models have been increasingly used in modeling134

ecological systems (McLaughlin and Reckhow 2017, Yuan and Pollard 2018, Marcot135

and Penman 2019).136

To build a credible BN model, three key steps should be included, namely the137

determination of model structure, learning of model parameters, and model evaluation.138

In this study, the model structure was very simple and was determined based on the139

basic understanding of lake ecosystems. As shown in Figure 1, TP and TN were drivers140

(parents nodes) and CHL was the response variable (child node). Note that although141

we gave the prior that both TN and TP could impact CHL when determining the BN142

model structure, that did not have to lead to the conclusion that both nutrients must143

have effects on the CHL trophic state. If a nutrient has no effect on the CHL state, the144

change of that nutrient will not cause any change on the distribution of the CHL state.145

Distributions of the trophic state of the three variables are also shown in Figure 1.146

Figure 1 should be here.

The categorized data (data that represent the trophic state of TP, TN, and CHL)147

were used as the input and output of the BN model. Although there are many other148

supervised or unsupervised methods to discretize nutrients and CHL concentrations149

to build the BN model (Beuzen et al. 2018), our NLA-guided data discretization150

method (Table 1) is management-oriented and thus was expected to provide useful151

information for lake eutrophication management. Parameter estimation was based on152

Bayes’ theorem, which is embedded in the bnlearn package (Scutari 2010) in the R153

software. We conducted a 10-fold cross-validation for the BN model, in which the154

model was fitted 10 times to 90% of the observations while the remaining 10% was155

retained for out of sample prediction (Wagner and Schliep 2018). We used classification156

accuracy to evaluate model performance. The classification accuracy was calculated by157
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comparing highest probability predictions to observed real outcomes (Marcot 2012).158

The classification accuracy was very high (76.4%), ensuring the reliability of model159

results and corresponding inferences.160

The ‘top-down’ reasoning of the calibrated BN model allows us to determine the161

probability of a CHL tropic state under certain trophic states of TP and TN. For162

example, we can obtain the probability of CHL being oligo-mesotrophic (‘O’) when163

setting TP to be oligo-mesotrophic (‘O’) and TN to be eutrophic or hypereutrophic164

(‘E’ or ‘H’), as expressed by: P(CHL = O | TP = O, TN = (E or H)). Expressions165

before and after the vertical bar (“|”) represent the event and evidence, respectively.166

And we obtain the probability of the event (the trophic state of CHL) under the evidence167

(trophic states of nutrients) via ‘top-down’ reasoning.168

Note that we aggregated data from a large number of lakes located across diverse169

ecological contexts. A unified deterministic CHL-nutrient relationship (e.g. a linear170

regression model) to determine nutrient limitation could be misleading because of171

ecological fallacy (Qian et al. 2019). In our study, the key advantage of the application172

of BN is the implicit accounting of the effects of potential drivers by the probabilistic173

results of CHL state given the trophic state of the nutrients. We emphasize that the174

probability of a CHL trophic state should be interpreted as the proportion of lakes175

whose CHL concentration is in that certain state rather than the possibility of that176

certain CHL state in a given lake. For example, P(CHL = O) = 0.3 means there are177

30% of the lakes whose CHL state is oligo-mesotrophic – rather than that for a certain178

lake the probability of CHL being oligo-mesotrophic is 0.3.179

By comparing probabilities of the CHL trophic state under different combinations180

of nutrient trophic states, we can explore the role of TP and TN on phytoplankton.181

Specifically, we addressed the following three questions:182
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1) Is CHL limited by nutrients? Although the answer to this question seems to183

be well established, it is rarely discussed based on the results of analyses that184

examine hundreds of lakes using a BN, in which the potential effects of spatial185

heterogeneity of ecological contexts are implicitly accounted for.186

2) If CHL is limited by nutrients, is CHL limited by both nutrients or only one?187

3) If CHL is limited by both nutrients, is there one nutrient that is more important188

than the other one?189

While there are many combinations of TP and TN trophic state that are used190

as the evidence in the BN to calculate the probability of the CHL trophic state, we191

focused on the nutrient trophic state combinations which were helpful to answer the192

above questions. All the computations were conducted in R software (Version 3.6.0) (R193

Core Team 2019). We developed the BN using bnlearn package (Scutari 2010).194

Results195

Probabilities of CHL trophic states under different combinations of TP and TN196

trophic states are shown in Figure 2. To answer the question of whether nutrients197

affect the CHL trophic state, we can compare the results of the CHL trophic state when198

both nutrients are oligo-mesotrophic (Figure 2g) and when both nutrients are eutrophic199

(Figure 2e) or hypereutrophic (Figure 2c). When both nutrients are oligo-mesotrophic,200

the probability of CHL being oligo-mesotrophic is high (0.793) and the probability201

of CHL being eutrophic or hypereutrophic is small (0.201 and 0.006, respectively).202

However, if nutrient trophic state becomes eutrophic or hypereutrophic, the probability203

of CHL being oligo-mesotrophic decreases greatly to 0.104 and 0.023, respectively. That204

is, on one hand, the trophic state of 68.9% (0.793 – 0.104) of lakes will shift to a205

more enriched CHL trophic state when both nutrients become eutrophic and 78.7%206
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(0.793 – 0.006) of lakes will shift to a more enriched CHL state when both nutrients207

become hypereutrophic. On the other hand, when nutrient trophic state becomes oligo-208

mesotrophic from eutrophic or hypereutrophic the proportion of lakes being classified as209

eutrophic and hypereutrophic based on the CHL concentrations is greatly reduced (e.g.,210

compare Figure 2b, e, and h). Therefore, TP and TN are indeed very important for211

determining the CHL trophic state of lakes, indicating that CHL is limited by nutrients212

at macroscales.213

Figure 2 should be here.

Next, we address the question of whether or not a single nutrient or both nutrients214

affect CHL trophic state – given that we have established that nutrients are important215

determinants of CHL trophic state. To explore the effect of one nutrient independent216

of the other, we kept the trophic state of the other nutrient constant. For example,217

we can determine the effect of TP on CHL trophic state by comparing Figures 2a,218

d, and g. When setting the TN trophic state to be oligo-mesotrophic, changing219

the TP trophic state from oligo-mesotrophic (Figure 2g) to eutrophic (Figure 2d) or220

hypereutrophic (Figure 2a) will lead to a large decrease of the probability of CHL221

being oligo-mesotrophic (a decline from 0.793 when TP is oligo-mesotrophic to 0.056222

when TP is hypereutrophic). Concurrently, we see an increase in the probability of223

CHL being eutrophic and hypereutrophic (Figure 2g, d, & a). When holding the TN224

state constant at eutrophic (Figure 2b, e, & h) or hypereutrophic (Figure 2c, f, & i),225

we obtain similar results to the results for TP on the probability change of the CHL226

trophic state. To determine the effect of TN on CHL trophic state, we compare plots227

holding the TP trophic state constant. If the TP state is oligo-mesotrophic (Figures228

2g, h, & i), changing the trophic state of TN from oligo-mesotrophic to eutrophic or229

hypereutrophic will cause a decrease in the probability of CHL being oligo-mesotrophic230

(from 0.793 when TN is oligo-mesotrophic to 0.609 when TN is hypereutrophic) and231
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an increase of the probability of CHL being eutrophic and hypereutrophic (Figures 2g,232

h, & i). If the TP state is eutrophic (Figure 2d, e, & f) or hypereutrophic (Figure233

2a, b, & c), changing the trophic state of TN from oligo-mesotrophic to eutrophic or234

hypereutrophic will primarily lead to the shift of the CHL state from eutrophic to235

hypereutrophic, since the probability of CHL being oligo-mesotrophic is already very236

small. Therefore, according to the change of the probability of different CHL trophic237

states, both TP and TN could influence the CHL trophic state, showing that both238

nutrients could be limiting.239

To determine the relative importance of nutrients – since both nutrients could240

influence the CHL trophic state – we assume that both nutrients are oligo-mesotrophic,241

and then shift either nutrient to a more nutrient enriched trophic state. The shift of242

the TP trophic state to a eutrophic state will lead to 67.7% (0.793 − 0.126) of the lakes243

transferring from an oligo-mesotrophic trophic state to a eutrophic or hypereutrophic244

state and 74.7% (0.793 – 0.056) of lakes transferring from an oligo-mesotrophic trophic245

state to a eutrophic or hypereutrophic state if TP shifts to a hypereutrophic state246

(Figures 2g, h, & i). In contrast, the shift of TN to a eutrophic state or hypereutrophic247

state will only cause such a change for 12.7% (0.793 − 0.664) and 18.4% (0.793 – 0.609)248

of the lakes, respectively (Figures 2g, d, & a). In addition, the shift of the TP state249

to a hypereutrophic state will lead to a larger proportion of lakes being classified as250

hypereutrophic based on CHL (0.374), a much larger proportion than that resulting251

from the shift of TN (0.015). Moreover, when TP trophic state is hypereutrophic the252

probability of CHL being oligo-mesotrophic is as small as 0.006 (Figure 2a) and changing253

the TN trophic state from oligo-mesotrophic to hypereutrophic has little influence on254

that probability (Figure 2c). However, when the TN trophic state is hypereutrophic,255

changing the TP trophic state from oligo-mesotrophic to hypereutrophic results in a256

large decrease in the probability of CHL being oligo-mesotrophic (from 0.609 to 0.023)257
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(Figure 2i & c). Therefore, although TN has an influence on the CHL state, TP is258

substantially more important than TN. Considering the huge difference between the259

TP and TN effect and the large effect of TP on CHL trophic state, TP generally260

plays a dominant role in determining the CHL state, indicating that TP seems more261

important for limiting CHL compared to TN.262

Finally, we examined if TP and TN could interactively impact the CHL trophic263

state. We found that when the TP trophic state was oligo-mesotrophic, changing the264

TN trophic state from oligo-mesotrophic to eutrophic or hypereutrophic would only265

cause a small increase in the probability of CHL being hypereutrophic (Figure 2g, h266

& i). However, when the TP state was eutrophic or hypereutrophic, the probability of267

CHL being hypereutrophic increased substantially when changing the TN trophic state268

from oligo-mesotrophic to eutrophic or hypereutrophic (Figure 2d, e & f for TP in a269

eutrophic state and Figure 2a, b, & c when TP is in a hypereutrophic state). That270

is, the impact of the TN state on the CHL state is much larger when the TP state271

is eutrophic or hypereutrophic, indicating that there is a positive interaction between272

TP and TN in determining the hypereutrophic state of CHL. When either TP or TN273

goes to oligo-mesotrophic from being eutrophic or hypereutrophic, this will lead to a274

relatively large decrease in the probability of CHL being hypereutrophic. Therefore,275

when the CHL state is hypereutrophic, both nutrients are likely important and suggests276

potential co-limitation by TP and TN.277

We further checked the robustness of the above results by changing the sampling278

period, lake depth, and thresholds to determine the CHL state. We set the sampling279

years < 2000, < 2005, < 2010, ≥ 1995, ≥ 2000, and ≥ 2005, and the mean lake depth280

< 3 m, < 5 m, ≥ 3 m, and ≥ 5 m. We tried another popular method determining the281

CHL state proposed by Smith et al. (1999), by which the lake is oligo-mesotrophic when282

CHL < 9 µg/L, is eutrophic when CHL > 9 µg/L but < 25 µg/L, and is hypereutrophic283
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when CHL > 25 µg/L. Note that thresholds in Smith et al. (1999) are similar to those284

in USEPA (2009). We found that all the results had a similar pattern. Therefore, our285

results are very robust, which gives strength to the reliability of the analysis.286

Discussion287

The role of TP and TN on limiting CHL288

We summarized whether or not CHL is limited by TP, TN, or both nutrients289

in inland lakes at macroscales. Although both nutrients affect CHL trophic state,290

TP generally plays a dominant role. However, when the CHL trophic state is291

hypereutrophic, both TP and TN are important. Our findings on the role of nutrients292

indicate P-limitation when the CHL trophic state is not hypereutrophic and the co-293

limitation of P and N when the CHL trophic state is hypereutrophic.294

The TN/TP ratio is one of the most widely used indicators to explain the nutrient295

limitation for phytoplankton (Redfield 1958, Cha et al. 2016, Liang et al. 2018). It is296

well recognized that a higher TN/TP ratio indicates a higher possibility of P-limitation.297

We found a significant decreasing trend (the fitted linear regression line in Figure 3)298

of the TN/TP ratio with increasing CHL concentration for the lakes in the LAGOS-299

NE database (Figure 3). As the TN/TP ratio approaches to the Redfield Ratio (7.2300

by mass, the dashed horizontal line in Figure 3), the nutrient limitation condition301

shifts from P-limitation to that of co-limitation by P and N. Average values of the302

TN/TP ratio are 54.1, 26.8, and 18.1 (white points in Figure 3), when the CHL state is303

oligo-mesotrophic, eutrophic, and hypereutrophic, respectively. According to the linear304

regression line between log(TN/TP) and log(CHL), we can set the CHL concentration305

to be 30 µg/L (the threshold to determine the eutrophic and hypertrophic state) and306
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calculate the corresponding TN/TP ratio as a rough estimation of the TN/TP ratio to307

classify the P-limitation and co-limitation of P and N. The estimated TN/TP ratio is308

20.2, which is close to the proposal of 22 by Guildford and Hecky (2000).309

Figure 3 should be here.

There are several mechanisms that may influence the TN/TP ratio in lakes, such310

as watershed nutrient input and atmospheric deposition of nutrients (Downing and311

McCauley 1992, Elser et al. 2009). Two processes that are most related to the CHL312

trophic state are the release of P from the sediment and the denitrification of N in313

the waterbody (Cottingham et al. 2015, Zhang et al. 2018). The decomposition of314

phytoplankton was identified as the key process to the release of P from the sediment315

by providing the low dissolved oxygen and proper pH environment supporting the316

Iron(II)-P coupling (Chen et al. 2018). Moreover, lake eutrophication often leads to317

nuisance blooms of some phytoplankton species (e.g. Cylindrospermopsis raciborskii)318

which are able to regulate their metabolism to accommodate conditions of low dissolved319

inorganic phosphorus (Wu et al. 2012, Figueredo et al. 2014, Araujo et al. 2018). P320

thereby would increase faster in the waterbody than N. Meanwhile, the decomposition321

of phytoplankton leads to the increase of total organic carbon which could fuel the322

potential denitrification rate (Zhang et al. 2018). Moreover, N-fixation usually cannot323

compensate for the loss of N caused by denitrification (Hayes et al. 2018, van Gerven324

et al. 2019). At the continental scale, net denitrification will lead to a larger N deficit in325

more productive lakes (Scott et al. 2019). As such, it appears that P accumulates faster326

than N in more eutrophic lakes that are heavily impacted by anthropogenic activities327

(Yan et al. 2016).328

Globally, a decreasing trend of the TN/TP ratio with the increase of CHL329

concentration has also been shown. Yan et al. (2016) found a similar negative330

relationship between the TN/TP ratio and CHL using worldwide data compiled from331
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157 publications. Some studies also found a decreasing trend of the TN/TP ratio with332

the increase of TP concentration based on compiled datasets (Downing and McCauley333

1992, Sterner 2008), which also indicated the negative correlation of the TN/TP ratio334

with CHL concentrations – considering the high positive correlation between CHL and335

TP. Across a larger latitudinal range (from 70 °S to 83 °N), Abell et al. (2012) found336

that TN/TP ratios were smaller in lakes with a higher trophic state. The same negative337

relationship between the TN/TP ratio and CHL has also been shown in the same lake338

over time. For example, the TN/TP ratio decreased with the increasing eutrophication339

in lakes such as Dianchi, Taihu, and Okeechobee (Yan et al. 2016). Similarly, the340

TN/TP ratio increased during the lake recovery period in the Laurentian Great Lakes341

(Dove and Chapra 2015) and some Chinese lakes (Tong et al. 2018). Besides, the342

TN/TP ratio would be smaller in summer than that in the other seasons because of343

the higher CHL concentration in summer (Ding et al. 2018).344

Our findings on the role of limiting nutrients are deduced from cross-sectional345

data. However, our results are supported by several case studies (i.e., non compiled,346

cross-sectional databases) worldwide (Table 2). For example, for some lakes in347

the Experimental Lakes Area of Canada (Schindler et al. 2008, Schindler 2012)348

and the Laurentian Great Lakes (Dove and Chapra 2015), whose CHL states were349

oligo-mesotrophic or eutrophic, the limiting nutrient was identified as TP. In some350

hypereutrophic lakes (e.g. Lake Dianchi and Lake Taihu) in China, both TN and TP351

were determined as limiting nutrients (Xu et al. 2009, Wu et al. 2017). In addition,352

Søndergaard et al. (2017) found that CHL was generally more strongly related to353

TP than to TN, but TN could be important to the variability of CHL at high TP354

concentrations (> 107 µg/L) based on the observations of 817 Danish lakes. Similarly,355

Filstrup and Downing (2017) revealed that CHL was weakly related to TN when356

TP concentration was low, but displayed a much stronger response to TN at higher357
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TP concentrations (> 100 µg/L) for lakes located in an agricultural region in the358

Midwestern US. These high TP concentrations in both studies always corresponded to359

the hypereutrophic state of CHL. Considering the high correlation between CHL and360

TP, the importance of TN at high TP concentrations indicates the importance of TN361

when the CHL state is hypereutrophic. These studies also support the dominant role362

of TP when the CHL state is not hypereutrophic and the dual role of TP and TN when363

CHL is hypereutrophic.364

Table 2 should be here.

Because our analysis was performed using data from over 1300 lakes that spanned365

a wide range of trophic states and ecological contexts, and because our results are366

supported be several single-lake and multi-lake studies from across the globe, we believe367

that our findings have great potential for generalizing to other lakes. Therefore, our368

findings are helpful to better understand the role of limiting nutrients and provide369

further insight to the current controversy on limiting nutrients. For example, the debate370

over limiting nutrients might be caused by trying to answer the same question, but371

under two different CHL trophic state conditions. Researchers insisting on P-limitation372

might focus on the lakes with oligo-mesotrophic or eutrophic CHL trophc state, while373

researchers finding evidence of co-limitation by P and N might have focused efforts374

in lakes with hypereutrophic CHL conditions (Table 2). It appears likely that the375

difference in CHL state was neglected in previous studies.376

Implications for management of lake eutrophication377

It is impossible to propose a unique strategy for lake eutrophication management378

that is applicable for all lakes, given the spatial and temporal variability of ecological379

contexts (Wagner et al. 2011, Moal et al. 2019, Qian et al. 2019). Although deductions380
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based on our findings cannot be generalized to all lakes, since our findings are deduced381

from spatially aggregated data, they are suitable for providing some general guidance382

for lake eutrophication management for many lakes. Considering the impossibility of a383

unified law, general guidance suitable for a large number of lakes is critical. Our findings384

would provide important prior information for site-specific eutrophication management,385

particularly for unsampled or data-limited lakes.386

Firstly, for the recovery of hypereutrophic lakes, decreasing concentrations of both387

TP and TN would likely be advantageous. The probability of CHL being hypereutrophic388

reduced by a large proportion when the TP state changed from hypereutrophic to389

eutrophic or oligo-mesotrophic state (left panel in Figure 4). The probability of CHL390

being hypereutrophic would be reduced by more than a half (from 25.6 % and 25.2 %391

to 11.4 %) when the TN state becomes oligo-mesotrophic (right panel in Figure 4).392

Figure 4 should be here.

Secondly, note that the co-limitation by P and N when CHL is hypereutrophic393

does not have to lead to the strategy that both nutrients should be controlled in394

practice (Harpole et al. 2011), because the reduction of either nutrient would be helpful.395

However, we should be aware that controlling TP solely imposes a high risk of causing396

a hypereutrophic state of CHL (Figure 2c & e) if, for example, there is an abrupt TP397

concentration increase caused by a sudden or extreme event. In other words, an oligo-398

mesotrophic or eutrophic lake with a higher TN concentration has less resiliency (the399

ability to keep the original state) to an abrupt increase in TP concentration than a lake400

with a lower TN concentration.401

Finally, to maintain the oligo-mesotrophic state of a lake, maintaining an oligo-402

mesotrophic TP state will be important. Maintaining an oligo-mesotrophic TP state403

would result in a more than 70 % of lakes being in an oligo-mesotrophic CHL state.404
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However, the change of TN trophic state will not lead to a large proportion change405

of CHL oligo-mesotrophic state. Similarly, to further recover a lake to the oligo-406

mesotrophic state, a decrease in TP will be more effective than a decrease in TN.407

Importance of a large dataset and the use of a Bayesian Network408

The novelty of our research is due to two primary factors: examining effects of N409

and P across hundreds of lakes and the application of BN at macroscales. We emphasize410

the importance of using a dataset with large numbers of lakes and with a wide-range of411

different ecological contexts, rather than using a limited number of lakes to explore the412

role of TP and TN as potential limiting nutrients. The extension of results deduced from413

a limited number of lakes to a broader population of lakes might improperly identify414

the limiting nutrient and misinform lake eutrophication management. For example, as415

shown by our probabilistic results, there is a proportion of lakes whose CHL trophic416

state will be oligo-mesotrophic when the TP state is hypereutrophic (left panel in Figure417

4). If research focused only on these lakes we might conclude that TP is not related to418

the CHL trophic state (i.e., that CHL is not limited by TP), while TP is in fact very419

important for many other lakes. The extension of the corresponding strategy for lake420

eutrophication control might be also ineffective for other lakes. Similarly, there a large421

proportion of lakes whose CHL state is eutrophic or hypereutrophic when TP state422

is hypereutrophic (left panel in Figure 4). The generalization of nutrient limitation423

deduction from these lakes to other lakes could be misleading.424

Our work also highlights the novel application of BN in exploring the role of P425

and N on CHL at macroscales. As shown in Figure 2 and Figure 4, under certain426

nutrient states, the CHL state is not deterministic but probabilistic, reflecting impacts427

of spatial heterogeneity of drivers that were not included in the analysis. We argue that428
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the application of BN could be encouraged as an effective tool for use in macrosystem429

studies. Firstly, BN implicitly accounted for impacts of spatial heterogeneity of430

ecological contexts and avoided the risk of ecological fallacy. Secondly, although431

classifying ecosystems is useful for improving our understanding of ecological processes,432

data used for classification could be rare, particularly for many systems at macroscales.433

Under this circumstance, BN allows the probabilistic exploration of response-drivers434

relationship. Finally, if we are also interested in the effect of other factors or the435

data of potential drivers become available, adding other factors as predictors in BN is436

straightforward.437

In the future, it will be critical to identify drivers of the limiting nutrient at both the438

regional and site-specific scales so the limiting nutrient of a lake can be determined more439

accurately according to its ecological context. This would enable predicting limiting440

nutrients to unsampled (or data-limited) lakes which could better inform the site-specific441

eutrophication management at macroscales.442

Conclusions443

We explored the TP vs. TN limitation in inland lakes at macroscales. The novel444

application of BN allowed us to directly build CHL-nutrient relationships without445

collecting extra data of potential drivers of nutrient limitation. Results showed that446

TP generally played a more important role on driving phytoplankton biomass than TN.447

When CHL is in a hypereutrophic state, both TP and TN are important. We revealed448

that the current debate on the limiting nutrient might be caused by failure to consider449

CHL trophic state. Our findings enhance the understanding of nutrient limitation at450

macroscalea, which could also facilitate eutrophication management of unsampled or451

data-limited lakes.452
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Figure Legends:689

Figure 1: Structure of BN model. Horizontal bars show the proportion of lakes classified690

into each of the three trophic states691

Figure 2: Probabilities of the CHL trophic state under different combinations of nutrient692

trophic states693

Figure 3: The relationship between loge TN/TP ratio and loge CHL for lakes in the694

LAGOS-NE database695

Figure 4: Probablities of CHL state given the state of one nutrient696

697
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Table 1: Concentration thresholds used to determine the trophic state of TP, TN, and

CHL (modified from USEPA (2009). Please refer to Figure 1 for the distributions of

lake trophic states in our study). For our analysis, we combined the oligotrophic and

mesotrophic states into a single category (USEPA 2009).
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699
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701702

trophic state TP (µg/L) TN (mg/L) CHL (µg/L)
Oligo-mesotrophic (‘O’) ≤ 25 ≤ 0.75 ≤ 7
Eutrophic (‘E’) > 25 & ≤ 50 > 0.75 & ≤ 1.4 > 7 & ≤ 30
Hypereutrophic (‘H’) > 50 > 1.4 > 30
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Table 2: Documented cases of nutrient limitations. The CHL state is determined by the average CHL concentration.704705

CHL state Limiting nutrient Lake name Country Location Reference
oligo-mesotrophic
or Eutrophic

TP Lake 227 Canada 50°N, 94°W Schindler et al. (2008)
Lake 261 50°N, 94°W Schindler (2012)
Lake 303 50°N, 94°W
Lake 304 50°N, 94°W
Lake Erie Canada, US 42°N, 81°W Dove and Chapra (2015)
Lake Ontario US 44°N, 78°W
Lake Huron 44°N, 82°W
Lake Michigan 44°N, 87°W
Scharmützelsee Germany 52°N, 14°E Kolzau et al. (2014)
Untere Havel 52°N, 13°E
Lake Chenghai China 26°N, 100°E Yan et al. (2019)

Hypereutrophic TP & TN Langer See Germany 52°N, 14°E Kolzau et al. (2014)
Müggelsee 52°N, 14°E
Lake Taihu China 31°N, 120°E Xu et al. (2009), Paerl et al. (2011)
Lake Dianchi 24°N, 102°E Wu et al. (2017)
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Figure 1: Structure of the Bayesian Network model. Horizontal bars show the

proportion of lakes classified into each of the three trophic states. TP = total

phosphorus, TN = total nitrogen, CHL = chlorophyll a.
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Figure 2: Probabilities of the CHL trophic state under different combinations of nutrient trophic states. ’Oligo-meso’ =

oligo-mesotrophic, ’Eutro’ = eutrophic, ’Hyper’ = hypereutrophic, TP = total phosphorus, TN = total nitrogen.
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Figure 3: The relationship between loge TN/TP ratio and loge CHL for lakes in the

LAGOS-NE database. Solid line is fitted regression line (R2 = 0.262, p < 0.001),

vertical lines indicate breaks in trophic status (indicated at the top of the figure), white

points are average TN/TP for each trophic state, and dashed horizontal line indicates

the Redfield Ratio on a loge-scale.
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Figure 4: Probablities of CHL state given the state of one nutrient.720721
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