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Abstract
Aim:	We	aimed	to	measure	the	dominant	spatial	patterns	 in	ecosystem	properties	
(such	as	nutrients	and	measures	of	primary	production)	and	 the	multi‐scaled	geo-
graphical	driver	variables	of	these	properties	and	to	quantify	how	the	spatial	structure	
of	pattern	in	all	of	these	variables	influences	the	strength	of	relationships	among	them.
Location and time period: We	 studied	>	8,500	 lakes	 in	 a	 1.8	million	 km2	 area	 of	
Northeast	U.S.A.	Data	comprised	10‐year	medians	(2002–2011)	for	measured	ecosys-
tem	properties,	long‐term	climate	averages	and	recent	land	use/land	cover	variables.
Major taxa studied: We	focused	on	ecosystem	properties	at	the	base	of	aquatic	food	
webs,	including	concentrations	of	nutrients	and	algal	pigments	that	are	proxies	of	pri-
mary	productivity.
Methods:	We	quantified	spatial	structure	in	ecosystem	properties	and	their	geograph-
ical	driver	variables	using	distance‐based	Moran	eigenvector	maps	 (dbMEMs).	We	
then	compared	the	similarity	in	spatial	structure	for	all	pairs	of	variables	with	the	cor-
relation	between	variables	to	illustrate	how	spatial	structure	constrains	relationships	
among	ecosystem	properties.
Results:	The	strength	of	spatial	structure	decreased	in	order	for	climate,	land	cover/
use,	lake	ecosystem	properties	and	lake	and	landscape	morphometry.	Having	a	compa-
rable	spatial	structure	is	a	necessary	condition	to	observe	a	strong	relationship	be-
tween	a	pair	of	variables,	but	not	a	sufficient	one;	variables	with	very	different	spatial	
structure	are	never	strongly	correlated.	Lake	ecosystem	properties	tended	to	have	an	
intermediary	spatial	structure	compared	with	that	of	their	main	drivers,	probably	be-
cause	 climate	 and	 landscape	 variables	 with	 known	 ecological	 links	 induce	 spatial	
patterns.
Main conclusions: Our	empirical	results	describe	inherent	spatial	constraints	that	dic-
tate	the	expected	relationships	between	ecosystem	properties	and	their	geographical	
drivers	at	macroscales.	Our	results	also	suggest	that	understanding	the	spatial	scales	
at	which	ecological	processes	operate	 is	necessary	to	predict	the	effects	of	multi‐
scaled	environmental	changes	on	ecosystem	properties.	
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1  | INTRODUC TION

Ecosystems	are	highly	heterogeneous	over	space	and	influenced	by	
processes	that	operate	at	local	to	continental	scales.	There	is	a	growing	
need	to	understand	how	regional	to	global	changes	will	affect	ecosys-
tem	processes	and	the	services	they	provide	at	the	macroscale	(Clark	
et	al.,	2001;	Heffernan	et	al.,	2014;	Qiu	&	Turner,	2013).	In	response	to	
this	need,	frameworks	and	approaches	have	been	developed	to	study	
ecosystem	processes	and	patterns	across	spatial	extents	(Heffernan	
et	al.,	2014;	Levy	et	al.,	2014;	Rose	et	al.,	2017;	Soranno	et	al.,	2014).	
Such	multi‐scaled	analyses,	however,	have	rarely	been	grounded	in	
empirical	studies,	owing	in	part	to	a	lack	of	fine‐resolution	data	on	
ecosystem	properties	in	the	many	thousands	of	ecosystems	across	
regions	and	continents.	Given	that	sampling	often	occurs	above	or	
below	the	scale	of	 interest	(Anselin,	2001;	Fortin	&	Dale,	2005),	 it	
remains	challenging	to	understand	how	both	fine‐ and broad‐scaled	
ecological	and	geographical	drivers	may	induce	spatial	structure	in	
ecosystem	properties.

Recent	efforts	to	compile	large,	multi‐scaled	datasets	combined	
with	better	methods	for	quantifying	spatial	patterns	are	facilitating	
ecological	studies	of	these	questions	at	macroscales	(e.g.,	Sharma	et	
al.,	2015;	Soranno	et	al.,	2017),	but	these	opportunities	present	an-
alytical	and	conceptual	challenges.	One	of	these	challenges	is	to	un-
derstand	and	quantify	the	role	of	spatial	structure	in	the	relationships	
between	ecosystem	properties	and	their	geographical	(landscape	and	
climatic)	drivers.	Spatial	structure,	or	the	shape	and	strength	of	spa-
tial	patterns,	is	often	quantified	using	various	measures	of	spatial	au-
tocorrelation	(Fortin	&	Dale,	2005).	Spatial	autocorrelation	has	long	
been	recognized	as	a	problem	that	may	inflate	error	in	statistical	mod-
els	(Hoeting,	2009;	Legendre,	1993)	but	is	increasingly	being	used	as	
a	meaningful	tool	to	estimate	how	different	types	of	variables	may	
induce	spatial	patterns	in	ecosystem	properties.	For	example,	spatial	
autocorrelation	patterns	in	stream	chemistry	suggested	that	reactive	
nutrients	were	 locally	 structured	 in	 response	 to	 in‐stream	uptake,	
whereas	conservative	tracers	of	terrestrial	inputs	were	more	broadly	
structured	at	 the	whole	watershed	 level	 (McGuire	et	al.,	2014).	 In	
lakes,	 studies	 to	 date	 have	 shown	 evidence	 for	 regional	 structure	
(i.e.,	spatial	autocorrelation	among	lakes	within	regions)	in	some	key	
lake	chemistry	and	biotic	variables.	Between‐lake	variance	plateaued	
for	the	concentrations	of:	chlorophyll	a	and	nutrients	at	c.	100	km	in	
Michigan,	U.S.A.	(Cheruvelil,	Soranno,	Bremigan,	Wagner,	&	Martin,	
2008),	dissolved	organic	carbon	at	c.	300	km	in	Sweden	(Seekell	et	al.,	
2014),	and	chlorophyll	a	and	bacterial	respiration	at	c.	200–300	km	
in	 boreal	 Quebec	 (Lapierre,	 Seekell,	 &	 del	 Giorgio,	 2015).	 In	 con-
trast,	climate	variables	 in	the	boreal	region	were	spatially	autocor-
related	for	sites	distant	up	to	10,00	km	(Lapierre	et	al.,	2015).	Thus,	

there	is	evidence	that	different	categories	of	ecosystem	properties	
may	have	contrasting	spatial	structure,	but	the	spatial	structure	of	a	
comprehensive	suite	of	climate,	landscape	and	ecosystem	properties	
has	never	been	quantified	simultaneously	within	an	individual	study	
at	macroscales.	Therefore,	although	spatial	structure	has	been	rela-
tively	well	characterized	for	distributions	and	interactions	of	organ-
isms	(Gotelli,	Graves,	&	Rahbek,	2010;	McGill,	2010;	Rahbek,	2005;	
Wiens,	1989),	the	role	of	spatial	structure	in	understanding	the	spatial	
patterns	in	ecosystem	matter	and	energy	at	broad	spatial	extents	is	
largely	unknown.

Lakes	are	ideally	suited	to	the	study	of	patterns	across	different	
spatial	scales	because	their	boundaries	are	well	defined	and	because	it	
is	possible	to	measure	how	they	receive	and	process	material	originat-
ing	from	the	lake	itself,	the	overlying	atmosphere	and	the	surround-
ing	landscape.	Furthermore,	lakes	are	ecological	and	biogeochemical	
hotspots	in	the	landscape	(McClain	et	al.,	2003;	Strayer	&	Dudgeon,	
2010),	and	it	is	crucial	to	understand	the	flow	of	matter	and	energy	at	
local,	regional	and	continental	scales	through	these	important	ecosys-
tems	by	developing	a	stronger	understanding	of	the	spatial	patterns	
of	the	factors	that	control	these	flows.	Recent	studies,	taken	together,	
suggest	that	 lakes	respond	to	diverse	and	interacting	geographical	
drivers	 operating	 at	multiple	 spatial	 scales,	 such	 as	 continental	 to	
global	climate,	regional	land	cover	and	land	use	and	local	catchment	
properties	(Lapierre,	et	al.,	2015;	O’Reilly	et	al.,	2015;	Seekell	et	al.,	
2014).	The	ecological	or	mathematical	constraints	underlying	such	
broad‐scale	ecosystem	patterns,	however,	have	only	been	studied	im-
plicitly	and	have	not	been	elucidated.

Our	goal	in	the	present	study	was	to	gain	a	better	understand-
ing	of	how	spatial	structure	varies	across	ecosystem	properties	and	
their	geographical	drivers,	and	how	that	spatial	structure	influences	
relationships	 among	 ecosystem	 and	 geographical	 variables.	 We	
used	an	empirical	approach	that	takes	advantage	of	emerging	large	
integrated	databases	of	ecological	systems	at	broad	scales.	We	use	
LAGOS‐NE	 (LAke	multi‐scaled	GeOSpatial	 and	 temporal),	 a	 large,	
multi‐scaled	and	multi‐themed	database	of>	8,000	 lakes	 in	a	sub‐
continental	spatial	extent	(Soranno	et	al.,	2017,	2015	).	Our	specific	
objectives	were	as	 follows:	 (a)	to	quantify	 the	 spatial	 structure	 in	
ecosystem	properties	and	their	geographical	drivers;	(b)	to	examine	
whether	 the	strength	of	 the	relationship	between	ecosystem	and	
geographical	variables	is	related	to	similarity	in	spatial	structure;	and	
(c)	to	compare	these	empirical	findings	with	analyses	of	simulated	
data	to	assess	the	generality	of	our	results.	Identifying	the	spatial	
principles	that	 link	ecosystem	patterns	from	fine	scales	to	macro-
scales	should	 improve	 the	ability	of	ecologists	 to	understand	and	
forecast	the	effects	of	environmental	changes	on	ecosystem	func-
tioning	across	regions	and	continents.

K E Y W O R D S

climate,	ecosystem,	lake,	landscape,	macroscales,	Moran	eigenvector	maps,	spatial	
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2  | METHODS

2.1 | Study extent and data sources

We	analysed	climate,	landscape	and	lake	ecosystem	properties	in	a	sub-
continental	spatial	extent	(c.	1.8	million	km2)	in	the	temperate	Midwest	
and	Northeast	regions	of	the	U.S.A.	 (Figure	1).	This	spatial	extent	 in-
cludes	wide	environmental	and	climatic	gradients	that	vary	several‐fold,	
including:	hydrology	(e.g.,	mean	runoff	44–762	mm/year),	land	use/land	
cover	 (e.g.,	 agricultural	 land	use	0%–89%),	 climate	 (e.g.,	mean	annual	
precipitation	 and	 temperature	 566–1,376	mm/year	 and	 2.4–14.5°C,	
respectively),	 lake	morphometry	 (e.g.,	 lake	 area	 0.01–1,237	km2) and 
nutrient	concentrations	(e.g.,	total	phosphorus	2–998	µg/L).

We	used	 the	LAGOS‐NE	database,	 including	data	modules	 for	
geographical	 data	 (LAGOSGEO,	 version	 1.03;	 LAGOSLOCUS,	 ver-
sion	1.01)	and	 lake	ecosystem	data	 (LAGOSLIMNO,	version	1.054.1)	
(Soranno	et	al.,	2017).	We	used	a	subset	of	the	LAGOS‐NE	database	
that	includes	any	lake	that	has	at	least	one	record	for	the	ecosystem	

variables	we	considered	(n	=	8,744).	We	quantified	the	spatial	struc-
ture	in	ecosystem	and	geographical	variables	from	two	data	sources.	
The	 first	 data	 source	was	 from	 geographical	 data	 that	were	 sum-
marized	by	hydrological	units	(HU),	which	are	hierarchically	nested	
stream	watersheds	based	on	United	States	Geological	Survey	(USGS)	
1:24,000	 scale	 topographic	maps.	 In	 this	 analysis,	we	 summarized	
the	ecological	property	data	that	were	not	directly	associated	with	a	
lake	or	its	watershed	at	the	smallest	available	HU	extents,	i.e.	at	the	
HU12	scale	(median	area	=	78	km2),	in	which	each	lake	was	assigned	
to	a	HU12	polygon.	We	also	 characterized	 the	 lake	watersheds	 (a	
crucial	ecological	property	of	lakes)	by	measuring	catchment	slope,	
watershed	area	 and	watershed	 land	use/cover.	We	associated	 the	
limnological	 data	 for	 the	8,744	 lakes	with	 the	 corresponding	geo-
graphical	data	in	their	respective	HU12	so	that	each	lake	had	eco-
logical	properties	calculated	at	 the	scale	of	HU12	s,	 the	 lake	 itself	
and	the	watershed	of	the	lake.	Note	that	some	HU12	s	contain	more	
than	one	lake	so	that	they	would	be	assigned	identical	HU12	data,	
but	not	the	same	lake	watershed	data.

F I G U R E  1  Examples	of	distance‐based	Moran	eigenvector	maps	(dbMEMs)	used	to	explain	spatial	patterns	in	study	variables.	The	
dbMEMs	are	shown	in	decreasing	order	in	terms	of	spatial	structure.	dbMEM	numbers	1,	3,	6,	100,	1,000	and	3,000	(out	of	8,743	total)	are	
shown.	For	each	panel,	the	colours	represent	the	amplitude	of	the	sine	wave	of	the	dbMEM,	the	“S‐value”,	at	each	site.	Thus,	the	dbMEMs	
roughly	correspond	to	wavelengths	of	3,200,	1,400,	800,	200,	10	and	0	km,	respectively.	Sites	with	a	similar	S‐value	colour	are	the	most	
similar	to	each	other	and	red	versus	blue	values	are	inversely	correlated	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Geographical	data	were	available	for	all	lakes,	but	sample	size	var-
ied	for	the	lake	ecosystem	data	[n	=	3,452,	1,902,	8,004	and	4,733	for	
total	phosphorus	(TP),	total	nitrogen	(TN),	Secchi	depth	(Secchi)	and	
chlorophyll	a	(Chl	a),	respectively].	For	lake	ecosystem	data,	we	used	
the	median	of	summer	values	(15	June	15–15	September)	over	a	pe-
riod	from	2002	to	2011,	from	which	most	of	the	data	came.	Specific	
information	about	the	geographical	data	is	provided	by	Soranno	et	al.	
(2017).	The	database	used	in	this	analysis	is	available	(Lapierre,	et	al.,	
2017).

2.2 | Quantifying spatial structure using distance‐
based Moran eigenvector maps

We	quantified	spatial	structure	as	the	cumulative	r2	between	each	
ecosystem	property	variable	and	the	distance‐based	Moran	eigen-
vector	maps	(dbMEMs)	as	described	below.	First,	we	built	dbMEMs	
(Dray,	Legendre,	&	Peres‐Neto,	2006)	based	on	geographical	coor-
dinates	of	the	8,744	lakes	for	which	we	had	limnological	data,	using	
the	adespatial	package	(Dray	et	al.,	2016)	in	R	(R	Core	Team,	2017).	
Distance‐based	Moran	eigenvector	maps	are	the	orthogonal	eigen-
vectors	of	a	spatial	weight	matrix	(i.e.,	geographical	distance	matrix)	
whose	 corresponding	 eigenvalues	 represent	 decreasing	 levels	 of	
spatial	autocorrelation	(the	Moran’s	I	coefficients,	which	define	how	
a	variable	correlates	with	itself	between	two	different	locations	and	
are	commonly	used	to	study	spatial	patterns	in	ecology;	Legendre	&	
Legendre,	 2012).	 Positive	 spatial	 correlation	 in	 the	data	 translates	
into	positive	values	of	I;	negative	correlation	produces	negative	val-
ues.	There	are	n	−	1	potential	dbMEMs	(eigenvectors),	half	of	which	
model	 the	 positive	 spatial	 correlation	 (positive	Moran’s	 I)	 and	 the	
other	 half	 the	 negative	 spatial	 correlation,	which	 can	 be	 included	
as	explanatory	variables	in	regression	models.	The	scale	at	which	a	
dbMEM	is	spatially	structured	can	be	estimated	as	the	wavelength	of	
a	sine	function,	visually	seen	as	the	distance	between	peaks	of	sites	
with	comparable	eigenvectors	(see	Figure	1,	for	examples,	with	con-
trasting	spatial		structure;	Appendix	2	shows	additional	dbMEMs).

We	 used	 dbMEMs	 [dbmem()	 function	 from	 adespatial],	 where	
the	 spatial	weighting	matrix	 is	 derived	 from	 the	 geographical	 dis-
tance	between	sites,	keeping	only	the	distances	that	are	smaller	than	
the	threshold	(i.e.,	distance	greater	that	longest	link	of	the	minimum	
spanning	tree,	thresh,	are	truncated	to	4*thresh)	to	build	the	spatial	
eigenvectors.	We	used	dbMEMs	because	we	had	no	a	priori	ecolog-
ical	expectations	for	the	role	of	connectivity	in	the	spatial	structure	
across	a	wide	range	of	climate,	land	cover	and	land	use	and	lake	mor-
phometric,	chemical	and	biological	variables.	However,	we	examined	
the	sensitivity	of	our	results	to	using	dbMEMs	as	opposed	to	the	more	
general	MEMs	by	building	spatial	eigenvectors	with	different	connec-
tivity	and	geographical	distance	weighting	matrices	[using	the	mem()	
function	from	the	adespatial	package	in	R].	We	found	our	results	to	
be	robust;	changing	the	connectivity	and	weighing	matrices	had	very	
little	effect	on	the	total	amount	of	variation	explained	by	dbMEMs	
versus	MEMs	(Supporting	Information).	Therefore,	our	results	were	
not	sensitive	to	the	choice	of	the	connectivity	and	weighting	matrices,	
providing	more	confidence	in	our	conclusions	and	our	use	of	dbMEMs.

We	then	quantified	the	total	strength	of	spatial	structure	in	each	
ecological	variable	and	the	main	scales	at	which	a	variable	was	spa-
tially	structured.	For	each	ecological	variable,	we	performed	a	forward	
selection	regression	 (i.e.,	 spatial	 filtering)	with	all	potential	dbMEMs	
(with	 significant	Moran’s	 I)	 as	 predictor	 variables,	 using	 vegan’s	 or-
diR2step()	 function,	 with	 the	 direction	 argument	 set	 to	 “forward”	
selection	 (Blanchet,	 Legendre,	 &	 Borcard,	 2008).	 Variables	 were	
transformed	for	normality	(log10	transformation	for	Runoff,	Baseflow,	
Catchment	 slope,	 TN,	 TP,	 Secchi,	 Chl	a,	 Lake	 area,	 Lake	 perimeter,	
Lake	depth	and	Watershed	area;	logit	transformation	for	land	cover/
land	 use	 variables;	 no	 transformation	 for	 climate	 and	 atmospheric	
deposition	variables).	Owing	to	the	high	number	of	data	points,	many	
dbMEMs	were	 significant	 predictors,	 but	 few	explained	meaningful	
amounts	of	variation	in	LAGOS‐NE	variables;	at	c.	2%	of	the	variance	
explained,	the	declining	variance	explained	by	each	additional	dbMEM	
tended	to	plateau.	Hence,	we	present	only	results	for	dbMEMs	that	
explained	≥	2%	of	the	variation	in	LAGOS‐NE	variables	(Table	1).

Given	that	the	goal	of	our	study	was	to	gain	a	better	understand-
ing	 of	 how	 spatial	 structure	 varies	 across	 a	 large	 number	 of	 eco-
system	and	geographical	properties	and	how	that	spatial	structure	
influences	 relationships	 among	 them,	 we	 performed	 multivariate	
analyses	to	group	the	variables	based	on	spatial	similarity	(Legendre	
&	Legendre,	2012).	In	particular,	we	first	conducted	a	hierarchical	ag-
glomerative	clustering	analysis	 (Ward’s	minimum	variance	method)	
on	the	data	presented	in	Table	1	to	identify	groups	of	variables	that	
concorded	 in	the	 importance	of	dbMEM	variables.	Here	we	trans-
posed	the	matrix	presented	in	Table	1	(dbMEMs	as	rows,	and	eco-
system	and	geographical	variables	as	columns),	then	calculated	the	
Spearman’s	 r	 correlation	 among	 the	 ecosystem	 and	 geographical	
variables	 (columns),	 which	 we	 then	 further	 transformed	 into	 dis-
tances	[using	the	as.dist(1	–	absolute(r))	function	from	the	base	stats	
package;	R	Core	Team,	2017],	and	calculated	Ward’s	agglomerative	
clustering	 [using	 the	hclust(…,	method	=	 “ward.D2”)	 function	 from	
the	 stats	package].	To	 illustrate	 the	association	among	 the	groups	
of	variables,	we	conducted	a	principal	components	analysis	on	the	
data	presented	in	Table	1	[ecosystem	and	geographical	variables	as	
rows,	 and	 dbMEMs	 as	 columns;	 using	 the	 rda()	 function	 from	 the	
vegan	package]	and	colour	coded	the	ecosystem	and	geographical	
variables	according	to	the	groups	determined	by	Ward’s	cluster	anal-
ysis.	We	then	performed	a	correspondence	analysis	(CA)	to	identify	
which	variables	were	predominantly	structured	and	at	what	scale.

Owing	to	our	research	questions,	we	did	not	spatially	detrend	the	
data.	 Spatial	 analyses	 are	 typically	 conducted	on	detrended	data	 in	
order	 to	account	 for	 spatial	non‐stationarity,	and	 thus	 for	 improved	
ability	to	capture	local	patterns	that	are	independent	of	broad‐scale	
gradients	(Fortin	&	Dale,	2005).	However,	the	objective	of	our	study	
was	to	characterize	the	strength	and	scales	of	spatial	structure	in	eco-
system	and	geographical	properties	 to	 identify	 the	spatial	 structure	
present	 across	 scales,	 both	 latitudinally	 and	 longitudinally.	We	con-
sider	this	information	meaningful	and	thus	aimed	to	quantify	and	ex-
plain	these	potential	two‐dimensional	trends	rather	than	eliminating	
them.	We	then	qualitatively	tested	how	spatial	structure	may	influence	
relationships	among	well‐studied	variables	using	the	concentrations	of	
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TP,	a	widely	studied	ecosystem	response	in	lakes	that	are	subject	to	
cultural	eutrophication.	We	performed	a	multiple	linear	regression	to	
identify	the	main	geographical	drivers	of	lake	TP	across	the	study	ex-
tent	using	the	vegan	package	(Oksanen	et	al.,	2013)	in	R.

2.3 | Quantifying the role of spatial structure 
in explaining the strength of relationships 
between variables

Once	we	determined	the	spatial	structure	for	each	variable,	we	quan-
tified	 the	 importance	of	 spatial	 structure	 for	 relationships	 between	
ecosystem	and	geographical	properties.	To	do	so,	we	measured	the	
similarity	in	spatial	structure	among	each	possible	pair	of	variables	by	
calculating	one	minus	the	difference	in	the	cumulative	coefficient	of	
determination	(r2)	of	each	dbMEM–response	variable	pair.	For	exam-
ple,	dbMEMs	explain	33%	of	 the	variation	 in	both	Catchment	slope	
and	lake	TN,	hence,	they	have	a	similarity	of	one,	whereas	mean	annual	
temperature	(MAT;	cumulative	r2	=	0.92)	and	watershed	area	(cumula-
tive	r2	=	0)	would	have	a	similarity	of	0.08	(Table	1).	We	then	plotted	
the	absolute	correlation	(i.e.,	negative	values	reported	as	positive),	r,	

between	pairs	of	variables	(y	axis)	as	a	function	of	similarity	in	spatial	
structure	for	the	same	pair	of	variables	(x	axis)	to	explore	whether	var-
iables	with	comparable	spatial	structure	tend	to	have	stronger	correla-
tions	and,	if	this	is	the	case,	the	shape	and	strength	of	the	relationship	
between	correlation	and	similarity	in	spatial	structure.

There	were	 264	 possible	 pairs	 of	 variables,	 but	 12	 pairs	were	
excluded	because	they	contained	redundant	 information	(e.g.,	per-
centage	 pasture	 vs.	 percentage	 agricultural	 land	 use).	 Regressions	
were	performed	on	transformed	variables	using	JMP	10.1	(SAS	insti-
tute,	Cary,	NC).	We	acknowledge	that	OLS	may	not	be	the	optimal	
model	for	every	pair	of	variables,	but	here	we	focus	on	the	overall	
pattern	that	emerges	across	all	the	pairs	of	variables	rather	than	on	
optimizing	the	variance	explained	in	every	pair.	Furthermore,	we	do	
not	attempt	 to	assign	a	significance	value	 to	 this	analysis	of	many	
individual	models,	and	instead	focus	on	the	patterns	of	the	relation-
ships	among	types	of	variables	and	their	spatial	patterns.

Finally,	we	explored	 the	generality	of	our	 results	because	we	
acknowledge	 that	 the	 spatial	 resolution	 and	 extent	 of	 the	 study	
area	 may	 impose	 bias	 on	 the	 scale	 of	 the	 patterns	 measured	
(Turner,	O’Neill,	Gardner,	&	Milne,	1989;	Wu,	2004).	Therefore,	we	

F I G U R E  2  Spatial	patterns	in	a	subset	of	ecosystem	and	geographical	properties.	Spatial	structure	decreases	from	(a)	mean	annual	
temperature	(MAT),	(b)	surface	runoff,	(c)	percentage	of	agriculture	in	the	catchment,	(d)	mean	Secchi	depth,	(e)	mean	TP	concentrations	and	
(f)	maximum	lake	depth	(see	Table	1).	Values	decrease	from	red	to	blue,	with	each	colour	representing	values	within	a	20	percentile	for	this	
variable	distribution	(range	provided	in	the	Methods	section)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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simulated	data	that	had	increasing	degrees	of	spatial	autocorrela-
tion	using	the	gstat	package	(Pebesma	&	Gr,	2014).	We	simulated	
150	 “variables”	 (i.e.,	 grids	of	100	×	100	equally	distanced	points,	
unitless)	with	 ranges	 from	0.01	 (near	absence	of	 spatial	 autocor-
relation)	to	50	(strong	spatial	autocorrelation).	Then,	we	followed	
the	same	steps	as	for	the	real	dataset.	For	each	simulated	variable,	
we	quantified	the	spatial	structure	using	dbMEMs,	then	we	quan-
tified	 the	 similarity	 in	 spatial	 structure	and	 the	absolute	 correla-
tion	between	each	pair	of	variables.	Similar	patterns	between	the	
LAGOS‐NE	 and	 simulated	 variables	would	 suggest	mathematical	
constraints	modulating	how	spatial	structure	explains	the	strength	
of	relationships	between	variables,	and	that	these	constraints	are	
independent	of	scale	and	of	the	nature	of	the	input	variables.

3  | RESULTS

3.1 | Quantifying spatial structure in ecosystem 
properties and their geographical context

There	were	different	degrees	of	spatial	structure	in	climate,	landscape	
and	lake	properties	that	were	apparent	when	mapping	the	quantiles	
of	 these	 variables	 across	 the	 study	 extent	 (Figure	 2).	 For	 example,	
MAT	and,	to	a	lesser	degree,	annual	surface	runoff	(henceforth,	run-
off)	showed	strong	linear	gradients,	generally	increasing	from	North	
to	 South	 and	 from	West	 to	 East,	 respectively.	 At	 an	 intermediate	
scale,	there	were	strong	spatial	patterns	in	the	percentage	of	agricul-
tural	 land	use	 (Figure	2).	Spatial	patterns	 in	 lake	ecosystem	proper-
ties,	such	as	Secchi	and	concentrations	of	TP	were	also	structured	at	
an	intermediate	scale	and	appeared	to	align	with	agricultural	land	use	
patterns,	although	there	are	hints	of	local	variation	in	these	lake	eco-
system	properties	that	were	not	apparent	for	the	agricultural	land	use	

data	(Figure	2).	Finally,	lake	maximum	depth	(hereafter,	depth)	showed	
weak	spatial	patterns	across	the	study	extent	(Figure	2).

These	observed	spatial	patterns	were	validated	by	the	dbMEM	
analyses.	Spatial	structure,	expressed	as	the	cumulative	r2	between	
an	ecosystem	and	geographical	 properties	 and	 the	most	meaning-
ful	dbMEMs	(see	Figure	1,	Appendix	2)	typically	followed	a	pattern	
of	 climate	>	land	cover/land	use	>	lake	ecosystem	properties	>	lake	
and	catchment	morphometry	(Table	1).	In	particular,	dbMEMs	collec-
tively	explained>	90%	of	the	variation	in	MAT,	precipitation	and	run-
off,	indicating	very	strong	spatial	structure	in	these	variables	at	this	
sub‐continental	scale,	which	is	well	known	to	be	the	case	for	these	
types	of	variables.	The	dbMEMs	explained	between	30%	and	85%	of	
the	variation	in	atmospheric	deposition	of	N	and	SO4,	various	mea-
sures	of	land	use/land	cover	and	in	catchment	slope	(Table	1),	indi-
cating	an	intermediate	level	of	spatial	structure	that	is	also	consistent	
with	what	 is	 known	about	 these	variables	 (Figure	2).	 Interestingly,	
lake	 ecosystem	 properties	 (concentrations	 of	 nutrients,	 Chl	a	 and	
Secchi	 depth;	 Table	 1,	 in	 light	 blue)	 also	 had	 an	 intermediate	 spa-
tial	structure,	comparable	to	the	land	cover/land	use	variables	with	
the	weakest	 spatial	 structure	 (Table	 1,	 in	 green).	 Finally,	 dbMEMs	
explained	almost	no	variation	 in	 lake	and	catchment	morphometry	
(e.g.,	lake	and	catchment	area,	lake	depth	and	perimeter;	Table	1,	in	
dark	blue),	 indicating	very	 low	spatial	structure	for	these	variables.	
Furthermore,	only	broad‐scale	dbMEMs	(i.e.,	the	top	10;	wavelength	
of	500–3,200	km)	explained	meaningful	amounts	of	variation,	even	
in	variables	that	were	weakly	structured	(Table	1).

Beyond	 the	 overall	 strength	 of	 spatial	 structure	 (i.e.,	 the	 total	
amount	 of	 variation	 in	 ecosystem	 and	 geographical	 variables	 ex-
plained	by	dbMEMs),	there	were	three	main	groups	of	variables	with	
distinct	patterns	in	terms	of	the	spatial	scales	at	which	they	were	pre-
dominantly	structured.	In	particular,	the	spatial	structure	of	variables	
from	group	1	(blue	variables	in	Figure	3)	was	mainly	at	a	broad	scale,	as	
shown	by	the	predominant	effect	of	latitude	and	dbMEMs	1	(Table	1;	
Figure	3);	for	these	variables,	there	tended	to	be	continuous	gradients	
across	the	study	extent.	This	group	includes	mainly	variables	related	to	
climate	and	atmospheric	deposition.	Moreover,	although	the	strength	
of	spatial	structure	in	lake	area	was	very	low	(Table	1),	the	little	spatial	
structure	present	tended	to	be	at	a	broad	spatial	scale.	Variables	in	
group	2	(yellow	in	Figure	3)	are	related	to	land	cover/land	use	and	were	
mostly	explained	by	dbMEM	2,	3	and	14	(Figure	3;	Table	1),	which	had	
a	wavelength	of	c.	200–1,400	km.	Finally,	spatial	structure	in	variables	
from	group	3	(lake	depth,	lake	perimeter	and	Chl	a;	red	in	Figure	3)	
were	mostly	explained	by	smaller	scale	dbMEMs,	implying	that	in	ad-
dition	to	the	overall	weaker	spatial	structure	in	these	variables,	the	
spatial	structure	present	tends	to	be	at	a	smaller	spatial	scale.

We	then	evaluated	how	spatial	structure	may	influence	relation-
ships	among	ecosystem	and	geographical	properties	using	concen-
trations	of	TP,	 a	widely	 studied	 lake	ecosystem	 response	variable.	
Concentrations	 of	 TP	were	 best	 explained	 in	 a	multiple	 linear	 re-
gression	model	by	lake	depth,	the	percentage	of	evergreen	forest	in	
the	catchment	(%Evergreen),	watershed	area	(WA),	runoff	and	base-
flow,	in	decreasing	order	of	explanatory	power	(n	=	3,110,	r2	=	0.59,	
p < 0.001):

F I G U R E  3  Correspondence	analysis	(CA)	and	clustering	
on	Table	1.	The	lengths	of	the	vectors	are	proportional	to	the	
importance	of	the	ecosystem	variable	to	the	distance‐based	Moran	
eigenvector	maps	(dbMEMs).	The	grouping	of	ecosystem	variables	
was	determined	by	Ward’s	agglomerative	clustering	applied	on	
[1	−	absolute(r)],	where	confidence	ellipses	are	shown	for	each	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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Spatial	 structure	 in	 lake	 TP	 in	 this	 study	 (0.40,	 expressed	 as	
the	 r2	 between	 TP	 and	 the	 significant	 dbMEMs)	 roughly	 corre-
sponds	 to	 a	weighted	 average	 of	 the	 spatial	 structure	 of	 its	main	
drivers	 (depth	=	0.09,	 %Evergreen	=	0.68,	 WA	=	0,	 Runoff	=	0.90,	
Baseflow	=	0.60;	Table	1).	Moreover,	nearly	as	much	variation	in	lake	

TP	was	explained	by	purely	spatial	variables	(dbMEMs)	containing	no	
inherent	ecological	information.	These	results	suggest	that	environ-
mental	drivers	not	only	explain	variation	in	TP,	but	they	also	induce	
spatial	patterns	in	it	that	match	that	of	its	main	drivers.

3.2 | Similarity in spatial structure and the 
strength of relationships between variables

The	potential	strength	of	relationships	between	ecosystem	and	geo-
graphical	 properties	 increased	 with	 similarity	 in	 spatial	 structure.	
There	were	 252	 possible	 pairs	 of	 variables	with	 different	 levels	 of	
similarity,	and	no	strong	relationships	were	observed	when	there	was	
strong	dissimilarity	in	spatial	structure	(Figure	4a).	Variables	with	simi-
lar	spatial	structure,	on	the	contrary,	tended	to	have	stronger	correla-
tions	(Figure	4a).	Weak	correlations	were	also	observed,	however,	for	
variables	with	similar	spatial	structure,	and	the	overall	pattern	showed	
a	triangle	shape,	where	the	hypotenuse	delineates	the	maximum	po-
tential	correlation	for	a	given	level	of	similarity	in	spatial	structure.

We	argue	that	this	pattern	is	generalizable	to	any	type	of	vari-
able	 because	 the	 results	 are	 the	 same	 for	 the	 simulated	 dataset	
(Figure	4b).	In	particular,	simulated	variables	with	known	degrees	of	
spatial	 structure	showed	an	 identically	shaped	pattern,	 suggesting	
that	this	result	 is	not	attributable	to	a	bias	in	the	selection	of	vari-
ables	or	in	the	spatial	extent	of	our	study	area.	Thus,	similar	spatial	
structure	appears	to	be	a	necessary	but	not	sufficient	condition	for	
observing	strong	relationships	between	ecosystem	and	geographi-
cal	properties	such	as	climate,	land	cover/land	use	and	indicators	of	
the	flow	of	matter	and	energy	in	lakes.

4  | DISCUSSION

The	 spatial	 structure	 of	 ecosystem	 and	 geographical	 properties	
contains	rich	information	that	can	provide	insight	on	the	potential	
drivers	and	processes	that	give	rise	to	spatial	patterns.	Although	
our	approach	to	quantify	spatial	structure	and	its	effect	on	paired	
relationships	is	correlative,	it	illustrates	how	spatial	structure	can	
constrain	these	types	of	broad‐scale	relationships	to	explain	eco-
system	variation	at	macroscales.	Understanding	these	constraints	
might	help	to	identify	unmeasured	processes	operating	at	similar	
spatial	 scales	 that	 affect	 ecosystem	 properties.	 Furthermore,	 a	
priori	knowledge	of	spatial	structure	in	ecosystem	properties	and	
their	 potential	 drivers	may	allow	ecologists	 to	 focus	hypotheses	
and	sampling	efforts	on	the	dominant	variables	that	explain	varia-
tion	in	ecosystem	properties	across	scales,	whether	relationships	
are	directly	causal	or	reflect	other	mechanisms.	Our	study	shows	
that	inferences	can	be	made	about	regional	to	global	processes	by	
simply	measuring	spatial	patterns	and	their	effects	on	correlations	
between	a	wide	range	of	ecosystem	and	geographical	properties.	
We	expect	our	results	to	apply	beyond	lake	ecosystems	and	hope	
that	 similar	 analyses	 will	 be	 conducted	 on	 other	 multi‐themed	
datasets	at	macroscales.
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F I G U R E  4  The	importance	of	comparable	spatial	structure	
in	the	strength	of	relationships	between	pairs	of	variables.	(a)	
Correlation	(absolute	values)	between	pairs	of	variables	is	plotted	
against	the	similarity	in	spatial	structure	(see	Table	1)	between	
the	corresponding	pair	of	variables	in	the	LAGOS‐NE	(LAke	multi‐
scaled	GeOSpatial	and	temporal)	dataset.	(b)	The	same	relationships	
as	in	(a),	but	with	a	simulated	dataset	of	variables	with	a	known	
spatial	structure	(see	Methods).	Variables	are	unitless	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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Our	interpretations	focus	on	generalities	rather	than	on	the	details	
of	each	possible	relationship.	There	may	be	biases	in	the	relationships	
between	individual	variables	that	have	been	measured	or	averaged	
at	different	spatial	and	temporal	grains.	For	example,	we	quantified	
spatial	structure	in	10‐year	medians	(with	varying	numbers	of	obser-
vations)	for	point	measurements	of	lake	ecosystem	properties,	and	in	
30‐year	average	mean	annual	precipitation	or	temperature	(MAP	and	
MAT,	respectively)	at	the	HU12	level	(median	size	=	78	km2)	that	have	
been	interpolated	from	broadly	distributed	meteorological	stations.	
Detailed	understanding	of	the	potential	causal	relationships	between	
each	pair	of	variables	would	necessitate	a	 finer	exploration	of	 the	
scales	at	which	variables	have	been	measured	and	averaged,	but	this	
was	not	the	aim	of	our	study.	Rather,	the	strength	of	our	results	lies	in	
the	overall	pattern	that	is	shown	for	ecosystem	properties	reported	
for>	8,000	 sites	 across	 a	 1.8	million	 km2	 area.	Moreover,	 the	 fact	
that	we	can	reproduce	our	key	pattern	with	simulated	variables	that	
are	unitless	and	unbiased	(Figure	4b)	suggests	that	the	patterns	are	
robust	and	generalizable	beyond	the	study	extent	and	the	variables	
studied	here.	In	particular,	although	we	focus	on	climate,	landscape	
and	lake	ecosystem	properties	over	a	broad	study	extent,	our	simu-
lations	suggest	that	our	results	are	applicable	across	study	extent	and	
for	different	types	of	ecological,	ecosystem	and	geographical	data.

4.1 | Similarity in spatial structure as a necessary 
condition for correlations between ecosystem 
properties and drivers

The	connection	between	spatial	structure	and	correlations	between	
pairs	of	variables	is	best	illustrated	in	two	zones	of	Figure	4.	The	first	
zone,	in	the	upper‐left	triangle,	contained	no	pairs	of	variables	for	ei-
ther	of	the	datasets	(measured	or	simulated),	suggesting	that	there	
cannot	be	strong	correlations	between	ecosystem	properties	with	
very	different	spatial	structures.	From	a	predictive	point	of	view,	this	
means	that	to	predict	ecosystem	properties	at	broad	spatial	extents,	
one	should	focus	on	measuring	drivers	that	have	broad‐scale	spatial	
structure.	This	 result	 also	means	 that	 if	 variation	 in	 an	ecosystem	
property	was	meaningfully	explained	by	a	driver	variable	with	a	given	
spatial	structure,	that	variable	would	induce	some	of	its	spatial	struc-
ture	in	the	response	variable,	and	thus	this	pair	of	variables	would	be	
found	in	the	lower‐right	triangle	of	Figure	4.	Does	this	mean	that	no	
pairs	of	variables	can	be	found	in	the	“forbidden	zone”	(top‐left	trian-
gle)?	Teleconnections	that	decouple	the	spatial	scales	of	an	ecosystem	
property	and	its	immediate	drivers	(e.g.,	trade,	migrations;	Heffernan	
et	al.,	2014;	Pace	&	Gephart,	2017)	could,	perhaps,	generate	pairs	of	
variables	fitting	in	this	region,	but	to	the	best	of	our	knowledge	there	
are	no	empirical	tests	of	these	relationships.

The	second	 important	zone	of	Figure	4	 is	 the	bottom‐right	tri-
angle,	which	shows	the	realm	of	potential	relationships,	where	the	
maximum	 correlation	 gradually	 increases	 with	 similarity	 in	 spatial	
structure.	Pairs	of	variables	in	the	left	part	of	this	zone	include	lake	
and	watershed	morphometry	(e.g.,	area)	with	long‐term	climate	av-
erages	(e.g.,	MAP),	which	have	the	most	different	spatial	structure	
(Table	1)	and	are	never	strongly	correlated	(Figure	4).	For	example,	

if	climate	had	any	tangible	effect	on	lake	or	watershed	area	(or	vice	
versa),	it	would	induce	some	degree	of	spatial	structure,	resulting	in	
comparable	spatial	patterns.	Although	correlations	are	not	sufficient	
to	demonstrate	causation,	correlations	 imply	an	unresolved	causal	
structure,	whereby	the	effect	can	be	indirect	and	explained	by	some	
unmeasured	 variable	 (Shipley,	 2002).	 Therefore,	 the	 near	 absence	
of	correlations	in	this	part	of	the	figure	suggests	that	variables	with	
completely	 different	 spatial	 structure	 do	 not	 have	meaningful	 ef-
fects	on	each	other.	 Interestingly,	 however,	 even	 the	weak	 spatial	
structure	exhibited	by	lake	morphometry	variables	(e.g.,	lake	depth,	
lake	area)	was	explained	by	broad‐scale	dbMEM	(Table	1;	Figure	3),	
similar	 to	 their	weak	but	 significant	correlations	with	climate	vari-
ables.	Although	variables,	such	as	climate	and	lake	area	may	not	be	
related	causally	at	the	present	time	[although	Downing	et	al.	(2006)	
observed	higher	occurrence	of	farm	ponds	where	MAP	>	1,600	mm/
year],	 historical	 climate	 might	 have	 set	 a	 broader	 sub‐continental	
context.	For	example,	the	Late	Wisconsinian	glaciation	divides	our	
study	area	into	glaciated	and	unglaciated	regions,	leading	to	lasting	
effects	on	landscape	configuration	(Fergus	et	al.,	2017),	even	though	
the	effects	of	glaciation	have	been	muted	over	time.

Pairs	of	variables	in	the	upper‐right	part	of	this	zone	include	vari-
ables	with	similar	spatial	structure	and	strong	relationships,	such	as	
climate	variables	(MAT	or	MAP)	versus	atmospheric	deposition	(N	or	
SO4)	variables,	runoff	versus	MAP	and	lake	area	versus	lake	depth	and	
perimeter.	In	addition	to	meeting	the	necessary,	mathematical	con-
straint	of	having	similar	spatial	structure,	these	variables	share	well‐
known	causative	links.	For	example,	it	is	expected	that	runoff	will	be	
high	in	areas	with	high	MAP	because	more	water	will	be	received	in	
these	landscapes,	and	large	lakes	are	likely	to	have	a	large	perimeter	
and	to	be	deep.	Likewise,	the	specific	relationship	between	lake	area	
and	lake	perimeter	is	confirmed	by	well‐known	geometric	constraints	
(Cael	&	Seekell,	2016;	Cael,	Heathcote,	&	Seekell,	2017;	Seekell,	Pace,	
Tranvik,	&	Verpoorter,	2013).	Thus,	some	of	the	pattern	in	this	figure	
is	attributable	to	geometric	or	physical	constraints,	or	from	closely	
correlated	variables	that	are	tied	to	a	nearly	 identical	process	 (i.e.,	
rainfall).	However,	the	results	from	the	simulated	data	provide	strong	
evidence	that	within	a	given	spatial	extent	for	a	study,	the	spatial	pat-
tern	of	the	variables	themselves	impose	this	same	basic	pattern,	re-
gardless	of	these	geometric	constraints	or	common	processes.

Finally,	the	lower‐right	part	of	this	second	zone	includes	variables	
with	similar	spatial	structure	that	are	not	strongly	correlated.	These	
relationships	suggest	that	although	having	similar	spatial	structure	is	
a	necessary	condition	for	having	strong	correlations	between	pairs	
of	variables,	it	is	not	a	sufficient	one.	For	example,	this	zone	is	where	
relationships	exist	between	lake	ecosystem	properties	with	interme-
diate,	regional	spatial	structure	(e.g.,	lake	TN,	TP,	Chl	a,	Secchi)	and	
land	cover/land	use	variables	(that	also	exhibit	intermediate,	regional	
spatial	structure).	Given	that	ecosystem	properties	are	 likely	to	be	
explained	 by	 several,	 potentially	 interacting	 drivers	 operating	 at	
multiple	spatial	scales,	causation	is	not	as	obvious	as	it	is	for	relation-
ships	found	in	the	top	right	portion	of	Figure	4,	nor	is	it	a	simple	func-
tion	of	the	similarity	in	spatial	structure.	As	a	result,	pairs	of	variables	
are	not	as	strongly	correlated	even	though	they	have	a	similar	spatial	
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structure,	 either	because	 there	 are	 local,	 intrinsic	 effects	 (e.g.,	 bi-
otic	processes)	 that	decouple	patterns	 from	their	broader	physical	
constraints	(Fortin	&	Dale,	2005;	Levin,	1992)	or	because	variables	
randomly	happen	to	have	a	similar	spatial	structure	but	do	not	share	
any	causative	links.	This	is	where	multiple	effects	are	confounded,	
thus	where	finer	scale	(spatial	or	temporal)	ecological	interpretation	
is	required	to	understand	ecosystem	functioning.

4.2 | Considering spatial structure for a better 
understanding and prediction of ecosystem 
relationships

There	has	been	much	written	about	how	the	spatial	extent	and	grain	of	
studies	influence	the	understanding	and	prediction	of	organisms	and	
ecological	properties	(Horne	&	Schneider,	1995;	O’Neill,	DeAngelis,	
Waide,	&	Allen,	1986;	Wiens,	1989).	The	manner	 in	which	drivers	
act	together	and	their	relative	importance	at	differing	spatial	scales	
determines	 species	 distributions	 and	 biological	 spatial	 structuring	
(McGill,	2010;	Russell,	Wood,	Allison,	&	Menge,	2006).	 In	general,	
species	interactions	in	a	variety	of	taxa,	including	avian	guilds,	inter-
tidal	alga	and	invertebrates,	have	been	found	to	be	important	at	small	
to	mid‐size	spatial	scales	but	are	unimportant	at	the	scale	of	biomes	
or	continents	(Gotelli	et	al.,	2010;	McGill,	2010;	Russell	&	Connell,	
2012;	Veech,	2006).	Environmental	filtering	of	biological	communi-
ties,	owing	to	constraints	imposed	by	broad‐scale	climate	and	habitat	
characteristics,	is	prevalent	at	mid‐	to	large	spatial	scales	in	the	distri-
bution	of	biological	pathogens	and	many	other	taxa,	but	such	drivers	
may	be	disrupted	at	smaller	scales	by	species	interactions	and	fine‐
scale	weather	or	habitat	features	(Cohen	et	al.,	2016;	Wiens,	1989).	
Furthermore,	evidence	from	studies	of	food	chain	length	in	lakes	has	
been	found	to	be	correlated	with	lake	volume	for	small	numbers	of	
lakes	within	a	limited	geographical	area	but	not	for	lakes	at	the	global	
scale	(Post,	Pace,	&	Hairston,	2000;	Vander	Zanden	&	Fetzer,	2007).	
Findings	from	biological	communities	thus	suggest	that	spatial	struc-
ture	in	ecological	properties	is	controlled	by	a	composite	of	multiple	
interacting	drivers	that	differ	depending	on	spatial	extent.

Our	 empirical	 findings	 from	 thousands	 of	 ecosystems	 at	 the	
macroscale	 suggest	 that	 these	principles	 are	 transposable	 to	 un-
derstand	 the	drivers	of	 spatial	 structure	of	matter	 and	energy	 in	
ecosystems.	 For	 example,	 the	 spatial	 structure	 of	 an	 ecosystem	
property	should	be	a	composite	of	the	spatial	structure	of	its	main	
drivers,	 and	we	 showed	 that	 concentrations	of	TP	 in	3,452	 lakes	
were	 explained	by	 a	 suite	 of	well‐known	drivers	 of	 TP	 (Equation	
1).	Therefore,	full	interpretation	of	this	simple	model	needs	to	ac-
count	 for	known	ecological	 relationships	and	 the	 inherent	spatial	
structure	 in	 the	 variables	 involved	 (Table	 1;	 Figure	 4).	 It	 appears	
that	broad‐scale	patterns	 in	hydrology	and	 land	cover	at	 regional	
and	 continental	 scales	 induce	 strong	 spatial	 structure	 in	 lake	 TP	
across	 the	 study	 extent,	 but	 that	 lake	 and	 catchment	morphom-
etry,	which	have	been	associated	with	terrestrial	 loadings	and	 in‐
lake	processing	of	nutrients	(Collins	et	al.,	2017;	Read	et	al.,	2015),	
affect	lake	TP	locally	and	tend	to	mute	the	broad‐scale	effects	(see	
Figure	2e).	Along	the	same	line,	patterns	in	lake	dissolved	organic	

carbon	(DOC)	within	an	individual	region	are	mainly	related	to	lake	
area	and	perimeter	(Frost	et	al.,	2006),	but	at	the	global	scale	the	
main	drivers	are	long‐term	averages	of	precipitation,	runoff	and	soil	
carbon	content	(Sobek,	Tranvik,	Prairie,	Kortelainen,	&	Cole,	2007).	
Other	studies	have	shown	that	carbon	and	nitrogen	cycles	in	high‐
latitude	 catchments	 have	 been	 linked	 to	 climate	 and	 permafrost	
at	continental	scales,	but	to	watershed	characteristics	at	regional	
scales	(Harms	et	al.,	2016).	Together,	these	studies	show	the	scale	
dependence	 of	 ecosystem‐level	 relationships	 in	 different	 regions	
of	the	globe,	and	here	we	have	quantified	this	effect	and	explicitly	
demonstrated	the	importance	of	spatial	structure	in	understanding	
ecosystem	relationships	at	the	macroscale.

In	addition	to	the	underlying	ecological	mechanisms	driving	spa-
tial	patterns	 in	ecosystem	properties,	our	 results	 further	 suggest	
that	 there	 are	 mathematical	 constraints	 affecting	 the	 statistical	
relationships	between	variables	based	on	 their	 respective	 spatial	
structure,	even	in	the	absence	of	meaningful	ecological	links.	A	key	
finding	of	our	study	is	that	correlation	is	stronger	for	variables	with	
similar	 spatial	 structure,	 and	 that	 the	 strength	 of	 the	 correlation	
gradually	decreases	with	dissimilarity	in	spatial	structure,	for	both	
measured	and	simulated	variables.	We	visually	expressed	the	 im-
portance	of	considering	the	spatial	structure	of	variables	by	rear-
ranging	the	points	from	Figure	4a;	we	first	extracted	the	variables	
with	weak,	intermediate	and	strong	cumulative	r2 with	the	dbMEMs	
(Table	1;	cumulative	r2	ranging	from	0	to	0.3,	0.31	to	0.70	and	0.71	
to	0.99,	 respectively).	 For	 each	of	 these	groups,	we	 then	plotted	
their	respective	correlation	with	all	the	other	variables,	as	a	func-
tion	of	 strength	 in	 spatial	 structure.	Weakly	 structured	 variables	
tended	to	be	most	strongly	correlated	with	other	weakly	structured	
variables,	and	the	strength	of	correlation	gradually	decreased	with	
variables	with	intermediate	and	strong	spatial	structure	(Figure	5a).	
Likewise,	 variables	with	 intermediate	 spatial	 structure	 tended	 to	
be	most	strongly	correlated	with	other	variables	having	intermedi-
ate	spatial	structure	(Figure	5b),	and	strongly	structured	variables	
tended	 to	be	most	strongly	correlated	with	variables	with	strong	
spatial	 structure	 (Figure	 5c).	 Figure	 5d	 shows	 the	 basic	 patterns	
in	these	variables	for	ecosystem	and	geographical	properties	that	
should	apply	 to	a	wide	 range	of	 lake	properties	and,	presumably,	
other	 types	of	ecosystems.	These	 results	 imply	 that	 studies	con-
ducted	over	small	spatial	extents	are	much	more	likely	to	find	that	
locally	 structured	 predictor	 variables	 explain	 the	 most	 variation	
in	 response	 variables	 (e.g.,	 lake	 and	 watershed	 morphometry),	
whereas	continental	 to	global	scale	studies	are	more	 likely	to	ex-
plain	meaningful	amounts	of	variation	 in	 their	 response	variables	
with	predictor	 variables	 that	have	very	broad‐scale	 spatial	 struc-
ture	(e.g.,	atmospheric	deposition,	long‐term	climate	average).	This,	
in	turn,	is	likely	to	explain	why	studies	conducted	at	different	spa-
tial	 extents	 have	 often	 identified	 different	 variables	 as	 the	main	
drivers	of	ecosystem	processes.

Based	on	an	analysis	of	>8,000	 sites	 in	 a	 sub‐continental	 study	
area	of	1.8	million	km2,	our	study	highlights	a	need	to	understand	spa-
tial	structure	for	improved	understanding	of	the	relationships	between	
climate,	landscape	and	ecosystem	properties.	Ecosystem	studies	are	
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increasingly	 conducted	 at	 broad	 spatial	 scales,	 with	 the	 associated	
conceptual	and	analytical	challenges.	Here,	we	provide	a	conceptual	
basis	and	suggest	approaches	to	consider	explicitly	a	spatial	aspect	in	
ecosystem	relationships,	with	the	aim	of	improving	the	understanding	
and	prediction	of	ecosystem	relationships	from	local	to	global	scales.
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