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Abstract—A regionalization system delineates the geograph-
ical landscape into spatially contiguous, homogeneous units for
landscape ecology research and applications. In this study, we
investigated a quantitative approach for developing a regional-
ization system using constrained clustering algorithms. Unlike
conventional clustering, constrained clustering uses domain con-
straints to help guide the clustering process towards finding a
desirable solution. For region delineation, the adjacency rela-
tionship between neighboring spatial units can be provided as
constraints to ensure that the resulting regions are geographically
connected. However, using a large-scale terrestrial ecology data
set as our case study, we showed that incorporating such
constraints into existing constrained clustering algorithms is
not that straightforward. First, the algorithms must carefully
balance the trade-off between spatial contiguity and landscape
homogeneity of the regions. Second, the effectiveness of the
algorithms strongly depends on how the spatial constraints are
represented and incorporated into the clustering framework. In
this paper, we introduced a truncated exponential kernel to
represent spatial contiguity constraints for region delineation
using constrained spectral clustering. We also showed that a
Hadamard product approach that combines the kernel with
landscape feature similarity matrix can produce regions that are
more spatially contiguous compared to other baseline algorithms.

I. INTRODUCTION

A regionalization system delineates the geographical land-
scape into spatially contiguous, homogeneous units known as
regions or zones. Regionalization systems are important as
they provide the spatial framework used in many disciplines,
including landscape ecology, environmental science, and eco-
nomics, as well as for applications such as public policy and
natural resources management [1], [2], [3], [4]. For example,
the hierarchical system of hydrologic units described in [5]
provides a standardized regionalization framework that has
been widely used in water resource and land use studies [6].

McMahon et al. [7] presented two classes of approaches for
region delineation. The first approach identifies regions with
similar landscape characteristics from mapped data through
visual pattern recognition [8], [9]. Since the region identifica-
tion is performed manually, it requires considerable domain
expertise to identify the primary factors that define each

region. In addition, it is limited to delineating relatively small-
scale regions, difficult to reproduce, and fails to document
the contributions of different mapped data. Alternatively, a
data-driven approach can be used to objectively identify the
regions based on spatial variability of their landscape features.
Multivariate clustering techniques such as k-means and hierar-
chical clustering [10], [11] are often employed to partition the
geographical area into smaller spatial units [12]. For example,
Host et al. [10] applied hierarchical k-means clustering on
20 years of monthly temperature and precipitation values
across northwestern Wisconsin to identify regions with similar
seasonal climatic trends. Hargrove et al. [11] performed k-
means clustering using elevation, climatic, and edaphic factors
to generate ecoregions for the conterminous United States.
Despite their promise, one potential limitation of these existing
clustering algorithms is that they do not guarantee the resulting
regions will be spatially contiguous. Contiguity of the regions
is a desirable criteria for applications that treat regions as
individual entities representing a contiguous area of land for
research, policy, and management purposes (e.g., for site-
specific management in precision agriculture [13]). Therefore,
alternative methods are needed that can effectively cluster
similar areas based on mapped variables, but that have the
added constraint of being spatially contiguous.

Constrained clustering [14] is a semi-supervised learning
approach that uses the domain information provided by users
to improve the clustering results. The domain information is
typically provided as must-link (ML) and cannot-link (CL)
constraints to be satisfied by the clustering solution. ML con-
straints restrict the pairs of points that must be assigned to the
same cluster, whereas CL constraints specify the pairs of points
that must be assigned to different clusters. Constrained cluster-
ing algorithms are designed to find a clustering solution that
maximizes the within-cluster similarities and minimizes the
number of violated constraints [14], [15]. Existing constrained
clustering algorithms can be adapted to the region delineation
problem by introducing constraints based on the proximity
between the spatial units. For example, ML constraints can
be created between pairs of units that are spatially adjacent
to each other. These spatial constraints can then be used to
guide the clustering process into finding regions that are both
homogeneous and spatially contiguous.Copyright notice: 978-1-4673-8273-1/15/$31.00 c© 2015 IEEE



This paper focuses on the application of constrained spec-
tral clustering to the region delineation problem. Spectral
clustering [16], [17] is a well-known clustering method that
uses the eigenvector spectrum of a feature similarity matrix to
find the underlying clusters of a given data set. Advantages
of using spectral clustering include its flexibility in terms of
incorporating diverse types of similarity functions, superiority
of its clustering solution compared to the traditional k-means
algorithm [18], and its well-established theoretical properties
(including the consistency [19] and convergence [20] guaran-
tees of the algorithm). Spectral clustering can also be viewed
as an algorithm for solving a relaxed graph cut minimization
problem [16], [17]. This fact makes it an appealing framework
for constrained clustering because both the feature similarity
matrix as well as the pairwise ML and CL constraints can
be easily represented as an edge-weighted graph. Although
there has been growing interest in developing constrained
spectral clustering algorithms [21], [22], [23], [24], as will be
shown in this paper, applying these algorithms to the region
delineation problem is not trivial. Using a large-scale terrestrial
ecology data set [25] as our case study, we showed that
the existing algorithms must carefully balance the trade-off
between spatial contiguity and landscape homogeneity of the
regions. Otherwise, the regions produced by the existing algo-
rithms may not be contiguous and can have arbitrary shapes
and sizes. On the other hand, if the algorithms were biased
toward producing only geographically connected regions, the
landscape similarities within the regions might be too low.

We argued that the difficulties in applying existing con-
strained spectral clustering algorithms to the region delineation
problem were due to the way the spatial contiguity constraints
are represented and incorporated into the spectral clustering
formulation. To overcome these difficulties, we introduced a
new approach for representing spatial constraints in spectral
clustering using truncated exponential kernels [26]. The trun-
cated kernels can be parameterized to provide a more flexible
way to specify the spatial extent to which the ML constraints
are in effect, beyond just pairs of spatially adjacent units. We
also proposed two algorithms, spatially-constrained spectral
clustering (SSC) and binarized spatially-constrained spectral
clustering (BSSC), for embedding the truncated exponential
kernels into the spectral clustering formulation. Unlike previ-
ous methods, SSC and BSSC employ a Hadamard product
approach to combine the truncated exponential kernel with
feature similarity matrix. Our experimental results showed that
the proposed algorithms produce spatially contiguous regions
with higher landscape homogeneity compared to three state-
of-the-art constrained clustering algorithms.

In summary, by investigating the application of constrained
spectral clustering to the development of a regionalization sys-
tem for landscape data, we make four important contributions:

• We demonstrated the inherent trade-off between spa-
tial contiguity and landscape homogeneity when ap-
plying existing constrained spectral clustering algo-
rithms to the region delineation problem.

• We proposed the truncated exponential kernels for
representing spatial contiguity constraints. We showed
that the flexibility in the kernels enables us to better
control the trade-off between spatial contiguity and
homogeneity of the resulting regions.

• We developed two algorithms, SSC and BSSC, to
incorporate spatial constraints into spectral clustering
formulation using the Hadamard product method with
truncated exponential kernels.

• We presented the results of extensive experiments
comparing the relative performance of various con-
strained spectral clustering algorithms and showed
that the proposed algorithms are most effective in
terms of producing spatially contiguous regions with
homogeneous landscape features.

The remainder of this paper is organized as follows. Sec-
tion II reviews previous work on the development of regional-
ization systems and constrained clustering algorithms. Section
III formalizes the region delineation problem and presents
an overview of spectral clustering. Section IV describes the
different ways in which spatial constraints can be represented
and augmented into the spectral clustering framework. Section
V describes the application of spatially constrained spectral
clustering to the region delineation problem. Section VI con-
cludes with a summary of the results of this study.

II. RELATED WORK

Region delineation has traditionally been studied as a
spatial clustering [27] problem. Duque et al. [6] classified
the existing data-driven approaches into two categories. The
first category does not require explicit representation and
integration of spatial constraints into the clustering proce-
dure. Instead, the constraints are indirectly satisfied by post-
processing the clusters or optimizing other related criteria.
For example, Openshaw [28] applied a conventional cluster-
ing method followed by a cluster refinement step to split
clusters that contained geographically disconnected patches.
The second category of methods explicitly incorporates spatial
constraints into the clustering algorithm [6]. Examples of
such methods include adapted hierarchical clustering, exact
optimization methods, and graph theory based methods. This
second category also encompasses the constrained clustering
methods developed n the fields of data mining and machine
learning to incorporate side information from users to guide the
clustering procedure. Previous studies include the development
of constrained versions for K-means [15], self-organizing
maps [29], and hierarchical clustering [30] algorithms.

There is also an emerging body of research that focuses
on extending spectral clustering to deal with constraints [21],
[22], [23], [24]. For example, Kamvar et al. [21] uses the
ML and CL constraints to define the affinity matrix of the
data. Shi et al. [23] proposed a constrained co-clustering
method that considers both the similarity of features as well
as the ML and CL constraints. All of these methods were
designed to manipulate the graph Laplacian matrix using the
domain constraints available. Alternatively, the constrained
spectral clustering method can be designed to manipulate
the feasible solution space of its optimization problem. For
example, De Bie et al. [31] restricted the eigenspace to
which the cluster membership vector will be projected. Wang
and Davison [24] proposed a constrained spectral clustering
method that considers real-valued constraint and imposed a
minimum of constraints that must be satisfied in the feasible
solution. None of these previous constrained spectral clustering
methods were designed for the region delineation problem.



III. PRELIMINARIES

This section formalizes region delineation as a constrained
clustering problem and presents a brief overview of spectral
clustering and its constrained-based method.

A. Region Delineation as Constrained Clustering Problem

Consider a spatial data set D = {(xi, si)}Ni=1, where
xi ∈ <d is a d-dimensional vector of landscape features
associated with the geo-referenced spatial unit si ∈ <2. Let
R = {1, 2, · · · , k} denote the set of region identifiers, where
k is the total number of regions, and C = {(si, sj , cij)}
denote the set of spatial constraints. For region delineation,
we consider only ML constraints, where cij = +1 if si and sj
are spatially adjacent to each other. Otherwise, cij = 0. The
goal of region delineation is to learn a partition function V that
maps each spatial unit si to its corresponding region identifier
ri ∈ R in such a way that (1) maximizes the feature similarity
of the spatial units within each region and (2) minimizes the
constraint violations in C.

B. Spectral Clustering

Spectral clustering is a class of partitional clustering al-
gorithms that relies on the eigendecomposition of feature
similarity matrices to determine the cluster membership of
its data points. Let {x1,x2, · · · ,xN} be a set of points to
be clustered. To apply spectral clustering, we first compute an
affinity (similarity) matrix S between every pair of data points.
The affinity matrix is used to construct an undirected weighted
graph G = (V,E), where V is the set of vertices (one for each
data point) and E is the set of edges between pairs of vertices.
The weight of each edge is given by the affinity between the
corresponding pair of data points. The Laplacian matrix of the
graph is defined as L = D−S, where D is a diagonal matrix
whose diagonal elements correspond to Dii =

∑
j Sij .

The spectral clustering solution can be found by solving
the following constrained optimization problem [17]:

arg min
r
rTLr such that rTDr =

∑
i

Dii, 1
TDr = 0 (1)

where 1 and 0 are vectors whose elements are all 1s and
0s, respectively. After simplification, the solution for r re-
duces to solving the following generalized eigenvalue problem:
Lr = λDr. For a given number of clusters k, we extract the
top k eigenvectors, which define a k-dimensional projection of
the data. A standard clustering algorithm such as k-means is
then applied to derive the final clusters from the k-dimensional
manifold space.

C. Constrained Spectral Clustering

There are two main categories of approaches for incorpo-
rating constraints into spectral clustering algorithms. The first
category encompasses methods that directly alter the graph
Laplacian matrix. The simplest way to alter the matrix is
by performing a weighted sum between the feature similarity
matrix S and the adjacency matrix of the constraint graph, C:

Weighted sum: Stotal(δ) = (1−δ)S+δC, (2)

where δ ∈ [0, 1] is a parameter that controls the trade-off
between maximizing cluster homogeneity and preserving the

ML constraints of the data. When δ approaches zero, the
clustering solution is biased towards the feature similarity
matrix whereas when δ approaches one, the solution is biased
towards the constraint matrix. The modified graph Laplacian is
given by a convex combination of the original graph Laplacian
and the Laplacian induced by the constraint matrix:

Dtotal
ii =

∑
j

Stotal
ij (δ)

= (1− δ)Dii + δDc,ii

Ltotal = Dtotal − Stotal

= (1− δ)(D− S) + δ(Dc −C) (3)

This approach is a special case of the spectral constraint
modeling (SCM) algorithm proposed by Shi et al. [23] for co-
clustering problems. The altered graph Laplacian is substituted
into Equation (1), which allows us to apply existing spectral
clustering algorithm to identify the regions.

SCM: arg min
r∈RN

rTLtotalr (4)

s.t. rTDtotalr =
∑
i

Dtotal
ii , 1TDtotalr = 0.

The second category of approaches for incorporating do-
main constraints is by altering the feasible solution set of
the spectral clustering algorithm. For example, Wang and
Davidson [24] proposed the CSP algorithm, which optimizes
the following constrained optimization problem.

CSP: arg min
r∈RN

rT L̄r (5)

s.t. rT C̄r ≥ α, rT r = vol(G), r 6= D1/21,

where L̄ = D−1/2LD−1/2 and C̄ = D
−1/2
c CD

−1/2
c are the

normalized graph Laplacian and normalized constraint matrix,
respectively. The threshold α gives a lower bound on the
amount of constraints in C that must be satisfied by the
clustering solution. Instead of setting the parameter for α,
Wang and Davison [24] requires users to specify a related
parameter β, which was shown to be a lower bound for α.

IV. SPATIALLY CONSTRAINED SPECTRAL CLUSTERING

In this section, we describe the various ways to represent
spatial contiguity constraints and to incorporate them into the
spectral clustering framework.

A. Kernel Representation of Spatial Contiguity Constraints

For constrained spectral clustering, we can define a corre-
sponding constraint graph GC = (V,EC), where V is the set
of data points and EC is the set of edges defined as follows:

Eij =

{
1, (vi, vj) is a ML edge;
−1, (vi, vj) is a CL edge;
0, otherwise.

(6)

For region delineation, the vertices of the constraint graph
correspond to the set of spatial units to be clustered, while the
ML edges correspond to pairs of spatial units that are adjacent
to each other. It is also possible to define a CL edge between
every pair of spatial units that are either located too far away
from each other or are obstructed by certain barriers (e.g., large



bodies of water) that make them unreasonable for assignment
to the same region. However, since the number of CL edges
tends to grow almost quadratically with increasing number of
points, this severely affects the runtime of spectral clustering
algorithm. Furthermore, the ML edges are often sufficient to
provide guidance on how to form spatially contiguous regions.
For these reasons, we consider constraint graphs that have ML
edges only in this paper. Let C denote the adjacency matrix
representation of the edge set EC .

A constrained spectral clustering algorithm is designed to
produce feasible solutions that are consistent with the con-
straints imposed by GC . Unfortunately, for region delineation,
it may not be sufficient to use the adjacency information
between neighboring spatial units to control the trade-off
between spatial contiguity and landscape homogeneity of the
regions. To improve its flexibility, we introduce a spatially
constrained kernel matrix, Sc. The simplest form of the kernel
would be a linear kernel, which is defined as follows:

Linear Kernel: Slinear
c = C (7)

More generally, we can define an exponential kernel [26] on
the adjacency matrix C as follows.

Exponential Kernel:

Sexp
c = eC = I+ C +

1

2!
C2 +

1

3!
C3 + · · · =

∞∑
k=0

Ck

k!
(8)

where I is the identity matrix. Since we consider only ML
constraints, the k-th power of the adjacency matrix C repre-
sents the number of ML paths of length k that exist between
every pair of vertices. An ML path between vertices (vi, vj)
refers to a sequence of ML edges e1, e2, · · · , em such that the
initial vertex of e1 is vi and the terminal vertex of em is vj . It
can be shown that Sexp

c is a symmetric, positive semi-definite
matrix, and thus, is a valid kernel [26]. Furthermore, as the
diameter of the constraint graph is finite, we also consider a
truncated version of the exponential kernel:

Truncated Exponential Kernel : Strunc
c (δ) ≡

δ∑
k=0

Ck

k!
(9)

where the parameter δ controls the ML neighborhood size of a
vertex. The ML neighborhood specifies the set of vertices that
should be in the same region as the vertex under consideration.
As an example, consider the graph shown in Figure 1. When
δ = 1, the ML neighborhood for vertex A corresponds to its
immediate neighbors, B, C, D and E. When δ = 2, the ML
neighborhood of vertex A is expanded to include vertices that
are located within a path of length 2 or less from A, i.e., B, C,
D, E, F, G, H and I. When δ = 3, the ML neighborhood for
vertex A includes all of the vertices in the graph. Note that each
term in the summation given in Equation (8) is normalized by
the path length; therefore, a vertex that is located further away
from a given vertex has less influence as compared to a nearer
vertex.

Finally, the truncated exponential kernel matrix can be
binarized so that it can be interpreted as an adjacency matrix
for an expanded constraint graph, whose ML neighborhood

Fig. 1: An illustration of spatial contiguity constraint

size is given by the parameter δ.

Binarized Truncated Exponential Kernel :

Sbin
c (δ) ≡ I

[ δ∑
k=0

Ck > 0

]
(10)

where I[·] is an indicator function whose value is equal to
1 if its argument is true and 0 otherwise. Both the truncated
and binarized truncated exponential kernels allow us to vary
the degree to which the original constraint graph should be
satisfied. As δ increases, the constraint satisfaction becomes
more relaxed. Ultimately, when δ is greater than or equal to
the diameter of the graph, Sbin

c reduces to a constant matrix
of all 1s, which is equivalent to ignoring the spatial contiguity
constraints.

B. Hadamard Product Graph Laplacian

We now describe our approach for incorporating the spa-
tially constrained kernel matrix Sc (described in the previous
section) into the spectral clustering formulation. Instead of
using a weighted sum approach as given in Equation (2), we
consider a Hadamard product approach to combine Sc with
the feature similarity matrix S:

Hadamard Product: Stotal(δ) = S ◦ Sc(δ), (11)

where the spatially constrained kernel matrix Sc(δ) may cor-
respond to the truncated exponential kernel (Equation (9)) or
the binarized truncated exponential kernel (Equation (10)).

There are several advantages to using a Hadamard product
approach to combine the matrices. First, unlike the weighted
sum approach, it prevents spatial units that are located far away
from each other from being assigned to the same cluster even
though their feature similarity is high. Second, it produces a
sparser kernel matrix, which is advantageous for large-scale
graph analysis. Finally, it gives more flexibility to the users
to specify the level of constraints that must be preserved by
tuning the parameter δ, which controls the ML neighborhood
size of the constraint graph.

Let Dtotal
ii =

∑
j [S ◦ S(c)(δ)]ij be elements of a diagonal

matrix computed from Stotal. The Hadamard product graph
Laplacian is given by Ltotal = Dtotal−S◦Sc(δ). The modified
graph Laplacian can be substituted into Equation (1) and
solved using the generalized eigenvalue approach to identify
the spatially contiguous regions.



Algorithm 1 Spatially-Constrained Spectral Clustering
Input:
D = {(x1, s1), (x2, s2), ..., (xN , sN )}
C ∈ RN×N : spatial constraint matrix.
k: number of clusters.
δ: neighborhood size.
Output:
R = {R1, R2, ..., Rk} (set of regions).

1. Create similarity matrix S from {x1,x2, · · · ,xN}.
2. Compute the spatially constrained kernel matrix, Sc(δ).
3. Compute the combined kernel Stotal based on S and Sc.
4. Compute Dtotal and Ltotal.
5. Solve the generalized eigenvalue problem Ltotalr = λDtotalr.
Create matrix Xr = [r1r2 · · · rk] from the top-k eigenvectors.
6. R ← k-means(Xr,k)

C. Spatially Constrained Spectral Clustering Framework

This section summarizes our proposed spatially constrained
spectral clustering approach. A high-level overview of the
approach is given in Algorithm 1.

First, a feature similarity matrix is created by apply-
ing a Gaussian radial basis function kernel, k(xi,xj) =

exp(− ||xi−xj ||2
2σ2 ) to the feature set of the spatial units. The

spatially constrained kernel matrix Sc is then computed from
the constraint matrix C, where Cij = 1 if (si, sj) is a ML
edge and 0 otherwise. Note that if the truncated exponential
kernel is used to represent the spatially constrained kernel
matrix, we termed the approach as a spatially-constrained
spectral clustering (SSC) algorithm. However, if the binarized
truncated exponential kernel is used, the approach is known as
a binarized spatially-constrained spectral clustering (BSSC).

Once the combined graph Laplacian, Ltotal is found, we
extracted the first k eigenvectors as the low rank approximation
of the combined kernel matrices. We then applied k-means
clustering to partition the data into its respective regions. Note
that the framework shown in Algorithm 1 is also applicable to
the SCM and CSP algorithms, by setting their corresponding
graph Laplacian, Ltotal and diagonal matrix, Dtotal. Note that
the computational complexity of spatially spatially constrained
spectral clustering is equivalent to general spectral clustering,
which is O(N3).

V. APPLICATION TO REGION DELINEATION

To evaluate the effectiveness of constrained spectral clus-
tering for region delineation, we conducted a case study on a
large-scale terrestrial ecology data set. The results of the case
study are presented in this section.

A. Data set

The constrained spectral clustering methods were assessed
using geospatial data from the LAGOSGEO [25] database. The
database contains landscape characterization features measured
at multiple spatial scales with a spatial extent that covers a
land area spanning 17 U.S. states. The land area was divided
into smaller hydrologic units (HUs), identified by their 12-
Digit Hydrologic Unit Code [5]. Our goal was to develop a

regionalization system for the landscape by aggregating the
20,257 HUs into coarser regions. We selected 28 terrestrial
landscape variables and performed experiments on three study
areas—Michigan, Iowa, and Minnesota. When the values for a
landscape variable was always zero, we removed that variable
before applying the clustering methods. The number of HUs
to be clustered in each study region, as well as number of
landscape variables for each, are summarized in Table I.

TABLE I: Summary statistics of the data set

Study Area # HUs # landscape # PCA Diameter of
variables components constraint graph

Michigan 1,796 17 10 41
Iowa 1,605 19 12 43

Minnesota 2,306 19 11 57

The data set was further preprocessed before applying
the constrained clustering algorithms. First, each variable was
standardized to have a mean value of zero and variance of one.
Since some of the landscape variables were highly correlated,
we reduced the number of features by applying principal
component analysis, and kept only the principal components
that collectively explained at least 85% of the total variance.
The principal component scores were then used to calculate
a feature similarity matrix for all pairs of HUs in each study
area. The ML edges for the constraint graph were determined
based on whether the polygons for two HUs were adjacent to
each other.

B. Baseline Methods

We compared the performance of our proposed constrained
spectral clustering algorithms (SSC and BSSC) against three
state-of-the-art baseline methods. The first baseline method,
called SCM [23], uses the weighted sum approach (Equation
(2)) to combine the feature similarity matrix S with the adja-
cency matrix C of the constraint graph. The algorithm has a
parameter δ ∈ [0, 1] that controls whether the clustering should
favor homogeneity or spatial contiguity of the regions. When δ
approaches 0, the algorithm is biased towards maximizing the
similarity of features in the regions whereas when δ approaches
1, it is biased towards producing more contiguous regions.

The second baseline method, called CSP [24], uses the spa-
tial constraints to restrict the feasible set of the clustering so-
lution (Equation (5)). As noted in Section III-C, the algorithm
has a parameter β that gives a lower bound on the proportion of
constraints that must be satisfied by the clustering solution. In
addition, it was shown in [24] that β < λmaxvol(G) to ensure
existence of a feasible solution. Instead of using β, we define a
tuning parameter δ = β/[λmaxvol(G)] so that its upper bound
is equal to 1 to be consistent with the upper bound of the
tuning parameters for SCM and our proposed algorithms.

The third baseline is a spatially constrained clustering
method proposed recently in the ecology literature by Miele
et al. [32]. It uses a stochastic model to represent entities
and interactions in a spatial ecological network. The cluster
membership of each entity (spatial unit) is assumed to follow
a multinomial distribution. Spatial constraints are introduced as
a regularization penalty in the maximum likelihood estimation
of the model parameters. We denote the model-based method
as MB in the remainder of this paper.



For our experiments, we implemented the SCM, SSC, and
BSSC algorithms in Matlab. For CSP and MB, we downloaded
their software from the links provided by the authors1.

C. Evaluation Metrics

We used two criteria to assess the performance of the
algorithms. First, to determine whether the regions were eco-
logically homogeneous, we computed their within-cluster sum-
of-square error (SSW), which is defined as follows [33]:

SSW =

k∑
i=1

∑
x∈Ci

dist(µi, x)2 (12)

where µi is the centroid of the cluster Ci. The lower SSW is,
the more homogeneous are the HUs in the regions.

The second criteria assesses the spatial contiguity of the
resulting regions. We consider two metrics for this evaluation.
The first metric computes the percentage of ML constraints
preserved within the regions:

PctML =
# ML edges within discovered regions

Total # of ML edges
(13)

The second metric corresponds to a relative contiguity metric
proposed in the ecology literature by Wu and Murray [34]. The
metric takes into consideration both the within patch contiguity
(φ) and between patch contiguity (ν):

c =
φ+ ν

Ω
(14)

where

φ =

k∑
i=1

(
Ni(Ni − 1)

2
), ν =

1

2

k∑
i=1

k∑
j=1,j 6=i

(
NiNj
lγij

)

Ω =
(
∑k
i=1Ni)(

∑k
i=1Ni − 1)

2

In the preceding formula, k is the number of clusters and Ni
is the number of HUs assigned to the i-th cluster. lij denote
the minimum spanning tree path length between clusters i and
j while γ is a distance decay parameter. Since the metric is
normalized by the total number of possible edges in a complete
graph (Ω), it ranges between 0 and 1.

D. Results and Discussion

This section presents the results of applying various con-
strained clustering algorithms to the terrestrial ecology data.

1) Tradeoff between Homogeneity and Spatial Contiguity:
We first analyze the trade-off between landscape homogeneity
and spatial contiguity of the regions by comparing the results
for four constrained spectral clustering algorithms: SCM, CSP,
SSC, and BSSC. The number of clusters was set to 10. As
each algorithm has a parameter δ that determines whether
the clustering should be more biased towards increasing the
within-cluster similarity or preserving the ML constraints, we
varied the parameter and assessed their performance using the
metrics described in Section V-C. The δ parameter for SSC
and BSSC has been re-scaled to a range between 0 and 1 by

1CSP was obtained from https://github.com/gnaixgnaw/CSP whereas MB
was downloaded from http://lbbe.univ-lyon1.fr/Download-5012.html?lang=fr.
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Fig. 2: Comparison between various constrained spectral clus-
tering algorithms in terms of their landscape homogeneity
(SSW) and spatial contiguity (PctML and c). The horizontal
axis in the plots corresponds to the parameter value δ.



dividing the ML neighborhood size with the diameter of the
constraint graph.

The results are shown in Figure 2. Observe that the
contiguity score (c and PctML) for SCM increases rapidly as δ
becomes closer to 1. This is because increasing δ would bias
the algorithms towards preserving the spatial constraints. A
similar increasing trend was also observed for CSP, especially
in Iowa and Michigan, though the increase is not as sharp
as SCM. In contrast, the contiguity scores would decrease for
BSSC as δ increases because it allows for more pairs of spatial
units to form ML edges, including pairs that are not close to
each other. For SSC, the contiguity scores do not appear to
change by much as δ increases. This is because the weight
1/k! associated with each path of length k decreases rapidly
to zero as k increases. As a consequence, the ML neighborhood
size for SSC grows until it reaches a maximum size by which
increasing δ will not significantly alter the constraint graph.
Thus, SSC is less sensitive to parameter tuning compared to
BSSC. Figure 2 also shows there is generally an increasing
trend in SSW for SCM and CSP as δ increases. For SSC,
the SSW values do not appear to change significantly with
increasing δ whereas for BSSC, the SSW curve decreases
monotonically as the neighborhood size increases.

The results of this study showed that the trade-off between
landscape homogeneity and spatial contiguity varies among the
constrained spectral clustering algorithms. For CSP and SSC,
the parameters provided by the algorithms do not allow us to
achieve the full range of SSW and contiguity scores. Although
these algorithms can produce regions with high contiguity
scores, their SSW values were also very high. In contrast, with
careful parameter tuning, SCM and BSSC can produce regions
with significantly lower SSW compared to CSP and SSC.
Observe that the slopes of the curves are steeper near δ = 1 for
SCM, which suggests that decreasing δ below 1 would lead to
a dramatic reduction in the contiguity score and SSW of the
regions. This makes it harder for SCM to produce regions that
are both spatially contiguous and homogeneous. In contrast,
the curves for the contiguity scores of BSSC are flatter near
δ = 0. This enables the BSSC algorithm to produce regions
with homogeneous landscape features yet are still spatially
contiguous.

2) Performance Comparison: In this experiment, we set
the number of clusters to 10 and selected the δ parameter that
gives the highest contiguity score for each constrained spectral
clustering method. If there are more than one parameter values
that achieve the highest contiguity score, we chose the one
with lowest SSW. The Geoclust R package did not support
parameter tuning, so we applied the MB algorithm using its
built-in parameter values.

Table II summarizes the results of our analysis. SCM,
SSC, and BSSC can be tuned to produce regions that are
fully contiguous (c = 1). The SSW for BSSC and SSC are
consistently better than SCM. These results clearly showed
the advantage of using a Hadamard product approach instead
of a weighted sum approach to integrate spatial constraints
into the feature similarity matrix. The limitation of using a
weighted sum approach can be explained as follows. Since
the highest contiguity score is achieved by setting δ = 1, the
clustering solution of SCM is equivalent to applying spectral
clustering on the constraint graph only, without considering

TABLE II: Performance comparison of the various constrained
clustering algorithms on the three study regions. The number
of clusters is set to 10.

Study Area Method PctML c SSW
Iowa SCM 93.26% 1.00 15104

CSP 87.37% 0.91 13628
MB 89.95% 0.69 18997
SSC 92.83% 1.00 13993
BSSC 92.40% 1.00 14001

Michigan SCM 96.08% 1.00 18200
CSP 87.81% 0.92 18307
MB 88.76% 0.65 16091
SSC 95.69% 1.00 17534
BSSC 94.92% 1.00 17485

Minnesota SCM 94.78% 1.00 20506
CSP 86.62% 0.96 23755
MB 88.96% 0.64 20400
SSC 94.57% 1.00 19998
BSSC 94.12% 1.00 19594

the feature similarity. If we reduce the parameter value to, say
δ = 0.95, its contiguity score decreases sharply (see Figure 2)
while its SSW value is still worse than BSSC. The weighted
sum approach has poor SSW because it significantly alters the
feature similarity matrix. For example, consider the pairwise
similarity values shown in the table below:

Pairs Feature ML Weighted Hadamard
Similarity Constraint Sum Product

A-B 0.1 1 0.955 0.1
B-C 0.5 0 0.025 0
C-D 0.8 1 0.990 0.8

Although the A-B pair has a significantly lower similarity
than C-D, the weighted sum approach inflates the similarity
significantly (assuming δ = 0.95) which makes it overall
similarity to be comparable to C-D. In contrast, the Hadamard
product approach simply zeros out the similarity of pairs
that do not have ML edges without artificially inflating the
similarities of pairs with ML edges.

Furthermore, since the feature similarity is computed using
Gaussian radial basis function (see Section IV-C), the resulting
matrix S for the weighted sum approach is still dense after in-
corporating the spatial constraints. Unless δ = 1, the weighted
sum approach will not prevent spatial units that are located
far from each other from being placed into the same region.
For example, consider the regions found by the weighted sum
approach for Iowa, as shown in Figure 3. Although the regions
appear to be spatially contiguous, they are not compact and
have varying sizes. In fact, most of the spatial units were
assigned to the same region when δ = 0.95.

The contiguity scores for MB are worse than other con-
strained clustering methods. Nevertheless, it preserves at least
88% of the ML edges within the regions. Except for Michigan,
its SSW values are also worse than other methods. In contrast,
CSP has the lowest contiguity score among all the constrained
spectral clustering methods. Except for Iowa, its SSW values
are also among the worst. The limitation of CSP [24] is
a consequence of the parameter used to control its spatial
contiguity. As shown in Equation (5), the level of spatial
constraints satisfied by the clustering solution depends on the
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Fig. 3: The resulting regions for Iowa using the weighted sum
approach (with δ = 0.95).

parameter α. However, instead of directly tuning α, the authors
suggested to vary another parameter, β, which was shown
to be an upper bound of α. The results of our case study
showed that increasing the value of β does not necessarily
imply an increase in α. To illustrate this point, we randomly
generated a constraint graph that has nine vertices with a
randomly generated feature similarity matrix. Assuming the
number of clusters is equal to 2, we ran the CSP algorithm
with different parameter settings and plotted their values of α
and β in Figure 9. Although this figure shows that the value
of β (blue diamond) is a lower bound of α (red circle), the
bound is so loose that it can not guarantee that increasing β
will increase α. In fact, the figure on the right shows that α
is not a monotonically increasing function of β. This is why
controlling its parameter value will not always guarantee that
the regions will be contiguous even when δ = 1 (unlike SCM
and the Hadamard product approaches).

Finally, the regionalization system generated by all the
competing algorithms are shown in Figures 4 to 8. As can
be seen from the figures, the regions produced by SSC and
BSSC are more compact and uniform in size compared to CSP
and MB. For SCM, although the regions are contiguous, their
SSW values are worse than SSC and BSSC. The clustering
results for SCM are also quite brittle. If δ is lowered slightly
to 0.95, the regions changed significantly, as shown in Figure
3. For Iowa and Michigan, the region boundaries for SSC and
BSSC are almost identical. In summary, the results in this
subsection clearly shows the benefits of using BSSC to develop
homogeneous and spatially contiguous regions compared to
other baseline algorithms.

3) Effect of varying the number of clusters: Lastly, we
varied the number of clusters k from 2 to 15 and compared
the contiguity metrics as well as SSW for SCM, CSP, and
BSSC. For each method, we tuned the parameter δ and plot
the results with the best contiguity score in Figure 10. We
observed that both BSSC and SCM can produce contiguous
clusters while the CSP can not guarantee contiguity. In terms
of landscape homogeneity, BSSC consistently better than the
other two methods.

VI. CONCLUSIONS

This research investigated the feasibility of applying con-
strained spectral clustering to the region delineation problem.
We compared several constrained spectral clustering methods
and showed the trade-off between landscape homogeneity and
spatial contiguity of their resulting regions. We also presented

two algorithms, SSC and BSSC, that uses a Hadamard prod-
uct approach to combine the similarity matrix of landscape
features with spatial contiguity constraints. The results of our
case study showed that the proposed BSSC method is most
effective in terms of producing spatially contiguous regions
that are homogeneous.
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Fig. 8: Regionalization system developed by the BSSC algorithm.
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Fig. 10: Comparison between SCM, CSP and BSSC with
number of clusters range from 2 to 15


