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ABSTRACT

Bacterial enteric pathogens are major contributors to the global burden of diarrheal 
diseases and the associated consequences for human health including malnutrition, 
growth stunting, morbidity, and mortality. While mortality from diarrhea has decreased, 
incidence remains high, and better interventions for preventing disease are needed. 
Single-domain antibodies (i.e., VHHs), functioning as target-binding proteins in the 
gastrointestinal tract, have been proposed as a potential approach to mitigate bacterial 
pathogenesis. Here, we describe a mitigation strategy where precision binding of a 
bivalent VHH to the receptor-binding B-pentamer of heat-labile enterotoxin aggregates 
the AB5 toxin and impairs enterotoxigenic Escherichia coli colonization in a flow 
chamber model simulating the human intestine. The VHH construct also binds to the 
structurally similar cholera toxin and effectively abrogates its intestinal cell cytotoxicity 
in vitro. Based on these results, we believe that targeting virulence could emerge as a 
new strategy for the management of bacterial enteric pathogens, supporting gut health 
in at-risk populations alongside vaccination campaigns or in populations without access 
to vaccines.
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Introduction

Diarrheal diseases kill more than one million people globally each year. They disproportionately affect low- 
and middle-income countries (LMICs) and are the second leading cause of death for children under five 
years of age.1,2 A major contributor to acute diarrhea in resource-limited settings is the food- and water- 
borne pathogenic bacterium enterotoxigenic Escherichia coli (ETEC).3,4 ETEC strains exhibit remarkable 
heterogeneity in their virulence factor repertoire, characterized by diverse combinations of heat-labile 
enterotoxin (LT), heat-stable toxins (STa and STb), and a wide array of colonization factors (CFAs).5

Further, E. coli exhibits a remarkable capacity for horizontal gene transfer, enabling a continuously 
evolving population of pathotypes.6,7 This diversity poses significant challenges in identifying key targets 
for the development of effective control strategies, such as vaccines, with protective effect and broad 
coverage.8 However, while ETEC colonization and infection are orchestrated by a sequential deployment 
of these virulence factors, effective delivery of toxins to epithelial cells remains essential to ETEC 
virulence.9,10

The pathogenic pathway of ETEC is similar to that of Vibrio cholerae, primarily due to their ability to 
produce two genetically and functionally related enterotoxins: LT from ETEC and cholera toxin (CTX) 
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from V. cholerae.10-12 Phylogenetic analysis suggests that LT and CTX evolved from a common ancestor.11

This is reflected in their shared structural features as AB5-type toxins, the high sequence similarity between 
the receptor-binding B-subunits of LT (LTB) and CTX (CTXB) (83% sequence identity), and their 
common intestinal cell surface receptor, GM1, to which both toxins bind with strong (nanomolar) 
affinity.13-16 Both LTB and CTXB compromise intestinal barrier function, which enables toxin endocytosis 
and the intracellular release of the toxic A-subunit.10,17,18 The A-subunits of LT (LTA) and CTX (CTXA) 
then spur the activation of adenylate cyclase (via Gsα) and facilitate the opening of ion channels, which 
leads to ion efflux across the intestinal epithelium and ultimately secretory diarrhea driven by osmosis.10,19

Maternal antibodies (IgA and IgG) against LT and CTX found in breast milk confer protection against 
disease from both ETEC and V. cholerae.18,20 Similarly, we recently demonstrated that camelid-derived 
single-domain antibodies (i.e., VHHs) can attenuate V. cholerae virulence by blocking CTX–GM1 
binding.21 VHHs retain the antigen affinity of full-length antibodies but demonstrate the high pH and 
protease resistance needed to effectively neutralize intestinal pathogens and their virulence factors in the 
gastrointestinal tract.22-24 Additionally, their small size and robust format enable efficient, low-cost 
production using industrially relevant microbial expression systems and biomanufacturing processes.25

In line with the above, a previous study has indicated that oral supplementation of the LT-neutralizing 
bivalent VHH BL2.2 can support a healthy and diverse gut microbiota of piglets exposed to ETEC, 
potentially mitigating post-weaning diarrhea.26 Here, we characterize BL2.2 for its ability to effectively 
abrogate LT-induced cytotoxicity in human intestinal cells. We characterize the interaction interface 
between the bivalent VHH construct and LT and the highly similar CTX, respectively, and reveal how 
natural GM1 receptor binding of both toxins is efficiently blocked by the bivalent VHH construct. Lastly, 
we show that this highly efficient blocking of LT significantly reduces the ability of human pathogenic 
ETEC strain H10407 (LT+ ST+) to colonize human Caco-2 cell layers in a flow chamber infection model 
and preserves epithelial integrity. Our findings thus indicate that neutralizing a single key virulence factor 
can effectively reduce bacterial pathogenesis, and that toxin-neutralizing VHH constructs could find utility 
as tools for limiting the global burden of diarrheal diseases.

Materials and methods

Commercially available materials and reagents

CTX (C8052), CTXB (C9903), and GM1 (G7641) were purchased from Sigma-Aldrich. Lyophilized CTX 
was dissolved in dH2O to a concentration of 0.5 mg ml−1. CTXB and GM1 were dissolved in phosphate- 
buffered saline (PBS, pH 7.4) to a concentration of 1 mg ml−1.

Toxin expression and purification

For the molar ratios presented in this study, LTB and CTXB denote a single B-subunit (11.6 kDa) in LTB 
or CTXB pentamers (58 kDa). The holotoxins LT/CTX (85 kDa) include the catalytic subunit, LTA/CTXA. 
LT was expressed and purified as previously described.27 ETEC strain H10407 (LT+ ST+) was incubated in 
CAYE media (Merck, 100060) at 37 °C while shaking (200 rpm) for 18 hours. Both cell-bound LT and LT 
from the cell supernatant was extracted. The supernatant was separated by centrifugation at 4,000 × g for 
10 min. The remaining cell pellet was dissolved in PBS and sonicated for 7 min using a Fisherbrand™ 
Model 120 Sonic Dismembrator (Fisher Scientific) to retrieve cell-bound LT. The sonicated cells were 
centrifugated at 15,000 × g for 20 min and the supernatant collected. Cell-bound LT and LT from the cell 
supernatant were pooled and purified using D-galactose resin (Thermo Scientific, 20372) as previously 
described.28

LTB-6HIS-3FLAG was produced by E. coli BL21 (DE3) using autoinduction medium (Formedium, 
AIMTB0205) supplemented with 50 µg ml−1 kanamycin at 30 °C, while shaking at 150 rpm for 20 hours. 
LTB was extracted from the periplasm and purified using immobilized metal affinity chromatography 
(IMAC) as previously explained.21 Purified LTB was dialyzed against PBS overnight before protein purity 
was assessed by SDS-PAGE.
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For in vitro evaluation of BL2.1 and BL2.2 binding and toxin neutralization capacity, commercially 
available CTX (Sigma-Aldrich, C8052) and CTXB (Sigma-Aldrich, C9903) were used. For size-exclusion 
chromatography (SEC) analysis of BL2.1/BL2.2 and toxin interaction analysis, LT and CTX were produced 
in Vibrio natriegens as previously described.29 Briefly, cells harboring the LT or CTX plasmid were grown 
at 30 °C in LB-v2 salts medium (LB media supplemented with 204 mM NaCl, 4.2 mM KCl and 23.1 mM 
MgCl2) with chloramphenicol (25 g ml−1). When cells reached an OD600 of ~0.8, L-arabinose was added 
to a final concentration of 0.2% to induce LT/CTX production. After 20 h, proteins were harvested from 
the culture media by two rounds of centrifugation at 8,500 × g for 30 min at 4 °C. The supernatant was 
filtered, loaded on a D-galactose column (Pierce, Thermo Scientific, 20372), and the protein was eluted 
using 50 mM Na-phosphate pH 7.4, 200 mM NaCl, 500 mM D-galactose. The LT- or CTX-containing 
fractions were pooled, concentrated and further purified by SEC using a Superdex 200 increase 10/30 GL 
column (Cytiva) pre-equilibrated with PBS.

Toxin biotinylation

CTXB and LTB were mixed with No-Weigh NHS-PEG4-Biotin (Thermo Scientific, A39259) at a tox
in:biotinylation reagent ratio of 1:2 and incubated at room temperature for 30 min. Excess reagent was 
reduced at least 125-fold by adding the mixture to 3 kDa molecular weight cut-off (MWCO) protein 
concentrators (Thermo Scientific, 16311964) together with PBS, followed by centrifugation at 4,300 × g.

Plasmid construction and VHH dimerization

The VHH BL2.1 was originally discovered by Harmsen et al. (2009) and optimized for E. coli expression 
using the pSANG10-3F vector as previously described.23,30,31 The bivalent VHH construct BL2.2 was 
created by genetic fusion of two BL2.1 using a (GGGGS)3 linker as described elsewhere.26

Expression and purification of VHH constructs

BL2.1 was produced by E. coli BL21 (DE3) using autoinduction medium (Formedium, AIMTB0205) 
supplemented with 50 µg ml−1 kanamycin at 30 °C, while shaking at 150 rpm for 20 hours. Cells were 
pelleted by centrifugation at 6,000 x g for 10 min and resuspended in periplasmic buffer (25% sucrose with 
0.1% lysozyme in PBS). After 30 min incubation at room temperature, an equal amount of cold water was 
added to the solution and incubated on ice for 10 min. The periplasmic fraction was extracted by 
centrifugation at 20,000 x g for 30 min and purified using IMAC as previously described.21 The eluate 
was diluted 20 × in 25 mM Na–acetate (adjusted with HCl to a pH of 3.9) and further purified by cation 
exchange chromatography using a HiTrap SP FF 5 ml column connected to an NGC purification system 
(Bio-Rad).

BL2.2 was produced at Novonesis laboratories (Bagsværd, Denmark) using microbial fermentation with 
secretory expression of N-glycosylated protein. The supernatant containing BL2.2 was sterile-filtered and 
frozen before delivery.

BL3.2 was produced in Komagataella phaffii and purified using IMAC as previously described.21 In 
brief, an overnight culture (BMGY media) was used to inoculate BMMY media (OD600 = 1), which was 
incubated for 2 days at 30 °C and 160 rpm. Each day, the culture was supplemented with 1% methanol. 
Prior to purification, the media was centrifuged (15,000 x g, 15 min), and the supernatant collected. IMAC 
purification of the supernatant was carried out using 50 ml HisPur Ni-NTA resin and IMAC wash buffer at 
a 1:1 ratio (w:w), eluted using 20 ml IMAC elution buffer followed by 15 ml 1 M imidazole.

Protein concentration was determined using either a Qubit 4 fluorometer (Fisher Scientific, Q33238) 
and a broad range protein quantification kit (Fisher Scientific, A51292) or a NanoDrop One spectro
photometer (Fisher Scientific, ND-ONE-W). Protein purity was accounted for using visual assessment of 
SDS-PAGE analysis.
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Affinity determination using BLI and SPR

The kinetic parameters of E. coli-expressed, non-N-glycosylated BL2.1 were measured using both bio-layer 
interferometry (BLI) and surface plasmon resonance (SPR). For BLI experiments, an Octet RED96 
instrument from ForteBio was used and data were analyzed as previously described.21 In short, biotiny
lated BL2.1 (76 nM) was captured by a streptavidin biosensor (Satorius, 18-5020). The biosensor coated 
with BL2.1 was then exposed to serial dilutions of four different concentrations (120–0.470 nM) of either 
CTXB or LTB. Kinetic parameters were determined using the Octet Analysis Studio software v12.2.2.26 
(ForteBio).

A Biacore 8K+ GoldSeal (GE Healthcare Biosciences) was used for all SPR analysis. The kinetic 
interactions between BL2.1/BL2.2 and CTXB/LTB pentamers were analyzed both with BL2.1/BL2.2 as 
the ligand and CTXB/LTB as the analyte, and vice versa. Ligands were immobilized on a CM5 sensor chip 
(Cytiva, 29149603). All analytes were diluted in HBS-EP+ buffer (Cytiva, BR100669) and evaluated at a 
wide range of concentrations (1–300 nM) using single-cycle kinetics. Each analysis contained a startup 
phase of 120 s contact time and 60 s dissociation time with a flow rate of 30 µl min−1 at 25 °C. CTXB was 
analyzed using a contact time of 180 s and a dissociation time of 1000 s. LTB was analyzed using a contact 
time of 180 s 120 s and a dissociation time of 10000 s. BL2.1 was analyzed using a contact time of 30 s and a 
dissociation time of 7000 s. All analytes were evaluated at a flow rate of 30 µl min−1 at 25 °C. Data were 
analyzed by first subtracting the reference flow cell and HBS–EP+ buffer signals and fitting the data 
(excluding refractive index and baseline drift) with a global model (1:1 of binding sites). Kinetic parame
ters were determined using the Biacore Insight Evaluation Software v5.0.18.22102 (Cytiva).

Determination of blocking capacity of toxin-receptor interaction

The ability of BL2.1 and BL2.2 to hinder the interaction between CTXB/LTB pentamers and the 
ganglioside GM1 receptor was determined using GM1 immobilized onto microplates in a previously 
described dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA).24,30,32

60 µl of GM1 (Sigma-Aldrich, G7641) was directly immobilized (5 µg ml−1) onto 96-well Immuno 
Plates (Thermo Scientific, 437111) by incubation overnight. The plates were washed three times with PBS 
and blocked with PBS supplemented with 3% non-fat milk (M-PBS). BL2.1 and BL2.2 (36 nM) were mixed 
with biotinylated CTXB or LTB (36 nM) in M-PBS and incubated at 37 °C for 30 min before being added 
to the GM1-immobilized plate for 1 hour at room temperature. A biotinylated toxin-only (CTXB 
pentamer) control (36 nM) was included. The plates were washed again, three times with PBS-Tween 
(0.2%) and three times with PBS, and 100 ng ml−1 of streptavidin-conjugated europium (PerkinElmer, 
1244-360) diluted in DELFIA assay buffer (PerkinElmer, 4002-0010) was added. Following 30 min 
incubation at room temperature, the previous washing procedure was repeated and europium fluorescence 
activated by adding DELFIA enhancement solution 20 (PerkinElmer, 4001-0010). Intensity measurements 
(excitation at 320 nm and emission at 615 nm) were carried out using a microplate reader (Victor Nivo) 
and the blocking capacity determined by relative comparison to the negative toxin-only control.

Competitive binding assay

The ability of BL2.2 to bind the same epitope on CTXB as the previously reported VHH construct BL3.2 
was assessed using a competitive binding DELFIA similar to the methods described above.21 In short, 60 µl 
of BL3.2 (3.2 µM) was directly immobilized onto 96-well Immuno Plates (Thermo Scientific, 437111). 
BL2.2 (360 nM) was mixed with biotinylated CTXB (36 nM) and added to the plate. A biotinylated toxin- 
only control (36 nM) was included as well. Fluorescence was detected by adding 100 ng ml−1 of 
streptavidin-conjugated europium (PerkinElmer, 1244-360) diluted in DELFIA assay buffer 
(PerkinElmer, 4002-0010) and DELFIA enhancement solution 20 (PerkinElmer, 4001-0010), followed 
by intensity measurements using a Victor Nivo microplate reader. The blocking capacity was determined 
by relative comparison to the negative toxin-only control.
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Detection of intracellular cAMP in cell-based assay

The ability of BL2.2 to neutralize the cytotoxic activity of CTX and LT was determined using a human 
HCA-7 colon cancer cell line (AddexBio, C0009003) as previously described.21 CTX (0.23 nM) or LT 
(4.60 nM) was incubated with different concentrations of either BL2.2 (0–62.5 nM and 0–78 nM, 
respectively) or a bivalent VHH construct without specificity for CTX or LT (57.5–230 nM and 
1.15–4.60 µM, respectively) before being added to 1 × 104 cells per well. BL2.2 was analyzed in duplicates 
of technical triplicates, the bivalent VHH control was analyzed once in replicates of six. The amount of 
intracellular cAMP was detected after 2 hours according to the manufacturer’s protocol (cAMP-Glo™ Max 
Assay, Promega, Madison, WI). Luminescence was measured using a Victor Nivo Multimode plate reader.

The cAMP standard curve was prepared in triplicates according to the manufacturer’s protocol (cAMP-Glo™ 
Max Assay, Promega, Madison, WI) and the effect of BL2.2 on the concentration of intracellular cAMP 
determined using a sigmoidal four parameter logistic regression model (R2 = 0.9745). The relative IC50 for 
BL2.2 was calculated based on a variable slope model. Neutralization capacity of BL2.2 against CTX and LT in 
HCA-7 cells was calculated relative to toxin-only and untreated (HCA-7) controls using the following equation:

( )Neutralization capacity (%) = 100 × BL Toxin Toxin
HCA untreated Toxin
( 2.2 + )

7

Structure prediction and characterization of the BL2.2-toxin interface

Artificial intelligence-based tools have revolutionized the field of protein structure prediction.33-36 In this study, 
ColabFold in combination with classical molecular dynamics (MD) simulations were used to predict and 
characterize the protein-protein interface of BL2.2 in complex with CTXB and LTB pentamers, respectively. 
Starting from the predicted complex structures, three repetitions of 1000 ns of classical MD simulations were 
performed, using the AMBER 24 simulation software containing the pmemd.cuda module.37 The structure 
models were placed into cubic water boxes of TIP3P water molecules with a minimum wall distance to the 
protein of 12 Å.38-40 Parameters for all simulations were derived from the AMBER force field 14SB.41 To 
neutralize the charges, we used uniform background charges.42-44 Each system was carefully equilibrated using 
a multistep equilibration protocol.45 Bonds involving hydrogen atoms were restrained using the SHAKE 
algorithm, allowing a timestep of 2.0 femtoseconds.46 System pressure was maintained at 1 bar by applying 
weak coupling to an external bath using the Berendsen algorithm.47 The Langevin Thermostat was utilized to 
keep the temperature at 300 K during the simulations.48

The obtained MD simulations for BL2.2 in complex with CTXB and LTB pentamers were used to 
calculate contacts using the GetContacts software.49 The analysis performed using GetContacts software 
enabled the computation of interactions within a single protein structure, as well as between different 
protein interfaces, while also monitoring the evolution of contacts throughout the simulation. In addition 
to quantifying the contacts of the different poses, CPPTRAJ was utilized for hierarchical agglomerative 
clustering analysis to identify the most representative binding poses.50

Complex formation studies

Recombinant LT (15 µM) or CTX (68 µM) were mixed with VHH constructs at a 2:1 (BL2.1:toxin) or 1:1 
(BL2.2:toxin) molar ratio, to equalize the number of VHH binding sites. Samples were analyzed by SEC on 
an equilibrated (PBS) Superdex 200 Increase 10/300 GL column (Cytiva) using the ÄKTA Pure system (GE 
Healthcare). Chromatograms were normalized to the maximum peak absorbance and compared to the 
SEC profiles of LT, CTX, BL2.2, or BL2.1 alone.

Protein deglycosylation

BL2.2 and the previously characterized CTXB-specific bivalent VHH construct were diluted to 1 mg ml−1 

in 0.1 M KH2PO4 (pH 5.5) and mixed with endoglycosidase H (Sigma-Aldrich, 324717) to a 100:1 volume 
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ratio. The mixtures were incubated at 25 °C for 2 hours and deglycosylation confirmed by SDS-PAGE 
(Fig. S1).

ETEC colonization in a Caco-2 intestinal flow chamber model

The intestinal epithelium colonization model was a modified version of a previously published model.51 Caco-2 
cells (ATCC, HTB-37) were maintained in Dulbecco’s Modified Eagle’s Medium (Gibco, 31966-021) enriched 
with 20% heat-inactivated fetal bovine serum (HI-FBS) (Biowest, S181H) and 1% penicillin-streptomycin 
(Corning, 30-002-CI). Cells were passaged at 60-90% confluency and used for experiments between passages 25 
and 50. All cultures were maintained at 5% CO2 and 37 °C. For flow chamber culturing, cells were seeded in 
collagen-coated µ-slides (Ibidi, 80606) at a density of 1.2 × 10⁵ cells cm−2 and flow chambers subsequently 
connected to silicon tubing and an IsmatecTM IPC High Precision Multichannel Pump. Cells were allowed to 
settle and adhere for 4 hours before initiating flow at a rate of 15 µl min−1 (Shear-stress: 0.019 dyn cm−2). One 
day post-seeding (DPS), the flow rate was increased to 60 µl min−1, and at 2 DPS, a pulsatile flow was applied 
(140 µl min−1, Shear-stress: 0.178 dyn cm−2) for 1 minute ON and 9 minutes OFF to simulate the intermittent 
nature of peristaltic movement in the gut. At 6 DPS, the medium was replaced with serum-reduced medium 
(2% HI-FBS) without antibiotics. This was done with or without the addition of 2.2 µg ml−1 of BL2.2, and the 
cells were incubated for 30 minutes at flow rate of 140 µl min−1 prior to infection with ETEC H10407 or LT- 
deficient mutant H10407ΔeltA (jf570) for 24 hours.52-54

Inocula were prepared by suspending bacteria from agar plates in Hanks' Balanced Salt Solution (HBSS) 
(Gibco, 14025092) to an OD600 = 0.2, corresponding to an inoculum of approximately 1.3 × 108 CFU ml−1. 
Inocula were introduced under a flow of 15 µl min−1 for 10 min, before shifting to sterile media with a pulsatile 
flow (90 µl min−1, 1 minute ON, 9 minutes OFF) for the remaining infection period. ETEC-infected cell layers 
were harvested using 0.25% trypsin-EDTA (Biowest, L0932) with the addition of 0.1% Triton X-100 (Sigma- 
Aldrich, X100), and plated on Luria Bertani (LB) agar plates for estimation of colony-forming units (CFUs).

For intestinal cell viability analysis, Caco-2 cell layers within the µ-slides were stained using the LIVE/ 
DEAD™ Viability/Cytotoxicity Kit (Thermo Fisher Scientific, L3224) with a modified protocol. Briefly, the cells 
were washed with HBSS, stained with 2 µM Calcein-AM for 30 minutes, rinsed again with HBSS, and then 
fixed with formalin for 15 minutes. To visualize tight junctions, cell layers were washed with HBSS, fixed with 
10% formalin (Sigma-Aldrich, HT5011) for 15 minutes, and rinsed with PBS. Permeabilization was performed 
using 0.1% Triton X-100 for 15 minutes, followed by additional PBS washes. Blocking was carried out for 60 
minutes with 5% bovine serum albumin (BSA) (Sigma Aldrich, A9418). Cells were incubated for 3 hours at 
room temperature with 2 µg ml−1 Occludin Monoclonal Antibody Alexa Fluor 488 (Invitrogen, OC-3F10) in 
1% BSA followed by counterstaining with 500 nM 4′,6-diamidino-2-phenylindole (DAPI) for 10 minutes 
(Sigma-Aldrich, D9542). Fluorescence microscopy was carried out on an Olympus BX51 fluorescence micro
scope, equipped with a 10x objective lens and using Olympus cellSens Dimensions software (version 1.7).

Data processing and visualization

GraphPad Prism (version 10) and R (version 4.3.2) were used for figure generation and statistical analyzes. 
For CFU comparisons, one-way ANOVA with Tukey’s HSD post-hoc test was performed using the aov() 
and TukeyHSD() function from the R stats package (version 4.3.2) (***: p < 0.001, **: p < 0.01, *: p < 0.05). 
Average values and standard deviations were calculated after transforming the values to the figure scale 
illustrated. CLC Main Workbench version 23.0.2 was used for sequence analysis and alignment.

Results

The monovalent BL2.1 binds to LT and CTX with high affinity

When characterizing an antibody construct for its ability to displace the natural interaction between a 
toxin and its receptor, binding affinity is a critical parameter. LTB and CTXB pentamers have apparent 
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affinities in the low nanomolar range (0.57 and 0.73 nM, respectively) for multivalent binding to the GM1 
receptor, due to the avidity effect.13 BLI and SPR were used to determine the binding affinity of BL2.1, the 
monovalent counterpart of BL2.2, towards the LTB- and CTXB-pentamers. BLI measurements of immo
bilized monovalent VHH BL2.1 against LTB and CTXB pentamers demonstrated apparent affinities 
of <0.001 nM and 0.33 nM, respectively (Table S1 and Fig. S2). SPR analysis of the same ligand–analyte 
interactions (BL2.1–LTB/CTXB) yielded affinities (avidities) of 0.003 nM for LTB and 0.37 nM for CTXB 
pentamers, respectively (Table S1 and Fig. S3). SPR analysis of the opposite biomolecular interaction (i.e., 
LTB and CTXB pentamers as ligands), revealed a BL2.1 binding affinity of 0.26 nM towards LTB and 
8.23 nM towards CTXB (Table S1 and Fig. S4).

BL2.2 inhibits CTX functionality

Previous studies have shown that BL2.1 (i.e., LT109) can bind both LT and CTX, and hinder the LT-GM1 
interaction.30 Additionally, its bivalent counterpart, BL2.2 (VHH–(GGGGS)3–VHH), has been shown to 
bind and neutralize LT from porcine ETEC strains in vivo.26,55 In a DELFIA, we specifically tested the 
in vitro CTXB-GM1 blocking capacity of BL2.1 and BL2.2. Both the monovalent BL2.1 and the bivalent 
BL2.2 blocked 100% of the interaction between CTXB and GM1 at a 1:1 CTXB:VHH/VHH–VHH molar 
ratio of binding sites, comparable to their blocking capacity (100%) of LTB–GM1 interaction at identical 
ratios (Figure 1). In contrast, a previously reported anti-CTX VHH selected based on target binding ability, 
demonstrated a CTXB–GM1 blocking capacity of 19% at a 1:100 toxin:VHH ratio without the ability to 
hinder LTB–GM1 interaction at the same concentration (Fig. S5).56,57 In the remainder of the study, the 
bivalent format of BL2.2 was employed to exploit avidity, given the multivalent nature of the LTB/CTXB 
pentamer.21,58,59

BL2.2 neutralizes LT- and CTX-induced cytotoxicity

Uptake of LT and CTX by endothelial cells of the small intestine induces increased levels of cellular 
cAMP.18,60 The toxin-neutralizing capacity of BL2.2 was assessed by adding increasing concentrations of 
BL2.2 (0–78 nM) to LT (4.60 nM) or 0–62.5 nM of BL2.2 to CTX (0.23 nM) and measuring the 
intracellular (HCA-7) cAMP concentration. BL2.2 reduced intracellular cAMP levels in HCA-7 intestinal 

Figure 1. BL2.2 blocking capacity of LTB– and CTXB–GM1 interaction. (a) The ability of the monovalent VHH BL2.1 to 
abrogate the interaction between LTB and CTXB pentamers with the intestinal ganglioside receptor GM1 at a molar ratio 
of 1:1 (binding sites of LTB/CTXB:VHH). The average blocking capacity was calculated by normalization against a toxin-only 
control, after duplicate measurements of technical triplicates. Error bars indicate standard deviation. (b) The ability of 
VHH–VHH BL2.2, the bivalent counterpart of BL2.1, to block toxin (LTB or CTXB) interaction with GM1 at a molar ratio of 1:1 
(LTB/CTXB:VHH binding sites). The average blocking capacity was calculated by normalization against a toxin-only control, 
after duplicate measurements of technical triplicates. Error bars indicate standard deviation.
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epithelial cells seven-fold for LT and three-fold for CTX, relative to toxin alone (Figure 2). Normalized to 
this baseline, BL2.2 fully blocked cellular uptake of both LT and CTX at molar ratios of 1:2 and 1:135 
(toxin:BL2.2), respectively (Fig. S6). This corresponds to a 5:4 (LT:BL2.2) and 5:270 (CTX:BL2.2) binding 
site ratio. By comparison, GM1-coated nanoparticles—used as receptor decoys to inhibit the CTX–GM1 
interaction—achieved only a three-fold cAMP reduction in HCA-7.60 Notably, a bivalent VHH lacking 
toxin specificity showed no measurable impact on LT or CTX uptake (Fig. S6).

BL2.2 is predicted to bind to the conserved GM1 binding site

MD simulations were used to predict the most probable and stable complex formation between BL2.2 and 
both LT and CTX, respectively.21 Analysis of the protein–protein interface between BL2.2 and LT 
(Figure 3a) identified 11 distinct amino acids (E11, H13, N14, K34, R35, S55, Q56, H57, N90, W88, 
and K91) in the LTB epitope (Figure 3b). Among these residues, residue 13 is the only one that differs 
between LT and CTX in the GM1 binding site, with the exception of certain human LT (hLT) strains that 
carry an Arg at this position.15 Notably, S55 and K91 from two adjacent LTB subunits in the pentamer 
were predicted to contribute to the interaction. Ten amino acid residues (D31, D55, D99, D103, Y104, 
V105, S106, N108, E110, and T111) in the BL2.2 paratope are likely essential for LTB binding (Figure 3c). 
Analysis of the predicted BL2.2–CTX interaction (Figure 3d) revealed that out of the 11 amino acid 
residues (E11, R13, K34, R35, E51, S55, Q56, H57, Q61, W88, and K91) in the CTXB epitope, eight are 
shared by LTB (nine, if residue 13 is also considered) (Figure 3e). In this case, three residues (S55, Q56 and 
K91) contributed twice, from adjacent CTXB subunits. Similarly, eight out of the ten amino acid residues 
(D55, D99, S100, Y101, D103, Y104, V105, S106, E110, and T111) in the BL2.2 paratope important for 
CTXB binding, are shared between the two interactions (Figure 3f). Notably, the shared LTB/CTXB 
epitope of BL2.2 contains 9 of the 12 amino acids found in the CTXB epitope of BL3.2, a previously 
characterized VHH construct against CTX.21 Both BL2.2 and BL3.2 epitopes were predicted using 
equivalent MD simulations, with the BL3.2 epitope partially validated through hydrogen-deuterium 
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Figure 2. BL2.2 neutralization of LT and CTX toxicity in a human cell-based assay. (a) Neutralization of LT (4.60 nM) 
cytotoxicity in the presence of increasing concentrations (0–78 nM) of BL2.2. Levels of intracellular cAMP were 
interpolated from a sigmoidal four parameter logistic cAMP standard curve (R2 = 0.9745) based on triplicate measure
ments. Each data point represents an interpolated mean value from biological duplicates comprised of three technical 
replicates. (b) Neutralization of CTX (0.23 nM) cytotoxicity in the presence of increasing concentrations (0–62.5 nM) of 
BL2.2. Levels of intracellular cAMP were interpolated from a sigmoidal four parameter logistic cAMP standard curve 
(R2 = 0.9745) based on triplicate measurements. Each data point represents an interpolated mean value from biological 
duplicates comprised of three technical replicates.
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exchange mass spectrometry (HDX-MS).21 In a competitive binding assay, BL2.2 prevented BL3.2 from 
binding CTXB at equimolar ratios (VHH construct:CTXB) (Fig. S7). The predicted BL2.2 epitope is in 
strong agreement with the established GM1 receptor-binding pocket of both LT and CTX, greatly 
conserved among hLTB and porcine LTB (pLTB), as well as the ctxB genotypes (ctxB1, ctxB3, and 
ctxB7) associated with all cholera pandemics to date (Fig. S8).14,61

BL2.2 promotes toxin aggregation for enhanced neutralization

The SEC profile of BL2.2 incubated with LT or CTX showed a peak eluting close to the void volume of the 
column, indicating that the bivalent VHH construct induced toxin aggregation (Figure 4a,b). In contrast, 
incubating the toxins with the monovalent BL2.1 at equivalent binding site ratios resulted in smaller 
protein complexes.

The original study of BL2.1 (i.e., LT109) reported that N-glycosylation enhances LT neutralization, 
potentially by increasing steric hindrance.30 Here, SPR analysis of LTB and CTXB pentamer interaction 
with glycosylated and non-glycosylated BL2.2 demonstrated that the N-glycans increased antigen avidity 
(Table 1, Fig. S9, and Fig. S10). N-glycosylated BL2.2 exhibited higher avidity towards LTB (0.27 nM) and 
CTXB (5.15 nM) pentamers compared to the non-glycosylated counterpart (1.25 nM and 8.55 nM, 
respectively).

Figure 3. Prediction of the BL2.2 binding interface with LTB and CTXB pentamers. (a) The predicted protein-protein 
interface (blue) between BL2.2 (light gray) and LT (dark gray) based on ColabFold and molecular dynamics simulations. For 
visualization purposes, only one VHH domain of the bivalent BL2.2 molecule is shown. (b) The 11 amino acid residues (E11, 
H13, N14, K34, R35, S55, Q56, H57, W88, N90, and K91) in the LTB epitope predicted to be essential for BL2.2 binding, 
including two residues (S55 and K91) from the adjacent subunit in the pentamer. (c) The 11 amino acid residues (D31, 
D55, D99, Y101, D103, Y104, V105, S106, N108, E110, and T111) in the BL2.2 paratope predicted to be crucial for LT 
interaction. (d) The predicted protein–protein interface (cyan) between BL2.2 (light gray) and CTX (dark gray) based on 
ColabFold and molecular dynamics simulations. For visualization purposes, only one VHH domain of the bivalent BL2.2 
molecule is shown. (e) The 11 amino acid residues (E11, R13, K34, R35, E51, S55, Q56, H57, Q61, W88, and K91) in the CTXB 
epitope predicted to be essential for BL2.2 binding, including three residues (S55, Q56, and K91) from the adjacent subunit 
in the pentamer. (f) The 10 amino acid residues (D55, D99, S100, Y101, D103, Y104, V105, S106, E110, and T111) in the 
BL2.2 paratope predicted to be important for CTXB pentamer interaction.
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BL2.2 abrogates ETEC virulence in a Caco-2 flow chamber infection model

LT has been reported to promote adhesion of ETEC to intestinal epithelial cells.62,63 In this study, an 
intestinal flow chamber infection model was utilized to evaluate the effect of LT neutralization by BL2.2 on 
ETEC virulence.51 Caco-2 cell layers were infected with either ETEC H10407 or an LT-deficient isogenic 
mutant (H10407ΔeltA), which exhibits reduced adhesion and impaired intestinal colonization.62,64 The 
LT-deficient mutant (H10407ΔeltA) was used to evaluate whether neutralization of the LTB pentamer by 
BL2.2 causes ETEC H10407 to behave as an LT-deficient strain.

CFU counts from infected cell layers revealed a significant (p = 4.2 × 10−6) 10-fold reduction in H10407 
colonization after 24 hours when BL2.2 (2.21 µg ml−1) was added to the medium (Figure 5a). The impact 
of BL2.2 on ETEC colonization was more pronounced than the effect observed for the LT-deficient mutant 
(H10407ΔeltA), but this difference was not statistically significant (Figure 5a,b). BL2.2 did not significantly 
affect colonization by the LT-deficient mutant (H10407ΔeltA), supporting that BL2.2 neutralizes LT 
specifically. Tight junction integrity was compromised in H10407-infected cell layers, as evidenced by a 
more diffuse distribution of occludin staining, compared to layers co-incubated with BL2.2 or infected 
with the H10407ΔeltA mutant. Similarly, cell viability, assessed using Calcein-AM staining, was signifi
cantly reduced in H10407-infected layers (Fig. S11).

Figure 4. Size-exclusion chromatography (SEC) analysis of BL2.2 and BL2.1 complex formation with LT or CTX holotoxins. 
(a) Superimposition of SEC profiles of LT in complex with the bivalent VHH BL2.2 (dark blue) or its monovalent counterpart 
BL2.1 (yellow), with molar ratios indicated. For comparison, chromatograms of LT alone (cyan), BL2.2 (dashed blue line), 
and BL2.1 (gray) are also included. (b) Superimposition of SEC profiles of CTX in complex with the bivalent VHH BL2.2 (dark 
blue) or its monovalent counterpart BL2.1 (light blue). Profiles of CTX alone (green), BL2.2 (dashed blue line), and BL2.1 
(gray) are also displayed. To aid in visual presentation, the absorbance of the VHH constructs alone was reduced to half in 
both panels.

Table 1. Comparison of N-glycosylated and non-glycosylated BL2.2 binding avidity towards LTB and CTXB 
pentamers determined using surface plasmon resonance (SPR).         

Glycosylated BL2.2 Non-glycosylated BL2.2

Ligand
kon 

(M−1 s−1)
koff 

(s−1)
KD 

(nM)
kon 

(M−1 s−1)
koff 

(s−1)
KD  

(nM)

LTB pentamer 4.00 × 105  

±  
1.21 × 105

0.96 × 10−4  

±  
0.48 × 10−4

0.27  
±  

0.20

2.84 × 105  

±  
0.43 × 105

3.54 × 10−4  

±  
0.02 × 10−4

1.25  
±  

0.05
CTXB pentamer 1.18 × 105  

±  
0.09 × 105

6.14 × 10−4  

±  
0.44 × 10−4

5.15  
±  

0.09

0.9 × 105  

±  
0.06 × 105

8.03 × 10−4  

±  
0.21 × 10−6

8.55  
±  

0.03

The average equilibrium dissociation constant (KD) was calculated from duplicate measurements of the association rate constant (kon) 

and dissociation rate constant (koff). Standard deviation was used as a measurement of variation. 
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Discussion

ETEC and V. cholerae are endemic to resource-limited settings, and their co-infection prevalence has been 
on the rise during the last decades.65 Oral cholera vaccines (OCVs) have been instrumental in combating 
cholera-induced diarrhea and Dukoral, which combines inactivated V. cholerae with 1 mg of recombinant 
CTXB, is the only licensed vaccine with a substantial effect (67% protection three months post- 
administration) also against ETEC diarrhea.66-70 Recent ETEC-vaccine development efforts have focused 
on combining CFA antigens with recombinant toxoids, such as LTB, CTXB, or LTB–CTXB hybrids to 
raise robust mucosal antibody responses and achieve broad strain coverage.71,72 However, while a broadly 
protective ETEC vaccine offers the potential for extensive protection, the associated higher development 
and implementation costs present significant barriers to accessibility and affordability in LMICs.8

Ultimately, effective population protection using enteric vaccines in resource-limited settings is compli
cated by poor distribution infrastructure, their impaired protection (e.g., due to environmental entero
pathy), and a lack of financial incentives.73-77

Here, we evaluate a previously reported bivalent VHH construct BL2.2 based on its ability to neutralize 
both LT and CTX functionality in vitro and protect Caco-2 cells from ETEC (H10407 LT+ ST+) infection.26

BL2.2 was able to effectively hinder cellular uptake of both LT and CTX similar to a previously 
characterized VHH construct (i.e., BL3.2) that significantly decrease intestinal fluid secretion and burden 
of V. cholerae.21 Moreover, BL2.2 limited ETEC pathogenesis by significantly reducing bacterial coloniza
tion and preserving host cell viability and barrier integrity in an intestinal flow chamber model. This effect 
appears to be associated with the ability of BL2.2 to efficiently aggregate LT, preventing its interaction with 
host cells and thereby inhibiting the pathogenic effects of this toxin. Aggregation is likely induced by BL2.2 
simultaneously engaging two B-pentamers, thereby cross-linking the toxins. This aligns with previous 
findings from other groups, which demonstrated that mismatched valency between toxins and inhibitors 
promotes aggregation and enhances potency.78-80 Moreover, the VHH construct can bind to two adjacent 
subunits in LTB or CTXB pentamers, which could further enhance the interaction.

Figure 5. Suppression of ETEC colonization and virulence by BL2.2 in an intestinal flow chamber infection model. (a) CFU 
counts (CFU ml−1) after 24 hours infection in Caco-2 flow chambers: ETEC H10407 with BL2.2 (p = 4.2 × 10−6), the LT- 
deficient mutant H10407ΔeltA with BL2.2 (p = 1.4 × 10−4), and the LT-deficient mutant H10407ΔeltA without BL2.2 
(p = 1.9 × 10−3), compared to ETEC H10407 alone. Statistical analyzes were performed using a one-way ANOVA with 
Tukey’s HSD post-hoc test (***: p < 0.001, **: p < 0.01, non-significant (ns): p > 0.05). (b) Phase contrast microscope images 
of infected Caco-2 cell layers, the same used for CFU counts in panel (a). Bacterial aggregates are visible on the surface of 
the Caco-2 cell layers.
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The reduced colonization observed upon LT neutralization corroborates previous findings that LT 
promotes adherence of ETEC.62,63 In ETEC strains expressing F4 fimbriae, this mechanism is thought to 
involve the ADP-ribosylation activity of LTA, which elevates host intracellular cAMP levels, thereby 
stimulating the production of bacterial adhesins and promoting colonization.63 The extent to which this 
effect on adhesion involves modulation of the major intestinal adhesion factor CFA/I in H10407 remains 
to be determined. Yet, these findings suggest that the ability of BL2.2 to neutralize LT might be sufficient to 
limit the multifaceted intestinal pathogenicity of the prototypical LT+ ST+ ETEC strain responsible for 
human infection. However, while the intestinal flow chamber model effectively simulates physiologically 
relevant shear stress, which influences bacterial pathogenesis and stimulates epithelial development, it does 
not replicate key human host factors, such as immune cell interactions, host microbiota, and complex 
biochemical gradients.81,82 The absence of these factors should also be considered when evaluating the 
ability of BL2.2 to mitigate ETEC virulence.

Similar to previous studies on V. cholerae pathogenicity, our findings indicate that a VHH against LT or 
CTX can eliminate the role of these toxins in pathogenesis.21,83 The use of cross-protective antibodies 
against LT and CTX at the mucosal surface of the GI tract has been explored by several novel vaccines.62,84- 

87 Vaccines targeting conserved antigens (e.g., LT or highly conserved CFs) aim to stimulate heterotypic 
immunity, providing broad protection across diverse strains. However, mucosal antibody immunity in the 
gut tends to be relatively short-lived without frequent re-exposure.85,88 In our earlier study of piglets 
subjected to ETEC challenge, two oral administrations of 12.1 mg of BL2.2 were given per day and 
supported a diverse gut microbiota.26 Similarly, daily administrations of an anti-rotavirus VHH (35 mg 
kg−1) have been shown to reduce diarrheal onset in small children.89 VHH constructs possess several 
biophysical properties (e.g., high thermal stability and long-term storage stability) that could make them 
well-suited for diarrheal disease management in LMIC settings.59,90 Recently, the BL2.2 construct demon
strated robust thermal and processing stability, maintaining structural integrity and LT-binding activity 
after lyophilization and exposure to elevated temperatures (up to 95 °C) and high humidity.55 Such 
resilience supports its potential suitability for storage, transport, and deployment in LMIC settings, 
where exposure to elevated temperatures and lack of reliable cold chain infrastructure are common 
challenges.91

Furthermore, reported yields of VHHs reaching 31 g L−1 in Komagataella phaffii or Aspergillus niger 
along with titers approaching 100 g L−1 for similarly sized proteins (cellulases) in Trichoderma, suggest 
that production costs can be driven well below $1 per day, assuming daily intake in the milligram range.92- 

94 This cost profile is highly favorable compared to conventional monoclonal antibodies ($95-200 per 
gram) and indicates that VHH constructs such as BL2.2 could provide affordable and continuous 
protection against enteric pathogens if consumed on a daily basis when at risk of infection.23,26,95

Half of all ETEC strains circulating in the human population produce LT, either alone or in combina
tion with ST.96,97 The distribution of ETEC toxin profiles varies depending on geographical (e.g., 
seasonality and location) and host factors (e.g., age).98 Despite of the high diversity of ETEC strains 
found in patients, genomic analysis has inferred that ETEC-mediated diarrheal disease is most likely a set 
of overlapping global epidemics of individual ETEC lineages, which have been stable over considerable 
periods of time.99 This is deduced, as LT or ST gene alleles are linked to the chromosomal background. 
Toxin gene acquisition appears to provide a fitness advantage and remains key to virulence, as other E. coli 
strains can also acquire these genes to cause disease.100-102 In a comparable manner to LT, ST disrupt ion 
transport across intestinal epithelia, can cause watery diarrhea, and be pivotal to ETEC pathogenesis.103

Importantly, ST-only ETEC lineages are capable of causing severe diarrhea and the presence of both toxins 
can synergistically exacerbate diarrheal symptoms.104-106 The prevalence of ST-only strains and the 
phenotypic variation in toxin production emphasizes the need for evaluating BL2.2 against several 
clinically relevant strains to indicate its broadness of protection.71,107,108

LT and CTX both bind additional glycosylated structures, such as blood group antigens, beyond the 
GM1 ganglioside.15,16,109 In particular, fucosylation creates functional CTX receptors, providing evidence 
that these toxins can intoxicate intestinal cells through mechanisms that are not exclusively dependent on 
the GM1 ganglioside.15,97,110-113 Similarly, toxin binding to diverse glycoconjugates may explain why N- 
glycosylated BL2.2 binds more strongly to LTB and CTXB pentamers compared to deglycosylated BL2.2. 
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In addition, glycosylation can enhance stability (e.g., protease resistance) with minimal safety risk for 
VHHs confined to the GI tract, as demonstrated in long-term oral exposure studies.114,115

In addition to its role in toxin-mediated pathogenesis, prior studies have identified LT as a key factor in 
inducing enteropathic alterations on enterocyte surfaces and enhancing ETEC colonization.18,116 However, 
the combined downstream effects of these enterotoxins on a population level, such as their contribution to 
disease symptoms via secondary intestinal bindings sites or to childhood malnutrition, remain largely 
unexplored.104,110,112,117,118 Smaller recombinant antibody formats, such as VHHs, can be selected using 
display technologies (e.g., phage display) to achieve high specificity and affinity for distinct epitopes, 
including toxins and cryptic or less accessible sites.119 We speculate that these properties could make VHHs 
valuable tools for studying target-specific disease mechanisms, particularly those involving highly con
served virulence factors. Such investigations can provide insights into their roles in severe illness and their 
association with both short-term effects (e.g., diarrhea) and long-term outcomes (e.g., malnutrition and 
growth stunting).

While mortality from ETEC-associated diarrhea has decreased, incidence rate has not decreased 
comparably, and better interventions for preventing disease are needed.120 We suggest that targeted 
anti-virulence approaches might hold promise as new tools for managing bacterial enteric pathogens in 
the future, either as complementary strategies to vaccination programs or as standalone interventions for 
communities vulnerable to infection.
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