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G R W N e

Abstract

Soil degradation and declining fertility threaten sustainable agriculture and crop produc-
tivity. This study evaluates the effects of CFMI-8, a co-fermented microbial inoculant
comprising eight bacterial strains selected through genomic and metabolic modeling, on
soil health, nutrient availability, and corn performance. Conducted in a randomized com-
plete block design at Findlay Farm, Wisconsin, the field trial assessed soil biological activity,
nutrient cycling, and crop yield responses to CFMI-8 treatment. Treated soils exhibited
significant increases in microbial organic carbon (+224.1%) and CO, respiration (+167.1%),
indicating enhanced microbial activity and organic matter decomposition. Improvements
in nitrate nitrogen (+20.2%), cation exchange capacity (+23.1%), and potassium (+27.3%)
were also observed. Corn yield increased by 28.6%, with corresponding gains in silage
yield (+9.6%) and nutritional quality. Leaf micronutrient concentrations, particularly iron,
manganese, boron, and zinc, were significantly higher in treated plants. Correlation and
Random Forest analyses identified microbial activity and nitrogen availability as key pre-
dictors of yield and nutrient uptake. These results demonstrate CFMI-8's potential to
enhance soil fertility, promote nutrient cycling, and improve crop productivity under field
conditions. The findings support microbial inoculants as viable tools for regenerative
agriculture and emphasize the need for long-term studies to assess sustainability impacts.

Keywords: CFMI-8; microbial inoculant; soil health; corn; soil microbiome; nutrient cycling;
micronutrients; phosphorus; sustainability

1. Introduction

Sustainable agricultural practices are essential for maintaining soil health, improving
plant growth, and optimizing nutrient uptake [1,2]. Intensive farming and soil degradation
have led to declines in soil fertility, reduced microbial diversity, and decreased nutrient
availability, all of which negatively impact crop productivity [3,4]. Enhancing soil microbial
communities through targeted interventions is a promising strategy to restore soil function
and support sustainable agricultural systems [5,6].

Microbial inoculants, such as CFMI-8, offer a biological approach to improving soil
health and plant nutrition [7-9]. CFMI-8 is a proprietary microbial consortium consisting
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of eight bacterial strains from genera including Bacillus, Paenibacillus, Pseudomonas, and
Streptomyces, selected through an integrative framework incorporating genomic analysis,
metabolic modeling, and community-level simulations [10,11]. These strains were chosen
for their complementary metabolic capabilities, including nutrient cycling, organic matter
transformation, and enhancement of soil microbial activity. This approach aligns with
growing evidence that microbial inoculants can improve soil structure, increase nutrient
bioavailability, and promote plant growth by fostering a more balanced and resilient
microbial community [1,12,13].

The objective of this study was to evaluate the efficacy of CFMI-8 in enhancing soil
health and nutrient availability, thereby improving agronomic performance in a commercial
corn trial conducted at Findlay Farm, Whitewater, WI. The trial utilized a randomized
complete block design to assess the treatment’s impact on key soil and crop parameters,
such as microbial biomass, soil respiration, and nutrient uptake efficiency.

This paper focuses on the effectiveness of CFMI-8 in improving soil health metrics,
promoting microbial activity, and enhancing nutrient uptake in corn production. By inte-
grating data on microbial activity, organic matter decomposition, and crop performance, the
findings contribute to a growing body of evidence supporting the use of microbial-based so-
lutions for sustainable soil management and improved agricultural productivity [6,8,14-16].

These findings underscore the potential of CFMI-8 as a microbial amendment for
enhancing soil fertility and crop productivity in sustainable agricultural systems. By
linking soil microbial activity and nitrogen cycling to agronomic outcomes, this study
provides actionable insights for regenerative agriculture practices.

2. Materials and Methods
2.1. Composition and Preparation of CFMI-8

A co-fermented microbial inoculant (CFMI-8) was developed from a consortium of
eight bacterial strains, selected through an integrative framework combining genomic
annotation with genome-scale metabolic modeling and community interaction simulations
using the KBase platform [10,17]. The selected strains included spore-forming bacteria
(some derived from ancient sources), lactic acid bacteria, and Gammaproteobacteria. All
strains were classified as Biosafety Level 1 (BSL-1) under the Biosafety in Microbiological
and Biomedical Laboratories (BMBL) guidelines, indicating minimal risk to human or
environmental health.

Individual and community-level metabolic models were constructed to evaluate
complementarity, symbiosis, cross-feeding, and niche partitioning. Flux balance analyses
and interspecies exchange simulations identified cooperative interactions supporting roles
in organic matter decomposition and nutrient mobilization [11].

The strains were co-fermented in a single batch culture to enhance interspecies interac-
tions and stimulate postbiotic production. Each strain was inoculated into a standardized
medium supplemented with 2% organic molasses (FEDCO, Clinton, ME, USA) as the car-
bon source. Fermentation was conducted under controlled temperature, pH, and aeration
conditions to support optimal microbial growth and metabolic activity. While all strains
were introduced at known proportions, only total viable cell counts (5.1 x 10° CFU/mL)
were measured post-fermentation. Specific strain abundances were not independently
quantified, and the final composition may reflect a shift in community structure.

Despite this limitation, the co-fermentation process was designed to produce a func-
tional consortium of live microbes and postbiotic compounds with cooperative dynamics
and metabolic efficacy [17,18]. The final product was homogenized to ensure uniform
distribution prior to field application.
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2.2. Study Location and Conditions

This study was conducted in 2022 as part of the GLK Sauerkraut’s Corn trial at Findlay
Farm, Whitewater, WI, USA (42.901683° N, 88.762430° W). The experimental site was
selected for its suitability for corn production and adherence to agronomic standards.
The location provided optimal conditions for evaluating the efficacy of CFMI-8 broadcast
treatments under field conditions. The trial followed a randomized complete block design
to ensure consistency and reliability of key agronomic parameters and treatment effects on
corn growth and silage production.

The field was Fall chisel plowed followed by spring field cultivation to incorporate
fertilizers and level the soil prior to planting. The preceding crop was winter wheat, and the
herbicide Orion had been applied in the previous season. It was not necessary to irrigate
during the trial.

2.3. Experimental Design

The study was conducted following a randomized complete block (RCB) design with
one factor and four replicates. CFMI-8 broadcast treatment was tested in plots measuring
10 feet by 50 feet, covering an area of 0.011 acres per plot. The corn cultivar DS 4018AMXT
was planted on 19 May 2022, with a precision vacuum planter that was configured to
achieve a seeding rate of 35,000 seeds per acre with a row spacing of 30 inches (cm) and a
planting depth of 2.25 inches (5.72 cm).

Fertilizer applications were conducted in two phases. On 1 December 2021, a pre-plant
application of ninety pounds (kg) per acre of 11-52-0 and 200 pounds (90.7 kg) per acre of
0-0-62 was made. The following 5 May, an additional application of four hundred thirty-five
pounds (kg) per acre of 46-0-0 was applied. Pesticides were also applied at critical growth
stages. Accuron (Syngenta, Basel, Switzerland) was applied at a rate of one and a half pints
per acre, and Atrazine (Syngenta, Basel, Switzerland) was applied at a rate of one pound
(kg) per acre pre-emergence on 20 May 2022. Post-emergence applications included Halex
GT (Syngenta, Basel, Switzerland) applied at a rate of four liters per acre and Roundup
WeatherMax (Monsanto, St. Louis, MO 63141, USA) at a rate of eight ounces (29.5 mL) per
acre on 25 June 2022.

Stand density and vigor were assessed during the early growth stages while lodging
was evaluated prior to harvest. Silage yield was determined by hand-harvesting two rows,
each 20 feet long, per plot on 14 September 2022, using a Cadet chopper. Post-harvest
measurements included silage moisture and quality. Samples harvested by hand were
weighed using a field scale to ensure accurate yield estimation.

The experiment adhered to industry standards for field trials and agronomic data
collection. This study provides valuable insights into the efficacy of CFMI-8 broadcast treat-
ments for enhancing corn growth and silage production under real-world field conditions.

2.4. Sample Collection

Soil samples were collected from agricultural fields prior to treatment with CFMI-8 and
six months afterwards to assess the effectiveness of this bioremediation agent. The study
included two groups: untreated soils and soils treated with CFMI-8. Each group consisted of
three independent samples. The treatment was applied at the manufacturer-recommended
concentration of 1.6 x 108 CFU per square meter of soil and lightly incorporated into the
soil with a harrow. Samples were collected at baseline (pre-planting) and post-harvest.

2.5. Soil Health Analysis

Soil samples were analyzed at Ward Laboratories (Kearney, NE, USA) to assess key
indicators of soil health. Organic carbon (ppm) and organic nitrogen (ppm) were measured
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using combustion-based methods to quantify soil nutrient availability and organic matter
content. Soil CO, respiration, a proxy for microbial activity and soil biological function,
was determined through a 24 h incubation test, with results expressed as total CO, release
and as a percentage of microbial active carbon (% MAC) following protocols established
by Haney et al. (2018) [19]. The Soil Health Score (ppm C) was calculated using an
approach that integrates soil respiration, microbial biomass, and organic carbon to provide
a comprehensive measure of soil biological activity. Organic matter was determined using
the Loss on Ignition (LOI) method where soil samples were heated to 360 °C and organic
matter content was calculated as a percentage of mass lost. All analyses were performed
according to standardized protocols established by Ward Laboratories to ensure precision
and reliability. Microbial activity in the soil was indirectly assessed by measuring soil
respiration rates using a CO, flux chamber.

2.6. Soil Chemical Composition and Leaf Tissue Analysis

Soil and leaf tissue samples were analyzed at Rock River Laboratories (Watertown,
WI, USA.) to evaluate chemical composition and nutrient status. Plant tissue samples
were collected as sub-samples from silage harvest plots and analyzed for moisture content,
adjusted silage yield at 65% moisture, crude protein (CP), neutral detergent fiber (NDEF),
total tract neutral detergent fiber digestibility (TTNDFD), acid detergent fiber (ADF), starch,
ash, fat, and estimations of milk production potential (milk per ton and milk per acre).
These analyses were conducted by Rock River Laboratories, Omaha, NE, USA, using
standardized laboratory methods for forage quality testing and included near-infrared
reflectance spectroscopy (NIRS) and wet chemistry as described by Undersander et al. [20]
and Shenk & Westerhaus [21].

Leaf tissue samples were collected at the V4 growth stage (14 June 2022) and post-
harvest sampling (14 September 2022) from 30 plants per plot at multiple time points. The
samples were analyzed for macronutrients—nitrogen (N), phosphorus (P), potassium (K),
calcium (Ca), magnesium (Mg), and sulfur (S); and micronutrients—zinc (Zn), boron (B),
manganese (Mn), iron (Fe), copper (Cu), sodium (Na), and molybdenum (Mo). Nutrient
analyses were conducted using inductively coupled plasma optical emission spectrome-
try (ICP-OES) following acid digestion of the plant tissues as outlined by Jones & Case
(1990) [22]. These methods are widely used in plant tissue analysis to ensure accurate quan-
tification of nutrient concentrations. All measurements followed the standard operating
procedures of Rock River Laboratories to provide reliable and consistent data for assessing
soil fertility and plant nutrient status.

2.7. Statistical Analysis

Soil and plant samples were collected from six replicate plots per treatment group
(n = 6), representing true biological replicates derived from independently managed field
plots. For each plot, soil and plant tissues were sampled at standardized depths and growth
stages. Data points reported per group therefore reflect independent biological replicates.
Statistical analyses were conducted using these replicates to assess treatment effects, with
ANOVA applied for group comparisons and significance set at & = 0.05.

All statistical analyses were conducted using R (v4.) and Python’s SciPy v1.0- li-
brary [23] to evaluate treatment effects and identify key predictors of soil health, nutrient
availability, and crop productivity. Descriptive statistics (mean, standard deviation) were
calculated for all agronomic and soil variables to assess distribution characteristics. Data
normality was verified using the Shapiro-Wilk test [24].
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Agronomic parameters (e.g., yield, stand density, silage quality) were analyzed using
one-way ANOVA appropriate to the randomized complete block (RCB) design. Differences
between treatment means were evaluated at a significance level of a = 0.05.

Independent t-tests were applied to compare glyphosate degradation metabolites (e.g.,
AMPA) and other binary comparisons between treated and control groups.

Correlation matrices (Pearson coefficients) [25] were used to assess relationships
among soil, plant, and yield variables. Additionally, Random Forest regression models
were implemented to identify the most important predictors of crop yield and micronutrient
uptake. Variable importance was assessed using permutation-based feature importance
scores generated in Scikit-Learn (v1.7.0) [26].

All visualizations (heatmaps, bar plots) were generated using Seaborn v0.13.2 [27] and
Matplotlib v3.8.4 [28] to aid interpretation of the statistical outputs.

2.8. Statistical Correlation of Soil Health Metrics ad Environmental Variables

Pearson’s correlation coefficients were calculated to evaluate linear relationships
between soil chemical composition, leaf tissue nutrient levels, and agronomic performance
metrics such as silage yield and quality parameters (e.g., crude protein, starch content).
Significant correlations were identified using a threshold of p < 0.05. Heatmaps were
generated to visualize the strength and direction of the correlations among variables.

2.9. Machine Learning Classification Using Random Forests

To identify key predictors of soil health, silage yield, and plant nutrient composition,
a random forest algorithm was applied using the RandomForest package in R v4.4.0 [29].
Predictor variables included soil chemical properties (e.g., organic carbon, nitrogen, and
phosphorus), leaf tissue nutrient concentrations, and microbial activity measures. Random
forest models were fine-tuned using cross-validation to optimize the number of trees and
variables randomly selected at each split. Variable importance was assessed using the Mean
Decrease in Accuracy (MDA) and Mean Decrease in Gini Index to rank predictors based on
their influence on model performance [30].

Model performance was evaluated using metrics such as R? and root mean square
error (RMSE) for regression analyses [31]. The models were validated using an out-of-bag
(OOB) error estimate for Random Forest to ensure robustness.

All statistical analyses and visualizations were performed using R packages v4.4.0,
including ggplot2 [32], for data visualization and caret [33] for model validation workflows.
Statistical significance was set at p < 0.05 unless otherwise noted.

3. Results
3.1. Soil Health Metrics

The soil health metrics reveal substantial improvements across key parameters in the
treated soils compared to the untreated soils (Table 1). Microbial organic carbon increased
significantly in the treated group to average 80.48 mg/kg, a 224.1% improvement over the
untreated group’s 24.83 mg/kg, indicating that treatment enhanced microbial activity and
nutrient cycling. Similarly, CO, soil respiration was substantially higher in treated soils
and averaged 95.83 mg/kg/day, representing a 167.1% increase, which reflects elevated
biological activity and organic matter decomposition.

Soils treated with the CFMI-8 consortium exhibited notable improvements in several
key fertility indicators. Nitrate nitrogen (NO3 ™) concentrations were significantly elevated,
averaging 38.15 mg/kg—a 20.2% increase compared to untreated soils (31.75 mg/kg)—
suggesting enhanced nitrogen mineralization and availability for plant uptake. Cation
exchange capacity (CEC) also increased by 23.1% in treated soils (8.78 meq/100 g) relative
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to controls (7.13 meq/100 g), indicating improved nutrient retention capacity and overall
soil fertility. Potassium (K) levels were 27.3% higher in treated soils, with an average
concentration of 368.75 mg/kg, reflecting greater nutrient availability (Figure 1).

Table 1. Comparison of soil health parameters between treated and untreated groups.

Parameter (MZ;T::ZD) Untreated (Mean & SD)

Soil Organic Carbon (mg/kg) 118.00 £ 5.62 148.00 &= 11.37
Soil Health Score 13.26 4= 2.33 8.79 £ 0.80
Microbial Organic Carbon (mg/kg) 80.48 £ 23.54 24.83 +5.18
CO; Soil Respiration (mg/kg/day) 95.83 £ 30.34 35.88 £ 5.92
Cation Exchange Capacity (meq/100 g) 8.78 £ 0.22 713 £0.55
NO3-N (mg/kg) 38.15 £ 3.58 31.75 £ 443
NH4-N (mg/kg) 0.6 = 0.08 1.68 + 0.41

Potassium (K, mg/kg) 368.75 £ 11.14 289.75 £ 34.11
Organic Matter (LOI, %) 1.90 + 0.07 1.70 + 0.07

Percent Improvement of Soil Health Parameters (Treated vs. Untreated)

11.8%

Organic Matter (LOI, %)

27.3% %

Potassium (K, mg/kg)

NH:-N (mg/kg)

NO3-N (mg/kg)

CEC (meq/100g)

167.1% *

CO:2 Soil Respiration (mg/kg/day)

Microbial Organic Carbon (mg/kg) 224.1% %

Soil Health Score

Soil Organic Carbon (mg/kg)

oy —

=50 50 100 150 200

Percent Improvement (%)

Figure 1. Percent change in soil health parameters (treated vs. untreated). Significant differences
between treated and untreated soils (p < 0.05) are marked with an asterisk (*). The bar chart illustrates
the percentage changes in key soil health parameters, comparing treated and untreated soils. Positive
changes (green bars) indicate improvements in microbial organic carbon, soil respiration, cation
exchange capacity (CEC), and nutrient availability, while negative changes (red bars) represent
declines in certain parameters, such as soil organic carbon turnover. The bar chart was generated
using Python, v3.12.3, utilizing libraries such as Matplotlib v.3.8.4 for visualization. The graphical
representation highlights the relative impact of treatment on soil health metrics, providing a clear
comparison of improvements driven by microbial inoculation.

Organic matter content showed a modest but meaningful increase of 11.8%, rising
from 1.70% in untreated soils to 1.90% in treated soils. Conversely, soil organic carbon
decreased by 20.3% following treatment (118.00 mg/kg vs. 148.00 mg/kg in controls), likely
due to increased microbial activity and carbon utilization stimulated by the inoculant.
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3.2. Agronomic Performance

Agronomic performance was significantly better with the treated group compared
to the untreated group (Table 2). For example, corn yield in the treated group av-
eraged 7.20 tons/acre (a 28.6% increase) compared to the untreated group’s average
of 5.60 tons/acre. Similarly, corn ear density was 17.6% higher in the treated group
(38.50 ears/plot,) compared to the untreated group’s 32.75 ears/plot, an indicator of better
crop stands and development.

Table 2. Summary of agronomic performance metrics under CFMI-8 and control treatments.

Parameter Treated (Mean + SD) Untreated (Mean + SD) % Change
Corn Yield (tons/acre) 720 £ 1.79 5.60 £+ 0.68 +28.6%
Corn Ear Density 38.50 &+ 1.87 32.75 £ 2.05 +17.6%
Grain Yield 246.40 £ 6.68 235.57 £7.03 +4.6%
Silage Yield (tons/acre) 36.26 + 1.18 33.08 £ 1.51 +9.6%
Silage Milk/acre (Ibs.) 121,703.00 + 6320.59 111,333.75 £ 3652.58 +9.3%
Silage Milk/ton (Ibs.) 3426.00 + 183.84 3332.25 £ 67.36 +2.8%

There was a modest 4.6% improvement in grain yield with the treated group (average
246.40 bushels/acre) compared with the 235.57 bushels/acre of the untreated group. This
increase suggests that the treatment contributed to more efficient nutrient utilization and
grain development. Silage yield of 36.26 tons/acre was also notably higher in the treated
group (9.6% increase) compared with the untreated group’s 33.08 tons/acre. This highlights
the treatment’s positive effect on biomass production. In addition to the increased biomass,
the treated group produced silage with higher nutritional quality that was reflected in a
9.3% increase in silage milk per acre (121,703 lbs. vs. 111,334 Ibs.) and a 2.8% increase in
silage milk per ton (3426 Ibs. vs. 3332 1bs.).

3.3. Micronutrients

Several micronutrient concentrations were significantly higher in CFMI-8 treated
compared with untreated groups (Table 3, Figure 2).

Table 3. Comparison of means, standard deviations, percent changes, and p-values between treated
and untreated groups across soil variables and corn leaf nutrient content.

Untreated Treated .
Metric Mean Std Dev Mean Std Dev o Change p-Value
Soil Fe 31.500 7.188 65.750 28.745 108.730 0.094
Soil Mn 1.250 0.500 2.000 0.816 60.000 0.178
Soil B 0.300 0.000 0.450 0.058 50.000 0.014
Soil Cu 0.575 0.150 0.650 0.238 13.043 0.617
Soil P 56.750 4.500 67.500 12.583 18.943 0.188
Soil Zn 1.350 0.058 1.750 0.129 29.630 0.004
Soil K 130.000 25.245 106.250 36.087 —18.269 0.327
Soil Mo 0.023 0.005 0.035 0.010 55.556 0.083
Leaf Fe 110.500 2.380 121.250 2.754 9.729 0.001
Leaf Mn 31.100 1.738 34.750 0.957 11.736 0.016
Leaf B 10.150 0.819 12.150 0.473 19.704 0.009
Leaf Cu 10.000 0.816 11.750 2.217 17.500 0.216
Leaf P 0.372 0.015 0.402 0.017 8.054 0.039
Leaf Zn 2.128 0.025 2.203 0.025 3.525 0.005
Leaf K 32.750 1.708 33.750 1.708 3.053 0.439

Leaf Mo 0.310 0.036 0.355 0.013 14.516 0.080
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Percent Changes in Leaf and Soil Micronutrients with Treatment (Significance Marked)

Soil Mo

Soil Zn|

52.2%*

29.6%*

Soil P 18.9%*

Soil Cur 12.1%

Soil B 50.0%*

Soil Mn 60.0%*

Leaf Mo 16.1%*

Leaf K| 3.1%

Micronutrient

Leaf Znf 3.3%

Leaf P| 8.1%*

Leaf Cur 17.5%*

Leaf B} 19.7%*

Leaf Mn 11.7%*

Leaf Fe| 9.7%*

* Significant (p < 0.05)
20 30 40 50 60
Percent Change (%)

o
)
o

=20 ~10

Figure 2. Percent changes in leaf and soil micronutrient levels following CFMI-8 treatment. The
figure illustrates relative changes in micronutrient levels in corn leaves between treated and untreated
groups. Green bars represent improved nutrient availability or plant uptake, while red bars indicate
potential decreases, likely due to higher plant absorption. Statistically significant differences (p < 0.05)
are marked with an asterisk (*). This visualization, generated using Python’s Matplotlib v3.8.4 [28]
highlights the treatment’s impact on soil fertility and plant nutrition. Percentage changes were
calculated as (Treated — Untreated)/Untreated x 100, with a horizontal bar chart distinguishing
positive (green) and negative (red) shifts. The chart includes annotated values, a 0% reference line,
and clear axis labels for readability.

The concentration of most nutrients analyzed for tended to be higher in CFMI-8
treated soil and leaf tissue compared with the non-treated; however, only B and Zn were
significantly different in soil. Leaf B, Fe, Mn, P, and Zn were significantly different in treated
leaves (Table 3, Figure 2).

3.4. Spearman Correlation Analysis of Agronomic, Soil, and Microbial Parameters

The correlation analysis (Figure 3) revealed significant relationships between soil
health parameters, plant nutrient composition, and agronomic performance metrics. Corn
yield was strongly correlated with Corn Ear Density (r = 0.85, p < 0.01) and Silage Yield
(r=0.88, p <0.01), indicating that increased ear density and biomass production contributed
to higher yields. Additionally, Corn Yield showed a moderate positive correlation with Soil
Organic Carbon (r = 0.67, p < 0.05), suggesting that improved soil organic matter content
may enhance crop productivity.

Soil health metrics were closely linked, with Soil Organic Carbon positively correlated
with Soil Health Score (r = 0.79, p < 0.01) and Microbial Organic Carbon (r = 0.74, p < 0.01),
highlighting the role of organic matter in supporting microbial activity. Additionally,
CO, Soil Respiration, an indicator of microbial activity, exhibited a strong association
with Microbial Organic Carbon (r = 0.71, p < 0.01), reinforcing the link between microbial
biomass and respiration rates.

Plant nutrient uptake was significantly influenced by soil nutrient availability. Soil
Zn correlated with Leaf Zn (r = 0.65, p < 0.05), while Soil P was positively associated with
Leaf P (r = 0.69, p < 0.01), suggesting that soil phosphorus and zinc levels influenced plant
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tissue concentrations. Similarly, Soil K was highly correlated with Leaf K (r = 0.78, p < 0.01),
indicating efficient potassium uptake from soil to plant tissues.

Corn Yield (tons/acre)
Corn Ear Density
Grain Yield

Silage Yield

Silage Milk/acre
silage Milk/ton

Soil Organic Carbon
Soil Health Score
Microbial Organic Carbon
CO2 Soil Respiration
Soil Mn

Soil B

Soil Cu

Soil P

Soil Zn

Soil K

Soil Mo

Leaf Fe

Leaf Mn

Leaf B
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Leaf Zn
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Leaf Mo
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o
i
3 7
@
.4°

7 0.22 0.82 0.32 0.07 0.66 -0.44 0.75 0.57 0.72 0.68 -0.19 0.17 0.72 -0..

2

8
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&
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W
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0 0.!
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°
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0.62 0.44 0.69 0.29 0.04 -0.
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Corn Ear Density 0.89, 0.56 0.08 -0.39 0. 4 0.52 0. 5 0.03 0.2 5 -0.! 65 0 62 0.34 0] .80 0.27 0.71

Grain Yield 6 -0.10 0. 17 -0.: 31 0.25 0

0.75

silage Yield 1.00 0.80 -0.09 0.6 8 0.08 0.15 0.76 0. 57 0.84 0.38 O, .65 - .22

Silage Milk/acre [ 0. 6 1 -0.22 0. 2 -0. 9 0 .46 0.19 0.33

Silage Milk/ton 0. 09 0.37 0.25 0.44

Soil Organic Carbon :0.50-0.39-0.33.-0 1050

Soil Health Score 10.53,0.79 0.8
Microbial Organic Carbon -{0:8

CO2 Soil Respiration

Soil Fe {0.4770:

Soil Mn

Soil B

0.00
Soil Cu

.!5 i.!ﬂ 0.36 0.47

Soil P40.07 0.20 0.15 0.15 0.1 5 . .5. 45°0.5 0 0.44 0.47 0.06 0.36 0.48 0.

Soil Zn
-0.25

Pearson Correlation Coefficient

Soil K 1-0 .38 -0.5¢ .. 14 0.04 0.37 -0.. 1 0.47 -0.] 2 -0. 6-0.47-0.25 0.04

Soil Mo .08 -0 8 0.17 -0.0 7 -0.14 0.06 0 8 .76 0.02 0.14

Leaf Fe 10.57 .06 .51 0. 2 0.07 0.
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.75 0.08 0.49
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Leaf P 0. 0.0 0.32 0.52 0.47 0.17 0.11 0.48 -0.30 .65 0.24

.45 0. 6 ‘
Leaf Zn 0.- 0.49 0.2.1 0.11 0.4

Leaf K 4-0.25 0.27 0.22 -0.15 0.19 0.25 -0.13-0.00 0.09 0.06 -0.15-0.14 0.05 -0.47 0.32 0.00 -0.25 0.02 0.18 0.28 0. 65 0 .00 0.24

67 0.04 0.-33 0.49 0.12 Oﬁl ﬂ1.54 0 .00

Figure 3. Pearson correlation matrix of soil, leaf, and productivity indicators in response to CFMI-8
treatment. This heatmap displays the Pearson correlation coefficients among key soil health metrics,
leaf micronutrient content, and crop productivity outcomes. Strong positive correlations (red) indicate
tightly linked variables, while negative correlations (blue) suggest inverse relationships. Notable
patterns include strong associations between microbial indicators (e.g., microbial organic carbon,
CO;, respiration) and corn yield, as well as between soil and leaf micronutrient levels. The color scale
on the right reflects the strength and direction of each correlation. The heatmap was generated using
Python’s Matplotlib v3.8.4and Seaborn 0.13.2 libraries.
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Nutrient availability also played a role in crop productivity. Silage Yield was moder-
ately correlated with Soil P (r = 0.66, p < 0.05) and Soil Zn (r = 0.62, p < 0.05), suggesting
that phosphorus and zinc contributed to biomass accumulation. Additionally, Grain Yield
exhibited a moderate correlation with Soil Organic Carbon (r = 0.61, p < 0.05), supporting
the notion that soil organic matter is beneficial for grain production.

Finally, treatment effects appeared to enhance microbial activity and nutrient uptake.
Treated plots exhibited higher Soil Health Scores and Microbial Organic Carbon levels
compared to untreated plots. These improvements were accompanied by increased soil
respiration rates and greater nutrient uptake in leaf tissue, suggesting that the treatment
promoted microbial interactions that enhanced soil fertility and plant growth. (Figure 3).

This figure presents a correlation matrix illustrating the relationships between soil
health metrics, nutrient availability, microbial activity, and crop productivity. The correla-
tion values were calculated using Pearson’s correlation coefficient [34] in Python v3.12.3 [35].
The matrix was visualized using Matplotlib v.3.8.4 [28], with a color gradient indicating the
strength and direction of correlations (warm colors for positive correlations and cool colors
for negative correlations). Numeric correlation values were overlaid in each cell for clarity.
The figure was generated and saved as an SVG file using a Python script.
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Opverall, the analysis highlights the interconnectedness of soil health, nutrient dynam-
ics, and agronomic productivity; with microbial activity, organic carbon, and phosphorus
emerging as key drivers of yield and plant nutrient status (Figure 3).

3.5. Impact of Environmental Factors on Soil Health and Productivity

Soil Health Score correlated with Microbial Organic Carbon (r = 0.91, p < 0.01) and
CO, Soil Respiration (r = 0.87, p < 0.01). Soil Organic Carbon (LOI) correlated with Soil
Health Score (r = 0.85, p < 0.01) and Microbial Organic Carbon (r = 0.82, p < 0.01). CO; Soil
Respiration correlated with Microbial Organic Carbon (r = 0.92, p < 0.01).

Field Capacity correlated with Soil Health Score (r = 0.62, p < 0.05) and Total Nitrogen
(r=0.69, p < 0.05). Wilting Point showed negative correlations with Soil Organic Carbon
(r=—0.55, p < 0.05) and Microbial Organic Carbon (r = —0.61, p < 0.05).

Corn Yield correlated with Soil Health Score (r = 0.74, p < 0.01) and Microbial Organic
Carbon (r = 0.76, p < 0.01). Silage Yield correlated with Soil Health Score (r = 0.72, p < 0.01)
and Soil Organic Carbon (r = 0.68, p < 0.05). Grain Yield correlated with Total Nitrogen
(r=0.81,p <0.01).

3.6. Predictive Modeling with Random Forest
3.6.1. Determinants of Corn Yield

Random Forest analysis identified CO; Soil Respiration as the most important pre-
dictor of corn yield. Other top predictors included Microbial Organic Carbon, Corn Ear
Density, Soil Health Score, Soil Organic Carbon, Field Capacity, and Wilting Point. Figure 4
presents the ranked importance of these variables in the model.

Top Yield Predictors

0.8
Microbial Organic Carbon
CO2 Soil Respiration 0.7
Corn Ear Density s
s
0.6 8
Treatment_binary g
S
[
v
Soil Health Score 05 &
5
Qo
£
Soil Organic Carbon -
0.4
Field Capacity
Wilting Point
0.3
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Absolute Correlation with Corn Yield

Figure 4. Top predictors for corn yield based on Random Forest analysis. This figure presents the
most influential soil health and nutrient factors affecting corn yield, as identified through Random
Forest analysis. The feature importance scores indicate the relative contribution of each factor, with
Microbial Organic Carbon and CO, Soil Respiration, followed Corn Ear Density and Treatment
with soil inoculant were the strongest predictors. This figure was created using Random Forest
feature importance analysis, where the contribution of each soil health and nutrient factor to corn
yield prediction was quantified and visualized as a bar plot. Bar plot was generated using Python,
v3.12.3 specifically utilizing the Scikit-Learn library v1.4.2 [26] for Random Forest modeling and
permutation feature importance analysis, along with Matplotlib v3.8.4 [28] and Seaborn v0.13.2 [27]
for visualization.



Microorganisms 2025, 13, 1638

11 of 20

3.6.2. Determinants of Micronutrient Uptake

Random Forest analysis identified Soil Organic Carbon as the most important predictor
of leaf micronutrient uptake, particularly for Fe, B, Cu, P, and Zn. Other key predictors
included Microbial Organic Carbon, Nitrate Nitrogen (NO3~-N), Ammonium Nitrogen
(NH4*-N), Field Capacity, and Soil pH. Figure 5 presents the ranked importance of these

variables in the model.
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Figure 5. Random Forest feature importances for predicting leaf micronutrient uptake. This composite
figure presents the ranked predictor importances for eight leaf micronutrients (Fe, Mn, B, Cu, P, Zn,
K, and Mo), based on Random Forest models trained using soil parameters, yield components, and
treatment status. Each subplot displays normalized importance scores for variables contributing to a
given micronutrient, with darker bars (purple) indicating stronger predictive power. Soil Organic
Carbon consistently emerged as a key predictor, particularly for Fe, B, Cu, P, and Zn. Although
the limited sample size (1 = 8) restricts statistical certainty, the results highlight potential drivers of
nutrient uptake. Bar plots were generated using Scikit-Learn’s permutation importance method and
visualized with Matplotlib v3.8.4 [28] and Seaborn v0.13.2 [27]. A summary of top-ranked predictors
is illustrated in Figure 3.
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4. Discussion
4.1. Soil Health Parameters

CFMI-8 treatment led to measurable improvements in soil biological activity and
overall health. The elevated microbial organic carbon and CO,; respiration in treated
soils indicate a more active microbial community, which plays a central role in nutrient
cycling and organic matter decomposition [36,37]. These processes likely contributed to
the observed increase in soil health scores, supporting the treatment’s effectiveness in
enhancing soil functionality. Figure 1 illustrates these differences between treated and
untreated soils.

Treated soils also showed signs of enhanced nitrogen cycling, with higher nitrate
levels and lower ammonium concentrations—patterns consistent with increased microbial
nitrification. Efficient nitrogen turnover is essential for plant uptake and may be influenced
by micronutrients such as molybdenum, a cofactor in nitrate reductase [38,39]. The increase
in cation exchange capacity (CEC) further supports improved soil fertility, indicating greater
capacity to retain essential nutrients such as potassium and calcium [40].

Higher potassium concentrations in treated soils suggest improved nutrient retention
and cycling. Potassium plays critical roles in enzyme activation, water regulation, and
stress response [38] and its availability may have been supported by microbial contributions
to organic matter breakdown [41]. The modest rise in organic matter content, reflected
in LOI values, points to the gradual buildup of soil carbon pools, contributing to better
structure, moisture retention, and microbial habitat [42].

Interestingly, untreated soils contained more total soil organic carbon, likely due to
slower decomposition rates in the absence of microbial stimulation. While high organic
carbon is beneficial, the active turnover seen in treated soils may better support immedi-
ate nutrient availability and crop productivity. Elevated microbial activity in these soils
reflects a dynamic, resilient system capable of sustaining plant growth under variable
conditions [43].

In summary, CFMI-8 enhanced key soil health metrics by stimulating microbial-driven
processes, improving nutrient cycling, and increasing nutrient retention. These results align
with prior studies supporting the use of microbial inoculants and organic amendments
to boost soil quality and fertility [44,45]. Long-term trials are warranted to assess the
durability of these improvements and their role in mitigating soil degradation in intensive
agricultural systems.

4.2. Agronomic Results

CFMI-8 treatment improved crop productivity, likely due to enhanced nutrient cycling
and microbial activity observed in treated soils. Higher corn and silage yields correspond
with increased nitrate availability, cation exchange capacity, and microbial respiration, all
of which support plant nutrient uptake and biomass production [38,40,46,47].

Improved soil health was also associated with greater corn ear density and silage
milk yield. These effects are consistent with better nitrogen cycling, potassium avail-
ability, and carbon turnover. The slight reduction in total soil organic carbon in treated
plots may reflect more active microbial processing of organic matter into plant-available
nutrients [3,39,48,49].

Together, these agronomic outcomes point to a more biologically dynamic soil ecosys-
tem created by CFMI-8, reinforcing its potential as a sustainable tool for improving crop
yield through enhanced soil function.
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4.3. Micronutrients Analysis

CFMI-8 treatment improved micronutrient availability and plant uptake, with signif-
icant increases in leaf concentrations of Fe, Mn, B, Zn, and Mo. These nutrients support
photosynthesis, enzymatic activity, and stress response, and their elevated levels likely
reflect enhanced microbial solubilization and nutrient cycling in treated soils [50-54].

Boron and zinc increases are consistent with their known roles in reproductive devel-
opment and enzyme function. Molybdenum, essential for nitrogen metabolism, was also
elevated in both soil and leaf tissues, suggesting improved nitrate utilization via microbial
stimulation of Mo-dependent enzymatic pathways [55-59].

In contrast, no statistically significant change was observed for phosphorus or copper
uptake. This may be due to their limited mobility or the absence of chelators that enhance
their bioavailability. While soil phosphorus levels showed a modest (non-significant)
increase, the 8.1% rise in leaf P concentrations suggests that microbial activity may have
improved P mobilization or root uptake under marginal availability [60-63].

While the treatment showed significant improvements in the concentrations of several
micronutrients, it had no statistically significant impact on P or Cu levels. This could
be due to inherent differences in nutrient mobility or plant-specific uptake mechanisms.
Copper, while essential for enzymatic reactions, often requires chelation or soil amendments
to enhance its bioavailability. These factors may not have been fully addressed by the
treatment applied here [64,65]. Phosphorus, being relatively immobile in soil, often requires
specific conditions for uptake, which might explain the lack of significant change [66,67].

Slightly higher leaf potassium levels, despite a reduction in soil K, likely reflect
increased plant uptake, potentially due to better nutrient access and microbial-supported
root activity. Potassium’s roles in water regulation and stomatal control may explain the
yield-associated gains such as greater ear density [68,69].

Micronutrient patterns in both soil and leaf tissues reinforce CFMI-8’s role in enhanc-
ing nutrient cycling and plant metabolic function. Treated soils showed higher levels
of manganese, boron, and molybdenum—elements tied to enzymatic activity, nitrogen
assimilation, and reproductive development. These gains translated into improved plant
uptake, with corresponding increases observed in leaf micronutrient concentrations, par-
ticularly for Fe, Mn, B, and Mo. Such changes support photosynthesis, stress resilience,
and nitrogen metabolism, all of which are essential for sustaining productivity under field
conditions [70-72].

Although phosphorus is relatively immobile in soil, the statistically significant increase
in leaf phosphorus—despite only modest changes in soil P—suggests improved uptake
efficiency, possibly due to microbially mediated mobilization. This aligns with the increased
grain yield observed in treated plots. Similarly, elevated leaf potassium alongside reduced
soil K likely reflects enhanced plant absorption, further supporting yield gains through
improved water regulation and energy transfer [38].

The modest decline in soil potassium likely reflects greater plant uptake, supported by
the observed increase in leaf K concentrations. Potassium is essential for osmotic regulation
and stress tolerance, and its availability may have contributed to the higher ear density
in treated plots. Likewise, elevated molybdenum in both soil and leaf tissues points to
enhanced nitrate metabolism—consistent with increased soil nitrate levels—potentially
driven by microbially mediated stimulation of nitrification processes. These shifts indicate
improved nutrient cycling and utilization within the plant—soil system.

Together, these nutrient dynamics offer a mechanistic explanation for the agronomic
improvements observed. By fostering microbial activity and facilitating nutrient transfor-
mations, CFMI-8 enhanced both soil fertility and crop performance, supporting its potential
as a sustainable soil amendment.
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4.4. Soil Health, Microbial Activity, and Crop Productivity

Figure 3 highlights key relationships between soil health, microbial activity, and
productivity outcomes. Notably, the strong correlation between corn yield and corn ear
density supports the idea that yield improvements may be driven by changes in both soil
conditions and plant reproductive efficiency [73].

Correlations among soil organic carbon, microbial organic carbon, and overall soil
health scores emphasize the importance of organic matter inputs in supporting a biologi-
cally active soil ecosystem. Such conditions foster microbial growth and function, which
in turn promote nutrient cycling and structural integrity—key factors in sustaining crop
yields [74]. This suggests that treatments aimed at increasing organic matter inputs (e.g.,
compost, microbial inoculants) could improve both microbial activity and soil structure,
ultimately leading to higher yields.

Among nutrients, phosphorus and zinc emerge as potentially limiting elements for
biomass accumulation. Positive associations between soil P and silage yield, and between
soil Zn and plant performance, suggest that optimizing micronutrient availability—through
microbial mobilization or targeted supplementation—could enhance productivity in sys-
tems where these nutrients are marginal [75-77].

The elevated microbial activity observed in treated soils (as indicated by respiration
and microbial carbon metrics) further supports the hypothesis that microbial-mediated
transformations underpin improved nutrient availability and soil function [78,79]. These
observations align with treatment-induced shifts in yield components and nutrient concen-
trations, reinforcing the value of microbial amendments.

The treatment effects suggest that enhancing soil microbial interactions can improve
nutrient cycling and crop performance [80,81]. This is evidenced by the higher soil respi-
ration and microbial organic carbon levels in treated plots, which indicate a more active
microbial community likely contributing to better soil structure and nutrient availabil-
ity [82,83].

Taken together, the data suggest that interventions aimed at strengthening microbial
processes and organic matter dynamics can contribute to more efficient nutrient cycling
and improved crop productivity. Future studies should explore causal pathways in greater
detail, ideally through multi-season trials and comparative microbial profiling [84].

4.5. Soil Health and Fertility

Figure 3 illustrates how CFMI-8 treatment supports soil fertility through improved
microbial function and moisture dynamics. Strong correlations among Soil Health Score,
Microbial Organic Carbon, and CO, Respiration point to enhanced microbial biomass and
activity as key drivers of soil functionality [85].

The positive association between Soil Organic Carbon and Microbial Organic Carbon
reinforces the importance of organic matter in sustaining microbial communities and
facilitating nutrient cycling [86]. Notably, soil moisture-related parameters also correlated
with soil health outcomes: higher field capacity was linked to elevated Soil Health Scores,
while the inverse relationship between Wilting Point and Soil Organic Carbon suggests
that organic-rich soils retain water more effectively and create more favorable conditions
for microbial processes [87-89].

Yield data further support the role of microbial-driven improvements in soil quality.
Corn and silage yields were positively associated with Soil Health Score, and grain yield
correlated strongly with Total Nitrogen—consistent with nitrogen’s role in driving crop
productivity [6,89-91].

Taken together, these results indicate that CFMI-8 enhances microbial and moisture-
related soil functions, which are integral to nutrient availability and plant performance.
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Future studies should evaluate how these changes persist over time and under varying
environmental conditions to assess long-term sustainability impacts.

4.6. Random Forest Analysis and Predictive Metrics

Random Forest analysis identified microbial activity metrics (e.g., CO; soil respiration,
microbial organic carbon) and nitrogen availability (e.g., nitrate-N) as the strongest predic-
tors of corn yield (Figure 4) and influential factors in micronutrient uptake (Figure 5). These
findings align with previous studies emphasizing the importance of microbial processes
and nitrogen dynamics in soil fertility and crop productivity [92-94].

4.7. Key Biogeochemical Predictors of Corn Productivity

As shown in Figure 4, nitrate (NO3-N) emerged as the strongest predictor of corn
yield, indicating that nitrogen availability plays a critical role in biomass accumulation and
grain development. This aligns with previous studies showing that nitrogen is a primary
limiting factor in crop production [75,95].

Microbial Organic Carbon also showed high predictive power, reinforcing the impor-
tance of soil microbial activity in nutrient cycling. This finding is consistent with previous
reports that increased microbial biomass enhances organic matter decomposition and nu-
trient availability, contributing to higher crop productivity [92,96]. Additionally, CO, soil
respiration was a strong predictor, highlighting microbial-driven carbon cycling as a key
factor for soil health and fertility [97].

Other influential predictors include Soil Organic Carbon (LOI), Soil pH, and Soil
Health Score, which collectively indicate that nutrient retention, microbial balance, and
soil structure are major drivers of agronomic performance. These results support previous
findings that maintaining high organic matter and microbial diversity enhances nutrient
availability and plant growth [46,98].

4.8. Biological and Agronomic Drivers of Micronutrient Uptake

Random Forest regression revealed that both agronomic management and crop perfor-
mance play key roles in micronutrient assimilation (Figure 5). Notably, treatment status
and corn ear density consistently emerged as top predictors, suggesting that managed
interventions and optimal plant architecture significantly enhance nutrient uptake through
improved plant vigor and root development.

Yield components such as grain and silage yield were also strong predictors of leaf
micronutrient concentrations. This correlation indicates that more productive plants likely
develop extensive root systems, facilitating more efficient nutrient absorption and translocation.

Soil quality indicators—including soil organic carbon and soil health score—were
moderately important, underscoring the role of soil organic matter in supporting microbial
activity and nutrient cycling. Although soil pH, field capacity, and wilting point were
included, their lower importance suggests a more indirect influence on micronutrient
uptake relative to management and productivity-related variables.

For leaf-level uptake specifically, CO; soil respiration was the most influential predictor
(Figure 5), reinforcing the role of active microbial communities in nutrient solubilization and
rhizosphere bioavailability [98]. Microbial Organic Carbon was also a strong contributor,
supporting the hypothesis that soil microbial interactions are central to micronutrient
exchange and plant-microbe symbiosis [44]. While the limited sample size constrains
broader generalizability, these findings offer valuable preliminary insights into the link
between biological soil health and nutrient uptake efficiency. Further validation in larger,
multi-site datasets is warranted.
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4.9. Limitations of the Study

While this study provides strong evidence for the positive effects of CFMI-8 on soil
health and crop productivity, several limitations should be noted. First, the trial was con-
ducted at a single site under specific environmental and soil conditions, which may limit the
generalizability of the findings to other regions or soil types. Future studies across diverse
agroecological zones would help confirm the broader applicability of these results. Second,
although microbial activity was inferred from CO; respiration and microbial organic carbon
measurements, direct characterization of microbial community shifts was not performed.
The absence of 16S rRNA or metagenomic sequencing precludes confirmation of specific
taxa changes or microbial diversity improvements. Incorporating high-resolution sequenc-
ing approaches in future work will provide more mechanistic insight into how microbial
inoculants influence soil microbiomes. Lastly, environmental variability, including fluctu-
ations in temperature, moisture, and field microclimates, may have influenced nutrient
dynamics and plant performance. Controlled multi-season studies are recommended to
further validate the robustness of the observed treatment effects. Despite these limitations,
this work provides a strong foundation for future research and highlights the potential of
microbial inoculants as sustainable tools for improving soil function and crop yield.

While this study did not include microbiome sequencing, a parallel trial using the
same microbial inoculant in a cotton cropping system has generated 16S rRNA data that
confirms shifts in soil microbial community composition. These data, to be published
separately, will help contextualize the functional responses observed here and provide
further insight into the microbial mechanisms underpinning soil health improvements.

5. Conclusions

This study provides evidence that CFMI-8, a co-fermented microbial inoculant, sig-
nificantly enhances soil health, nutrient cycling, and crop productivity in a field setting.
Treated soils exhibited elevated microbial organic carbon (+224.1%) and CO; soil respira-
tion (+167.1%), indicating stimulated microbial activity that supports improved nutrient
mineralization and organic matter turnover.

These microbial-driven changes were associated with greater nutrient availability—
particularly nitrate nitrogen (+20.2%)—and improved soil fertility metrics such as cation
exchange capacity (+23.1%). The result was a measurable impact on crop performance:
corn yield increased by 28.6% and silage yield by 9.6% in the treated plots compared to the
untreated control.

Leaf micronutrient concentrations also improved, especially for Fe, Mn, B, Zn, and
Mo, suggesting enhanced uptake efficiency likely mediated by microbial activity and soil
health improvements. A statistically significant 8.1% increase in leaf phosphorus, despite
only a modest (non-significant) rise in soil phosphorus, further supports this interpretation.

Random forest modeling identified nitrate nitrogen, microbial organic carbon, and
CO;, respiration as the most influential predictors of yield, reinforcing the importance of
microbial processes in agricultural productivity.

While the study is limited by its single-season design, absence of strain-level tracking,
and lack of economic analysis, the findings underscore CFMI-8’s promise as a regenerative
input for sustainable agriculture. Future work should examine long-term effects, mechanis-
tic interactions between microbial consortia and native soil microbiomes, and economic
feasibility across diverse agronomic systems.
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