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Abstract: The extensive use of glyphosate-based herbicides has raised concerns about its impact on 

soil health and microbial communities, particularly due to the persistence of AMPA. This study 

evaluates the effects of PaleoPower, a co-fermented microbial inoculant, on soil microbial 

composition, diversity, and glyphosate degradation in a cotton field. PaleoPower, applied at 1.6 × 10⁸ 

CFU per square meter, introduced eight bacterial strains, bioactive postbiotics, and prebiotics into 

the soil. Post-harvest analyses revealed reductions in glyphosate and AMPA levels in the soil of 72% 

and 50%, respectively from baseline levels treated and untreated respectively in untreated soil. LEfSe 

analysis identified 206 taxonomic biomarkers, including increases in beneficial taxa like 

Actinobacteria and Clostridia, alongside declines in oligotrophic groups. Random Forest and 

correlation analyses highlighted key taxa like Sphingomonas and Mesorhizobium in glyphosate 

metabolism, while increased microbial diversity metrics indicated ecosystem recovery. Metabolic 

pathway analysis demonstrated upregulation of nutrient cycling, phosphate metabolism, stress 

resilience processes, increases in methane metabolism and oxidative stress response pathways. These 

results suggest PaleoPower enhanced glyphosate degradation, enriched microbial diversity, and 

improved soil health to offer a promising approach for sustainable agriculture. The small sample size 

and single-field study design highlights the need for further validation. 
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1. Introduction 

Glyphosate, a widely used broad-spectrum herbicide, has become an integral part of modern 

agriculture due to its effectiveness in controlling weeds [1]. As a patented antibiotic, concerns have 

emerged about its potential adverse impact on soil health and microbial communities [2,3]. Soil 

microorganisms are essential for ecosystem processes such as nutrient cycling, organic matter 

decomposition, and plant growth promotion [4]. Disruptions of these microbial communities can 

have significant consequences for soil fertility and overall agricultural sustainability [3,5,6]. 

Numerous studies have investigated the effects of glyphosate and its primary degradation 

product, AMPA, on soil microbial composition and health, yet the findings remain inconsistent. Some 

studies suggest that glyphosate has minimal or transient impacts on soil microbial communities [7,8]. 

These findings propose that microbial resilience, and adaptation may mitigate glyphosate’s effects 

under certain conditions. Conversely, other research reports more adverse impacts, including 

reduced microbial diversity, shifts in microbial community composition, and disruptions to key 

microbial processes such as nutrient cycling and organic matter decomposition [2,3,6,9]. The 
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variability in these outcomes is often attributed to differences in experimental conditions, such as 

application rates, soil types, environmental factors, and the duration of study. Additionally, 

variations in the analytical methods used to assess microbial communities, such as culture-dependent 

techniques versus high-throughput sequencing, may further contribute to the lack of consensus. 

These diverse findings highlight the complexity of glyphosate’s interactions with soil 

microbiomes and underscores the need for more comprehensive and standardized research. Such 

efforts are essential to accurately assess the long-term impacts of glyphosate and AMPA on soil health 

and to develop sustainable agricultural practices. 

One promising approach is the application of microbial inoculants, which are formulations 

comprised of beneficial microorganisms designed to enhance microbial diversity and activity in soils. 

These inoculants can promote the degradation of glyphosate residues, stimulate microbial growth, 

and improve soil fertility to buffer the negative effects of glyphosate and supporting agricultural 

sustainability. Advances in microbiome research have provided valuable insights into the complex 

interactions between soil microorganisms and their environment [10,11] by enabling the 

identification of key microbial taxa and processes affected by glyphosate [12,13]. 

Building on this knowledge, PaleoPower, a novel microbial inoculant, was designed using 

community metabolic modeling and artificial intelligence (AI). This inoculant consists of a 

consortium of beneficial bacterial strains selected for their complementary metabolic functions to 

degrade glyphosate and enhance soil health. Unlike most glyphosate-degrading studies that focus on 

individual strains [14,15], PaleoPower represents an innovative approach that leverages microbial 

consortia to optimize soil resilience and functionality [16]. 

In a previous study where PaleoPower was tested in corn grain and silage systems, significant 

glyphosate degradation activity and measurable improvements in soil quality and crop yield were 

demonstrated [16]. Building on these promising results, the current study investigated the impact of 

PaleoPower on soil microbiome dynamics in a cotton field with detectable levels of residual 

glyphosate. By leveraging the insights from microbiome analyses, this study aimed to uncover the 

mechanisms by which PaleoPower mitigates the impact of glyphosate and AMPA, improves soil 

health, and promotes sustainable agricultural practices. 

By integrating microbiome research, advanced computational tools, and field validation, this 

work represents a significant step forward in addressing glyphosate's challenges and developing 

innovative nonchemical solutions to enhance agricultural sustainability. 

2. Materials and Methods 

2.1. Composition and Preparation of PaleoPower 

PaleoPower is a microbial inoculant developed using a consortium of eight bacterial strains 

(Table 1), selected through an integrative approach combining genomic analysis, individual 

metabolic modeling [17], and community-level interactions. Each strain was chosen for its potential 

ability, based on genomic annotation, to promote soil health, degrade glyphosate and its primary 

breakdown product, AMPA, and function cooperatively within a guild to optimize soil ecosystem 

functionality. Individual metabolic models were generated and refined using the KBase platform 

[18], which integrates genome annotation, metabolic modeling, and community-level analysis tools. 

Detailed insights into the key metabolic pathways of each bacterial strain, including those responsible 

for glyphosate and AMPA degradation were provided. Community metabolic interactions were 

modeled using KBase’s integrated pipeline which supports flux balance analysis and interspecies 

interaction modeling [18]. Community metabolic modeling revealed synergistic interactions among 

the strains that predicted enhanced nutrient cycling, organic matter decomposition, and cooperative 

glyphosate metabolism to validate the functionality of the PaleoPower consortium as a cohesive 

guild. Predictive functional analyses further validated their synergistic roles in nutrient cycling, 

organic matter decomposition, and glyphosate remediation. 
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2.1.1. Composition 

Several of the selected bacterial strains possess key enzymes for glyphosate and AMPA 

degradation and were evaluated for their potential to improve soil quality through metabolic 

contributions and community stability. Table 1 provides an overview of the strain composition, 

including strain IDs, biosafety levels, inoculum concentrations, and primary functional role. 

Together, these strains were designed to work as a cohesive microbial community, leveraging their 

complementary metabolic activities to enhance soil health and productivity 

Table 1. Strain composition and Inoculum Size of PaleoPower. 

Stain ID Inoculum (CFU/mL) BSL* Primary Functional Role 

PBI0113 1.0 x 107 1 Organic matter breakdown 

PBI0111 1.0 x 107 1 Anti-pathogenic activity 

PBI0106 1.0 x 107 1 Soil microbiome enhancer 

PBI0122 1.0 x 107 1 Phosphorous solubilization 

PBI1120 1.0 x 107 1 Phosphorous solubilization 

LP-Onlly 1.0 x 107 1 Glyphosate degradation 

TBC0038 1.0 x 107 1 Glyphosate degradation 

PBI0149 1.0 x 107 1 Nitrogen fixation 

*BSL = The biosafety level (BSL) of each strain was determined based on the CDC’s Biosafety in Microbiological 

and Biomedical Laboratories (BMBL) guidelines, and all strains were classified as BSL-1, indicating that they 

pose minimal risk to human health and the environment. 

2.1.2. Co-Fermentation Process 

The eight bacterial strains were co-fermented in a single batch culture to facilitate interspecies 

interactions and metabolic cross-feeding. Each strain was inoculated at the specified concentrations 

(Table 1) into a standardized co-fermentation medium stabilized with 2% organic molasses (FEDCO, 

Inc., Clinton, ME, USA). The process was conducted under controlled conditions of optimal 

temperature, pH, and aeration to support growth and activity. This co-fermentation approach was 

critical for fostering the cooperative dynamics and production of postbiotics [19] necessary for the 

consortium’s functionality in soil environments. After fermentation, the microbial consortium was 

determined to have a final viable cell count of approximately 5 billion CFU/mL. Before use, the 

suspension was thoroughly mixed to ensure an even distribution of the microbial community. 

2.2. Application of PaleoPower and Soil Sampling in the Cotton Field 

PaleoPower was applied to an approximately 5-acre area of a cotton field in Tanner, Alabama, 

at a concentration of 1.6 × 10⁸ CFU per square meter of soil. The microbial inoculant was diluted with 

water to achieve a final application volume of 10 gallons per acre. The diluted product was evenly 

sprayed over the unplanted field using standard agricultural spraying equipment to ensure uniform 

distribution across the soil surface. This application method facilitated maximum contact between 

the inoculant and the soil to promote consistent microbial colonization and activity throughout the 

treated area. 

The 8.55 acres cotton field was managed under non-till traditional agricultural practices that 

included a pre-planting application of glyphosate for weed control. The soil was classified as silt loam 

or silty clay loam with a medium-textured profile commonly found in agricultural fields in the region. 

Soil sampling was conducted at two time points: baseline samples were collected in April 2023 

prior to planting and PaleoPower application, and post-harvest samples were obtained in October 

2023 following the cotton harvest. Six randomly selected locations, spaced approximately 210–225 

feet apart, were sampled to ensure representative field coverage. At each location, soil cores (6–8 

inches in depth and 6–8 inches in diameter) were collected to account for field variability. Baseline, 
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pre-treatment soils from untreated plots were retained and analyzed alongside post-harvest samples 

from treated plots to enable a comparative assessment of treated and untreated soils. 

Each soil core was homogenized and divided into two equal subsamples. One subsample was 

designated for soil microbiome analysis, including DNA extraction and sequencing to evaluate 

microbial composition and diversity. The second subsample was allocated for glyphosate residue 

analysis using chemical extraction and quantification to measure glyphosate and its degradation 

products. This dual analysis approach ensured comprehensive evaluation of the effects of 

PaleoPower on both the soil microbial community and chemical residue dynamics. 

2.3. Determination of Soil Glyphosate Levels 

The analysis of glyphosate and its metabolite AMPA was conducted at Health Research Institute 

(HRI), Fairfield, IA, USA, using their ISO 17025-accredited method TM #8, which employs liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) for detection and quantification. Sample 

preparation followed a modified protocol based on the method described by Chamkasem, Morris, 

and Harmon [20] that was originally developed for the direct determination of glyphosate, 

glufosinate, and AMPA in milk. The protocol was adapted to ensure compatibility with soil matrices 

while maintaining high sensitivity and specificity for glyphosate and AMPA. LC-MS/MS analysis 

employed a modified version of the method described by Jensen et al. [21], which was validated for 

the selective detection of glyphosate and AMPA in milk and urine. This modification enabled reliable 

quantitation of both compounds at sub-part-per-billion (ppb) levels in soil samples. 

The method's limits of detection (LOD) and quantitation (LOQ) were determined as 0.02 ppb 

and 0.05 ppb for glyphosate, and 0.013 ppb and 0.05 ppb for AMPA, respectively. Measurements 

were categorized as "trace" when the values fell between the LOD and LOQ, while values below the 

LOD were reported as "not detected." Analytical values were traceable to ISO 17025-compliant 

calibrations, with all equipment and reference materials adhering to this standard. Measurement 

uncertainties were calculated and are available upon request. The effective glyphosate level was 

calculated following the Food and Agriculture Organization (FAO) guidelines, where the total 

glyphosate residue was expressed as the sum of the weight of glyphosate and 1.5 times the weight of 

AMPA. 

2.4. Microbiome Analysis 

2.4.1. 16S rRNA Gene Metagenomic Sequencing 

Metagenomics 16S sequencing was performed by EzBiome (Gaithersburg, MD, USA). DNA 

concentration was measured using the QuantiFluor dsDNA System on a Quantus Fluorometer 

(Promega, Madison, WI, USA). The 16S rRNA Primers (V3-V4) within the ribosomal transcript were 

amplified using the primer pair containing the gene-specific sequences and Illumina (San Diego, CA, 

USA) adapter overhang nucleotide sequences. The primer sequences are: IlluminaF: 

CCTACGGGNGGCWGCAG and IlluminaR: GACTACHVGGGTATCTAATCC. 

Amplicon PCR was performed to amplify DNA templates from input samples. Each 25 µL PCR 

reaction consisted of 12.5 ng of input DNA, 12.5 µL of 2x KAPA HiFi HotStart ReadyMix (Kapa 

Biosystems, Wilmington, MA, USA), and 5 µL of 1 µM of each primer. The PCR cycling conditions 

included an initial denaturation at 95°C for 3 minutes, followed by 25 cycles of denaturation at 95°C 

for 30 seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 30 seconds, with a final 

elongation step at 72°C for 5 minutes. The PCR products were purified using Mag-Bind RxnPure Plus 

magnetic beads (Omega Biotek, Norcross, GA, USA). 

A second PCR amplification was performed to add barcodes and sequencing adapters to the 

final PCR product. Each 25 µL reaction used the same master mix conditions as previously described. 

The cycling conditions were as follows: an initial denaturation at 95°C for 3 minutes, followed by 8 

cycles of denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and extension at 72°C 

for 30 seconds, with a final elongation step at 72°C for 5 minutes. 
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The libraries were normalized using the Mag-Bind® EquiPure Library Normalization Kit 

(Omega Bio-tek, Norcross, GA, USA) and subsequently pooled. The pooled library was evaluated for 

quality using an Agilent 2200 TapeStation and sequenced with a 2 × 300 bp paired end read setting 

on the MiSeq platform (Illumina, San Diego, CA, USA). 

2.4.2. Sequence Processing and Quality Control 

Raw sequencing data were analyzed using the QIIME 2 bioinformatics pipeline (version qiime2-

amplicon-2023.9) [22], an open-source platform widely used for microbiome analysis due to its robust 

and reproducible framework. Paired-end demultiplexed reads were processed with the DADA2 

plugin [23], which integrates quality filtering, denoising, and chimera removal in a single step to 

produce high-resolution amplicon sequence variants (ASVs). This method effectively corrects 

Illumina sequencing errors, ensuring accurate differentiation of microbial taxa at the strain level [23]. 

Chimeric sequences, often generated during PCR amplification, were identified and removed 

using DADA2’s built-in algorithm, which compares sequences to a reference-free database 

constructed from the sample dataset itself. This step ensures the removal of spurious sequences while 

retaining true biological diversity [23]. 

The output of this workflow included a feature table containing the frequency of each amplicon 

sequence variant (ASV) across samples and a set of representative sequences. These outputs were 

further used in downstream analyses, for taxonomic assignment and diversity assessments. Sequence 

quality metrics, including read length distributions and per-base quality scores, were visualized 

using QIIME 2's interactive visualization tools, enabling detailed quality assurance prior to further 

analyses. 

For statistical analyses and ecological interpretation, ASVs were preferred over traditional 

operational taxonomic units (OTUs) due to their superior resolution and ability to retain fine-scale 

ecological information without arbitrary clustering thresholds [24]. This approach allowed for a more 

accurate representation of the microbial community structure and dynamics, enhancing the reliability 

of diversity metrics and taxonomic profiling. 

2.4.3. Alpha Diversity Analyses 

Alpha diversity metrics, which quantify the richness and evenness of microbial communities 

within individual samples, were calculated using the qiime diversity alpha command. The analysis 

included the Chao1 index, Shannon diversity index, Simpson index, Faith’s phylogenetic diversity 

(Faith’s PD), and Pielou’s evenness. Rarefaction was performed at a depth of 25,000 sequences per 

sample to normalize sequencing effort and ensure comparability across samples while minimizing 

biases associated with unequal sequencing depths. 

The Chao1 index was used to estimate species richness to incorporate the number of observed 

ASVs and account for rare taxa to predict undetected diversity [25]. The Shannon diversity index 

combined richness and evenness, reflecting both the number of ASVs and their relative abundances, 

with higher values indicating more diverse and evenly distributed communities [26]. The Simpson 

index was calculated to evaluate community dominance, quantifying the probability that two 

randomly selected individuals belong to the same ASV, with higher values indicating less diversity 

[27]. Faith’s phylogenetic diversity measured the evolutionary diversity of microbial communities by 

calculating the total branch length of a phylogenetic tree encompassing all ASVs within a sample and 

offering insights into the phylogenetic breadth of the microbiome [28]. Pielou’s evenness assessed the 

uniformity of ASV abundances by normalizing Shannon diversity by the logarithm of observed ASV 

richness, with values ranging from 0 to 1, where 1 represents complete evenness [29]. 

These metrics provided a comprehensive assessment of microbial richness, evenness, and 

evolutionary diversity within the samples. Statistical comparisons of alpha diversity between groups 

(e.g., baseline and treated) were performed using non-parametric Wilcoxon rank-sum tests [30], while 

group-level comparisons were evaluated using Kruskal-Wallis tests [31]. Adjustments for multiple 

comparisons were applied using the Benjamini-Hochberg false discovery rate correction to control 
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for Type I error [32]. This approach enabled a detailed evaluation of the effects of treatment on 

microbial community diversity and structure. 

2.4.4. Beta Diversity Analysis 

Beta diversity was assessed to evaluate differences in microbial community composition 

between treated and untreated soil samples. A distance matrix was calculated using Euclidean 

distance based on integrated data, which included alpha diversity metrics (e.g., Chao1 richness, 

Shannon diversity, Faith’s phylogenetic diversity, and Pielou’s evenness), glyphosate concentrations 

(Effective Glyphosate and AMPA levels), and relative abundances of microbial taxa. Principal 

Coordinates Analysis (PCoA) was then performed to visualize patterns of community composition. 

To evaluate the statistical significance of differences in microbial community composition 

between treated and untreated groups, a permutational multivariate analysis of variance 

(PERMANOVA) [33] was performed. PERMANOVA was calculated in R [34] using the adonis2 

function from the vegan package v2.7.0 [35]. 

The analysis utilized a Bray-Curtis dissimilarity matrix [36] where 999 permutations were 

conducted with the treatment group as the explanatory variable. PERMANOVA provided key 

metrics, including the proportion of variance explained (R²), the F-statistic, and the p-value, to 

quantify effect sizes and determine the significance of group differences. Principal Coordinate 

Analysis (PCoA) was employed to visualize the results, with group-specific markers and sample 

labels enhancing interpretability. Principal Coordinate Analysis (PCoA) coordinates derived from 

the beta diversity analysis were plotted using R [34] with the ggpubr package [37] for enhanced 

visualization and the vegan package [35] for distance matrix calculation and ordination. 

2.4.5. Taxonomic Analysis 

Taxonomic classification was performed using QIIME 2 (version qiime2-amplicon-2023.9) to 

assign taxonomy to amplicon sequence variants (ASVs) for each cohort. The Greengenes2 2024.09 

database was employed as the reference taxonomy. Initially, a Naive Bayes classifier was trained on 

the Greengenes2 2024.09 reference sequences [38] using the feature-classifier fit-classifier-naive-bayes 

method in QIIME 2. Subsequently, the trained classifier was applied to the representative ASV 

sequences from each cohort using the feature-classifier classify-sklearn method to assign taxonomic 

labels. 

Taxonomic profiles were generated for each cohort, including Baseline, Untreated, and Treated 

groups, by calculating the relative abundance of taxa at different taxonomic levels from Phylum to 

Genus. ASV feature tables were collapsed to the desired taxonomic level using the qiime taxa collapse 

command, and relative abundances were normalized to account for differences in sequencing depth. 

For better interpretability, low-abundance taxa (<0.1%) were grouped under "Other." Phylum- and 

Genus-level profiles were highlighted to identify microbial shifts associated with treatment effects. 

Statistical analyses were conducted to identify differentially abundant taxa across cohorts. The 

Linear Discriminant Analysis (LDA) Effect Size (LEfSe) algorithm [39] was used to detect significant 

taxonomic enrichments, with taxa displaying LDA scores >2 and p-values <0.05 considered 

statistically significant. Kruskal-Wallis tests [31] were applied to assess differences across multiple 

cohorts, with p-values adjusted using the Benjamini-Hochberg correction to control for false 

discovery rates [32]. Taxonomic profiles were further visualized and refined in R (version 3.6.3) using 

the ggplot2 and ggpubr packages [40]. These methods allowed for a comprehensive analysis of 

taxonomic distributions, enabling comparisons of microbial communities and insights into the effects 

of treatment on cohort-specific microbiomes. 

2.4.6. Functional Analysis 

Functional predictions of microbial communities were performed using PICRUSt2 

(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) [41] on the 
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Galaxy platform (https://usegalaxy.org, last accessed 12/11/2024) [42,43]. PICRUSt2 infers the 

metagenomic functional potential of microbial communities from 16S rRNA gene sequencing data 

by leveraging phylogenetic relationships and reference genome annotations. Representative 

amplicon sequence variants (ASVs) exported from QIIME 2 in BIOM format were used as input for 

PICRUSt2 analysis. ASV abundances were normalized first based on their predicted 16S rRNA gene 

copy numbers to reduce biases introduced by taxa with multiple gene copies. Functional predictions 

were then performed by mapping ASVs to closely related reference genomes and projecting the 

annotated functions of these genomes onto the observed taxa. Functional gene abundances were 

assigned to KEGG Orthology (KO) terms, enabling the reconstruction of metabolic and biosynthetic 

pathways using MetaCyc and KEGG pathway annotations [41]. Outputs included predicted 

functional abundances at both the gene and pathway levels, which were downloaded for 

downstream statistical analyses. 

To identify significant functional differences across cohorts (e.g., Baseline, Untreated, Treated), 

the Linear Discriminant Analysis Effect Size (LEfSe) algorithm [44] was applied. LEfSe identifies 

features that differ significantly between groups while estimating their biological relevance using 

effect size scores. The predicted functional profiles from PICRUSt2 were reformatted and uploaded 

to Galaxy’s LEfSe workflow. Functional features, including KEGG pathways, were grouped by 

cohort, log-transformed, and analyzed using the Kruskal-Wallis test to detect significant differences 

between groups (p < 0.05). Post-hoc pairwise Wilcoxon tests were performed to confirm specific group 

differences. Features with LDA (Linear Discriminant Analysis) scores >2 were considered biomarkers 

of functional variation. 

The functional pathways identified through LEfSe were further interpreted in the context of 

experimental conditions and ecological relevance. For example, enriched pathways associated with 

glyphosate degradation and nutrient cycling were cross-referenced with existing literature to validate 

their potential roles in improving soil health. 

2.5. Random Forest Modeling 

Random Forest modeling [45] was employed to analyze the study parameters and predict 

outcomes based on key features of the dataset. This machine learning approach is particularly 

effective for handling high-dimensional data with complex interactions between variables, as it 

builds an ensemble of decision trees to improve predictive accuracy and control overfitting. The 

dataset comprised multiple features, including soil properties, glyphosate levels, and microbial 

diversity, which were used as predictors. The target variable represented the desired outcome, such 

as glyphosate degradation or improved soil health. Data preprocessing steps included normalization, 

handling missing values, and splitting the dataset into training and testing subsets to ensure robust 

model validation. Feature importance metrics derived from the Random Forest helped identify the 

most influential predictors driving the outcomes to provide valuable insights into the mechanisms 

underlying the effectiveness of the PaleoPower soil inoculant. The final model's performance was 

evaluated using metrics like accuracy, precision, recall, and the F1-score that highlight its utility in 

guiding future optimization efforts. 

2.6. Correlation Analysis 

To evaluate the relationships between numerical variables in the dataset, a correlation analysis 

was performed that encompassed microbial diversity indices, microbial composition metrics, and 

environmental factors such as glyphosate levels. All numerical columns, including alpha diversity 

indices (Chao1, Shannon, Faith, Pielou, Simpson), environmental metrics (e.g., glyphosate and its 

metabolites), and relative abundances of microbial taxa were included in the analysis. Pearson 

correlation coefficients [46] were calculated to quantify the linear relationships between variables, 

and a correlation matrix was generated using Python's pandas library. Correlations were categorized 

based on their absolute coefficient values, with |r| > 0.7 indicating strong correlations, 0.5 ≤ |r| ≤ 0.7 

indicating moderate correlations, and |r| < 0.5 indicating weak correlations. This analysis provided 
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insights into potential associations between glyphosate exposure and microbial diversity, as well as 

co-variations among microbial taxa and diversity indices. All statistical analyses were conducted 

using Python (v3.9) [47] with the pandas [48] and NumPy [49] libraries. 

3. Results 

3.1. Co-Fermentation Process of the 8 Bacteria Strains 

The controlled co-fermentation of the eight selected bacterial strains in a standardized medium 

with 2% organic molasses demonstrated robust microbial growth and viability. Strict control of pH, 

temperature, and aeration was maintained during the co-fermentation process. The final product, as 

measured by flow cytometry, achieved a total viable cell count of 7.2 × 10⁹ cells per gram, including 

4.05 × 10⁹ spores per gram. The presence of 7.21 × 10⁷ lactic acid bacteria per gram highlights the 

contribution of Lactiplantibacillus spp., which can enhance nutrient bioavailability and suppress 

pathogens. Additionally, there were 1.19 × 10⁷ injured cells per gram and 2.79 × 10⁷ dead cells. 

Residual organic molasses was measured at approximately 1.8%. 

3.2. Soil Application and Sample Collection 

PaleoPower was applied to the study area at a concentration of 1.6 × 10⁸ CFU per square meter 

of soil. To ensure even distribution across the soil surface, the microbial inoculant was diluted in 

water and sprayed at a rate of 10 gallons per acre over unplanted land. This application method 

successfully delivered a consistent microbial load by introducing a combination of live cells and 

spores into the soil. The uniform coverage provided by the 10 gal/acre dilution process ensured 

optimal contact with the soil to facilitate microbial colonization and activity across the treated area 

Soil samples collected from a 5-acre cotton field in Tanner, Alabama provided sufficient material 

for both chemical and microbiome analyses to support successful evaluations of glyphosate residues 

and microbial community composition. 

Paired soil cores (12 total per sampling event) were collected at two critical time points: baseline 

(April 2023) prior to planting and PaleoPower application, and post-harvest six months later (October 

2023) following the cotton harvest. Similar samples were collected on untreated soil to provide a basis 

for comparison. The cores, measuring 6–8 inches in depth and diameter, captured the root zone, a 

key area for microbial activity and glyphosate residue accumulation. This systematic sampling and 

analytical approach provided high-quality data to evaluate the impact of PaleoPower treatment on 

soil microbial communities and chemical residue dynamics when compared to untreated soil from 

the same cotton field. 

3.3. Glyphosate, Aminomethylphosphonic Acid (AMPA), and Total Effective Glyphosate (TEG) Levels 

Across Cohorts 

The concentrations of glyphosate, AMPA, and TEG were measured across baseline, untreated, 

and treated cohorts. The untreated samples had residual glyphosate levels ranging from 32.3 to 48.15 

µg/kg, AMPA levels between 292.27 and 584.09 µg/kg, and TEG levels from 486.56 to 912.28 µg/kg. 

In the treated cohort, residual glyphosate concentrations ranged from 8.52 to 86.36 µg/kg, while 

AMPA levels varied from 47.21 to 287.75 µg/kg. TEG in the treated samples ranged from 104.74 to 

472.75 µg/kg. 

Baseline samples contained residual glyphosate levels ranging from 32.1 to 79.36 µg/kg, AMPA 

concentrations between 252.72 and 822.43 µg/kg, and TEG values ranging from 421.92 to 1309.86 

µg/kg. These data are summarized in Figure 1, which illustrates the distribution of glyphosate, 

AMPA, and TEG concentrations across the three cohorts. 
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Figure 1. Boxplot of Glyphosate, AMPA, and TEG Concentrations Across the Baseline, Untreated, and Treated 

Cohorts. The plot was constructed in R using the ggplot2 and ggpubr packages. Statistical comparisons between 

cohorts were performed using t-tests, with significance indicated by p-values above the brackets. Grey circles 

represent the mean concentration for each cohort. 

3.4. Sequencing Run Validation and Metrics Summary 

Positive and negative controls were included to validate the sequencing run. The EzPositive 

control (ENC3840) produced 72,602 sequences with a GC content of 52.5%, while the EzNegative 

control (ENC3841) generated only 168 sequences, with a higher GC content of 56.5%. 

Among the experimental samples, the total number of sequences ranged from 60,826 (GM-2) to 

76,984 (GM-1), with an average across all experimental samples of approximately 67,000 sequences. 

Percent duplicate reads were consistently high across samples, ranging from 84.42% (GM-6) to 

87.18% (GM-4), indicative of sufficient sequencing depth and complexity of the metagenomic data. 

The GC content of the experimental samples was relatively uniform and ranged from 56% to 57%, 

reflecting the consistency of the microbial composition across the samples. Average sequence lengths 

across all samples were approximately 247 base pairs, with minor variations between 246.1 bp (GM-

6) and 247.7 bp (M-2). These results are summarized in Table 2. 

Table 2. Summary of Metagenomic Sequencing Metrics Across Experimental and Control Samples. 

Sanple ID 
Total 

Sequences 

Percent 

Duplicates 
Percent GC 

Mean Sequence 

Length 

Positive Control1 72,602 90 52.5 247.5 

Negative Control2 168 11.9 56.5 229.4 

M-1 67,348 86 57 247 

M-2 61,228 85.35 56 247.7 

M-3 68,060 85.29 57 246.7 

M-4 68,782 85.97 57 246.5 

M-5 67,182 85.56 56.5 246.7 

M-6 65,030 85.83 56 247.5 

GM-1 76,984 87.12 57 246.7 

GM-2 60,826 85.08 57 247.2 

GM-3 76,126 85.41 57 246.4 

GM-4 69,928 87.18 57 247.1 

GM-5 69,602 86.13 57 246.9 

GM-6 66,192 84.42 57 246.1 
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1 Positive Control is a proprietary mock community of known taxonomic composition and corresponding 

relative abundances prepared by EzBiome, Inc., (Gaithersburg, MD, USA). 2 Negative Control is a “reagents 

control” and absent of microorganisms. 

3.5. Taxonomic Features of the Soil Microbiome 

LEfSe analysis identified 206 taxonomic biomarkers across 24 bacterial orders, distinguishing 

between baseline and post-harvest microbiomes. Among these, 12 taxa exhibited the highest 

Differential Abundance (DA) scores, reflecting substantial shifts in the soil microbial community after 

treatment with PaleoPower. The results are summarized in Figure 2 and Tables 3 and 4. 

 

Figure 2. Shifts in Taxonomic Biomarkers in Baseline and Post-Harvest Microbiomes After PaleoPower 

Treatment. This figure shows the relative abundance (RA) of key taxonomic biomarkers in baseline and post-

harvest soil microbiomes following PaleoPower treatment. Bar plot showing the relative abundance (RA) of key 

bacterial taxa in baseline and post-harvest soil microbiomes. The graph was created in R using ggplot2, where 

taxa names were plotted on the x-axis. relative abundance values on the y-axis, and cohorts color-coded. Error 

bars represent the standard deviation within each cohort. 

The principal positive responders, or taxa showing increased relative abundance (RA) post-

harvest, included Actinobacteria (+52.4%), Clostridia (+89.5%), Deltaproteobacteria (+28.5%), and 

Nitrospira (+22.4%). In contrast, taxa such as Chloroflexia (-102.2%), Spartobacteria (-103.7%), and 

Sphingobacteria (-66.4%) displayed notable declines in RA. These taxonomic shifts are summarized 

in Table 3, highlighting the observed restructuring of the microbial community post-treatment with 

PaleoPower. 

Table 3. Key Taxonomic Changes in the Soil Microbiome Post-Treatment with PaleoPower. 

Taxon Name Taxon Rank % Change in RA 

Actinobacteria Class 52.4% 

Clostridia Class 89.5% 

Deltaproteobacteria Class 28.50% 

Nitrospira Genus 22.4% 

Chloroflexia Class -102.2% 
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Spartobacteria Class -103.7% 

Sphingobacteria Class -66.4% 

Table 4 highlights the key positive taxa identified post-treatment with PaleoPower, based on 

their LDA effect size and statistical significance. Taxa such as Sphingomonas, Ramlibacter, and 

Streptomyces exhibited significant increases in relative abundance compared to untreated soils, 

suggesting enhanced functional contributions to nutrient cycling, pollutant degradation, and soil 

stability. The table also underscores the diversity of positively responding taxa across various 

taxonomic ranks, reflecting a broader microbial recovery and ecological balance promoted by the 

treatment. 

Table 4. Key Positive Taxa Post-Treatment. 

Taxon Name 
Taxon 

Rank 

LDA 

Effect 

Size 

p-value 

Relative 

Abundance 

(Utreated) 

Relative 

Abundance 

(Treated) 

Pseudomonas Genus 3.91 0.00395 1.29 2.86 

Ramlibacter Genus 2.76 0.01631 0.07 0.19 

Streptomyces Genus 3.35 0.00649 0.26 0.65 

Nitrospira Genus 3.30 0.01631 0.64 1.03 

Nocardioides Genus 2.61 0.02497 0.04 0.11 

Frankia Genus 2.40 0.01041 0.02 0.09 

Vicinamibacter Genus 2.35 0.02497 0.03 0.13 

Solirubrobacter Genus 2.51 0.01041 0.03 0.10 

Myxococcus Genus 2.77 0.03737 0.16 0.04 

Azoarcus Genus 2.36 0.01027 0.01 0.05 

3.6. Alpha Diversity Metrics Across Baseline, Treated, and Untreated Cohorts 

Alpha diversity metrics, including Chao1, Faith’s phylogenetic diversity, Pielou’s evenness, 

Shannon diversity, and Simpson index, were measured across baseline, treated, and untreated 

cohorts at different sampling times. In the baseline cohort (pre-harvest), Chao1 values ranged from 

1,017 to 1,203, Faith’s phylogenetic diversity ranged from 96.95 to 104.96, Pielou’s evenness ranged 

from 0.879 to 0.901, Shannon diversity ranged from 8.79 to 9.22, and Simpson index values ranged 

from 0.995 to 0.997. For the treated cohort (post-harvest), Chao1 values ranged from 1,373 to 1,542, 

Faith’s phylogenetic diversity ranged from 116.85 to 128.98, Pielou’s evenness ranged from 0.902 to 

0.913, Shannon diversity ranged from 9.52 to 9.57, and Simpson index values ranged from 0.998 to 

0.999. In the untreated cohort (post-harvest), Chao1 values ranged from 1,187 to 1,337, Faith’s 

phylogenetic diversity ranged from 108.79 to 117.29, Pielou’s evenness ranged from 0.909 to 0.915, 

Shannon diversity ranged from 9.29 to 9.44, and Simpson index values ranged from 0.997 to 0.998. 

The distribution of these metrics across cohorts is shown in Figure 3. 
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Figure 3. Boxplots of alpha diversity metrics (Chao1, Faith’s Phylogenetic Diversity, Pielou’s Evenness, and 

Shannon Diversity) for baseline (pre-harvest), treated (post-harvest), and untreated (post-harvest) cohorts. The 

plots were generated using R with the ggplot2 and ggpubr packages. Statistical comparisons between cohorts 

were performed using t-tests, with p-values displayed above the comparisons. Grey circles represent the mean 

values for each cohort. 

3.7. Beta Diversity Analysis of Glyphosate Levels and Treatment Effects on Microbial Community 

Composition 

PERMANOVA analysis (p = 0.001), conducted using the adonis2 function in R, revealed 

significant differences in microbial community composition between untreated and PaleoPower-

treated glyphosate-contaminated soils. These differences are illustrated in the Principal Coordinates 

Analysis (PCoA) plot (Figure 4), which demonstrates distinct clustering of microbial communities 

based on glyphosate exposure and treatment. Untreated glyphosate-contaminated soils displayed a 

tightly clustered grouping, indicative of a homogenized microbial community dominated by 

glyphosate-resistant taxa. In contrast, PaleoPower-treated soils exhibited a more dispersed clustering 

pattern, suggesting increased microbial heterogeneity and a recovery of community complexity. 
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Figure 4. Principal Coordinates Analysis (PCoA) plot based on Bray-Curtis dissimilarity [36] showing the beta 

diversity of microbial communities across untreated (M-1 to M-6, orange triangles) and treated (GM-1 to GM-6, 

green circles) soil samples. The analysis was conducted using the Bray-Curtis distance matrix, which quantifies 

compositional dissimilarities between microbial communities. Statistical significance was assessed using 

PERMANOVA (Permutational Multivariate Analysis of Variance), yielding an F-statistic of 11.88, R² = 0.54, and 

a p-value of 0.008. Axis 1 and Axis 2 explain 29.14% and 25.42% of the total variance, respectively. Clustering 

patterns indicate distinct microbial community structures between untreated glyphosate-contaminated soils and 

glyphosate-contaminated soils treated with PaleoPower, with tighter clustering observed for untreated samples, 

suggesting greater community homogenization. The figure was generated in R using the vegan package for beta 

diversity analysis and ggplot2 for visualization. 

3.8. Random Forest Analysis of Microbial Taxa and Diversity Indices in Glyphosate Dynamics 

Random Forest modeling was employed to evaluate the relationships between microbial taxa, 

diversity indices, and glyphosate degradation metrics, including glyphosate, AMPA, and TEG. 

Several microbial taxa emerged as significant predictors of glyphosate dynamics. Sphingomonas 

showed strong positive correlations with glyphosate (r = 0.85), AMPA (r = 0.83), and TEG (r = 0.86). 

Similarly, Mesorhizobium exhibited robust positive correlations with glyphosate (r = 0.88), indicating 

its association with glyphosate metabolism or ecological adaptation to the herbicide. In contrast, 

Nitrospira displayed strong negative correlations with glyphosate (r = -0.88), AMPA (r = -0.87), and 

TEG (r = -0.66), suggesting sensitivity to glyphosate or indirect ecological relationships associated 

with its degradation. Other taxa, such as Dokdonella and Arenimonas, showed moderate positive 

correlations with AMPA and TEG. 

Diversity indices were also assessed for their predictive power in relation to glyphosate metrics. 

Metrics such as Faith’s Phylogenetic Diversity (Faith’s PD), and Chao1 were moderately positively 

correlated with glyphosate levels. Faith’s PD, which incorporates evolutionary relationships among 

taxa, provided unique insights into the disproportionate impact of glyphosate on phylogenetically 

distinct microbial groups. In contrast, Pielou’s Evenness exhibited weak correlations with glyphosate 
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and AMPA, suggesting that these compounds primarily affect richness and phylogenetic diversity 

rather than community evenness. 

The retraining of the Random Forest model improved its predictive performance for glyphosate 

levels, with the R² increasing from -0.055 to 0.24 and a reduction in mean squared error (MSE). 

Predictions for AMPA (R² = 0.13) and TEG (R² = 0.07) were less accurate, highlighting the need for 

further optimization of the model. Feature importance metrics confirmed the significant roles of 

Sphingomonas and Mesorhizobium as key contributors to glyphosate dynamics. 

3.9. Correlation Analysis 

Correlation analysis was performed to identify relationships between microbial taxa, diversity 

indices, and glyphosate degradation metrics, including glyphosate, AMPA, and TEG. Mesorhizobium 

demonstrated strong positive correlation with glyphosate (r = 0.88, respectively), indicating their 

association with glyphosate dynamics. In contrast, Nitrospira exhibited a strong negative correlation 

with AMPA (r = -0.87) and glyphosate (r = -0.88). Additional taxa, such as PAC000016_f_uc, showed 

strong positive correlations with AMPA (r = 0.86). 

Alpha diversity indices demonstrated distinct patterns of correlation with glyphosate and its 

metabolites. Faith’s Phylogenetic Diversity (Faith’s PD) showed moderate positive correlations with 

AMPA (r = 0.39) and Effective Glyphosate (r = 0.40), highlighting its association with phylogenetic 

diversity. Chao1 and Observed Features exhibited weaker correlations with glyphosate-related 

metrics, while Pielou’s Evenness displayed minimal correlations with both glyphosate and AMPA, 

suggesting limited influence on species evenness. 

The statistical robustness of these results was evaluated through Pearson [46] and Spearman 

[50]correlation tests, with significant correlations (p < 0.05) observed for key taxa and metrics. 

Notably, unclassified taxa such as Demequinaceae_uc showed strong associations with AMPA and 

TEG (p < 0.001), indicating their potential involvement in downstream degradation processes. 

3.10. Metabolic and Regulatory Adaptations Post-Harvest 

The results presented in Table 5 demonstrate significant post-harvest changes in key metabolic 

pathways and processes, categorized into Fundamental Processes, Phosphate Metabolism, and 

Homeostasis and Osmotic Stress. Among the fundamental processes, pathways such as Starch 

Sucrose Metabolism and Fatty Acid Biosynthesis showed modest increases of 2.3% and 2.6%, 

respectively, indicating enhanced carbohydrate processing and lipid synthesis. Remarkable changes 

were observed in the Oligogalacturonide Transport System Substrate-Binding Protein, which 

increased by 66.7%, and indicated improved oligosaccharide transport. N-Glycan Biosynthesis 

(High-Mannose Type) and Ribosome Biogenesis GTPase/Thiamine Phosphate Phosphatase increased 

by 9.1% and 7.6%, respectively to highlight improvements in glycosylation processes and protein 

synthesis. 

In the Phosphate Metabolism category, substantial upregulation was observed, particularly in 

Methane Metabolism, which showed an astonishing 7150.9% increase, indicating a major metabolic 

shift in methane-related pathways. Similarly, pathways involving 1L-Myo-Inositol 1-Phosphate 

Cytidylyltransferase and Multiple Inositol-Polyphosphate Phosphatase increased by 65.7%, 

suggesting enhanced inositol phosphate metabolism. The 78.3% increase in 3,4-Dideoxy-4-Amino-D-

Arabino-Heptulosonate 7-Phosphate Synthase indicates increased activity in secondary metabolic 

pathways, while the PhoR-PhoB Two-Component Regulatory System and Phosphate 

Acetyltransferase-Acetate Kinase Pathway showed increases of 9.6% and 7.8%, respectively, to 

indicate improved responses to phosphate availability and enhanced acetate metabolism. 

The pathways associated with Homeostasis and Osmotic Stress also exhibited considerable 

changes. Sulfiredoxin increased by 225% and indicates a strong oxidative stress response, while the 

Manganese/Iron Transport System showed a modest 4.2% increase to indicate improved ion 

transport and homeostasis. Enhanced osmotic stress resistance was observed with an 18.1% increase 

in Ectoine Hydroxylase, while Anaerobic Nitric Oxide Reductase Transcription Regulator increased 
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by 23.2% to demonstrate improved regulatory mechanisms under anaerobic conditions. Overall, 

these findings underscore the significant metabolic and regulatory adaptations of the soil microbiome 

that occur with reductions in residual glyphosate post-harvest, particularly in pathways associated 

with stress responses, phosphate metabolism, and fundamental biosynthetic processes. 

Table 5. Post-Harvest Changes in Key Metabolic Pathways and Processes. 

Definition 
Pathwa

y 
p-value 

Relative 

Abundance 
% Change 

Post 

Harvest 
Untreate

d 
Treated 

FUNDAMENTAL PROCESSES 

Starch Sucrose Metabolism K00500 0.02497 0.47470 0.48548 2.3% 

Fatty acid biosynthesis K00061 0.03737 0.44397 0.45540 2.6% 

Oligogalacturonide transport system 

substrate-binding protein 
K02010 0.02497 0.00006 0.00010 66.7% 

N-glycan biosynthesis, high-mannose 

type 
K00510 0.03737 0.01500 0.01637 9.1% 

Ribosome biogenesis GTPase / 

thiamine phosphate phosphatase 
K00730 0.03737 0.03702 0.04020 7.6% 

POSPHATE METABOLISM 

PhoR-PhoB (phosphate starvation 

response) two-component regulatory 

system 

K02020 0.02497 0.09049 0.09917 9.6% 

Methane metabolism K00680 0.01631 0.00823 0.59675 7150.9% 

1L-myo-inositol 1-phosphate 

cytidylyltransferase 
K00562 0.01041 0.00035 0.00058 65.7% 

multiple inositol-polyphosphate 

phosphatase / 2,3-bisphosphoglycerate 

3-phosphatase 

K00010 0.01041 0.00035 0.00058 65.7% 

3,4-Dideoxy-4-amino-D-arabino-

heptulosonate 7-phosphate synthase 
K01051 0.00395 0.00023 0.00041 78.3% 

Phosphate acetyltransferase-acetate 

kinase pathway, acetyl-CoA => acetate 
K00710 0.03737 0.04483 0.04833 7.8% 

HOMEOSTASIS AND OSMOTIC STRESS 

Sulfiredoxin K12260 0.00395 0.00004 0.00013 225.0% 

Manganese/iron transport system M00243 0.02497 0.02202 0.02295 4.2% 

Ectoine hydroxylase K10674 0.00649 0.00204 0.00241 18.1% 

Anaerobic nitric oxide reductase 

transcription regulator 
K05132 0.02497 0.00895 0.01103 23.2% 

4. Discussion 

4.1. Multi-Functional Benefits of Co-Fermented Microbial Inoculant 

The co-fermentation of eight bacterial strains in a standardized medium with 2% organic 

molasses resulted in a high-density microbial product with significant potential for sustainable 

agricultural applications. Careful regulation of pH, temperature, and aeration ensured uniform 

microbial growth and metabolic activity to achieve a total viable cell count of 7.2 × 10⁹ cells per gram, 

including 4.05 × 10⁹ spores per gram. The presence of spores enhances the product's shelf-life, 

stability, and resistance to environmental stresses during field applications. 

Among the viable microbes, the presence of lactic acid bacteria is noteworthy. These bacteria 

contribute to enhanced nutrient bioavailability, organic matter decomposition, and suppression of 
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pathogens through the production of antimicrobial compounds. This makes the inoculant a valuable 

tool for promoting a healthy soil microbiome. 

Additionally, the product contained 1.19 × 10⁷ injured cells per gram and 2.79 × 10⁷ dead cells 

per gram, which serve as nutrient sources for postbiotics and metabiotics. These bioactive 

components, including peptides, enzymes, and short-chain fatty acids, have been shown to positively 

influence soil and plant health by modulating microbial communities, enhancing nutrient cycling, 

and improving plant resilience [51,52]. The presence of residual organic molasses amplifies the 

product's functionality as a prebiotic [51] to provide substrates for beneficial microbes to stimulate 

microbial activity and ecosystem stability [53,54]. 

The combination of probiotics, postbiotics, and prebiotics underscores the multi-functionality of 

this microbial product. Its high cell density and bioactive byproducts provide a powerful solution for 

addressing soil degradation, improving nutrient cycling, and promoting sustainable agriculture. 

Moreover, the robust microbial concentration ensures that effective doses can be delivered across 

large-scale field applications, enhancing the practicality of its use in diverse agricultural systems. This 

aligns with the growing demand for innovative, eco-friendly solutions that enhance soil health and 

productivity while reducing reliance on chemical inputs [55,56]. 

4.2. Impact of PaleoPower Application on Indigenous Soil Microbial Communities and Glyphosate Residue 

Dynamics. 

The application of PaleoPower to half of the study area at a concentration of 1.6 × 10⁸ CFU per 

square meter demonstrated an effective strategy for delivering a microbial inoculant to the soil. By 

diluting the product in water and spraying it at a rate of 10 gallons per acre over unplanted land, the 

application ensured uniform coverage and consistent microbial load distribution. This process 

facilitated optimal contact with the soil, allowing for successful colonization by both live cells and 

spores introduced through the inoculant. Uniform dispersal is critical with soil treatments to 

maximize microbial activity and interactions across the treated area and support basic ecosystem 

processes such as nutrient cycling, organic matter decomposition, and microbial competition with 

native taxa. 

The systematic sampling of treated and untreated soil at multiple time points further enhanced 

the robustness of the study. Soil cores collected from the cotton field in Tanner, Alabama provided 

sufficient material for suitable analyses of both microbiome structure and function, and glyphosate 

residue dynamics. The soil, classified as silt loam or clay loam, is typical of agricultural systems and 

provides a medium-textured environment conducive to microbial colonization and activity [57,58]. 

Sampling occurred at two time points—baseline (April 2023) and post-harvest six months later 

(October 2023)—encompassing the critical root zone where microbial processes and glyphosate 

residues are concentrated [13,59]. By targeting this depth (6–8 inches), the study was able to assess 

microbial responses to the PaleoPower treatment and quantify the persistence and degradation of 

glyphosate over the growing season. 

The paired core strategy, with 12 cores collected per sampling event, accounted for field 

variability and provided sufficient replicates to support statistical analyses. This methodological 

rigor allowed for the identification of significant shifts in soil microbial communities and chemical 

residues post-treatment. Notably, the high-quality microbiome data enabled the evaluation of 

taxonomic and functional changes in soil microbial populations to include taxa associated with 

nutrient cycling, glyphosate degradation, and soil health improvements. Additionally, the chemical 

residue analysis provided insights into the fate of glyphosate and its degradation products under 

field conditions, particularly in relation to microbial activity stimulated by PaleoPower. 

4.3. Impact of PaleoPower on Glyphosate Degradation and AMPA Reduction 

The application of PaleoPower demonstrated a significant impact on glyphosate degradation 

and its recalcitrant byproduct, AMPA, in treated soils. Baseline samples, collected prior to treatment 

contained elevated levels of glyphosate (32.1–79.36 µg/kg), AMPA (252.72–822.43 µg/kg), and TEG 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 January 2025 doi:10.20944/preprints202501.0419.v1

https://doi.org/10.20944/preprints202501.0419.v1


 17 of 33 

 

(421.92–1309.86 µg/kg) to document the persistence of glyphosate residues and their degradation 

products due to prior herbicide applications. 

In untreated soils, glyphosate concentrations remained stable (32.3–48.15 µg/kg), while AMPA 

levels (292.27–584.09 µg/kg) were especially high. This observation highlights the activity of 

autochthonous (native) bacteria that naturally possess enzymatic pathways for initial glyphosate 

breakdown [60]; however, the persistence of AMPA in untreated soils underscores its recalcitrant 

nature and the slower rate of its further degradation in the absence of targeted interventions. 

In contrast, soils treated with PaleoPower showed a more pronounced reduction in both 

glyphosate and AMPA levels. Glyphosate concentrations ranged from 8.52 to 86.36 µg/kg, while 

AMPA levels declined significantly to 47.21–287.75 µg/kg. The TEG in treated soils was reduced to 

104.74–472.75 µg/kg, indicating enhanced microbial degradation activity. These reductions highlight 

PaleoPower's selective ability to increase the enzymatic capacity of the soil microbiome to accelerate 

glyphosate breakdown and facilitate the degradation of its recalcitrant byproduct, AMPA [61,62]. 

The observed results suggest a dual mechanism driving these improvements in treated soils. 

First, PaleoPower directly introduced a combination of live cells and spores that enhanced microbial 

diversity with organisms capable of producing key enzymes such as C-P lyases and oxidoreductases 

required for glyphosate and AMPA degradation [7,63]. Second, the inoculant likely stimulated the 

growth and activity of native glyphosate-tolerant and degrading bacteria to amplify the soil's natural 

enzymatic repertoire and improve functional diversity [64,65]. 

While autochthonous bacteria in untreated soils demonstrated a baseline capacity to degrade 

glyphosate to AMPA, the accelerated breakdown and reduced AMPA levels in treated soils 

underscore the additional benefit of the microbial inoculant. By enhancing the existing microbial 

community, PaleoPower provided a targeted and efficient approach to remediating glyphosate-

contaminated soils, improving soil health, and facilitating recovery of the soil ecosystem. 

4.4. Impact of PaleoPower on Soil Microbial Composition 

The application of PaleoPower led to significant shifts in soil microbial composition, as 

evidenced by LEfSe analysis, which identified 206 taxonomic biomarkers across 24 bacterial orders. 

Among these, 12 taxa exhibited the highest Differential Abundance (DA) scores that highlight 

substantial changes in their relative abundance (RA) post-treatment (Figure 2, Tables 3 and 4). These 

changes reflect the selective impact of PaleoPower in enhancing specific bacterial groups while 

reshaping the broader microbial community structure, consistent with reported findings on other 

microbial inoculants in agricultural systems [66–68]. 

Positive responders, which demonstrated significant increases in relative abundance post-

harvest, included key taxa such as Actinobacteria (+52.4%), Clostridia (+89.5%), Deltaproteobacteria 

(+28.5%), and Nitrospira (+22.4%) (Table 3). Actinobacteria, known for their role in organic matter decomposition, 

antibiotic production, and carbon cycling, likely contributed to improved nutrient turnover and enhanced soil fertility. The 

sharp increase in Clostridia, a group involved in anaerobic organic matter breakdown and carbon 

cycling is consistent with its capacity to improve soil structure and nutrient bioavailability [69,70]. 

The rise of Deltaproteobacteria further supports enhanced nitrogen cycling processes, particularly 

denitrification pathways; while the increase in Nitrospira, a key nitrite-oxidizing genus, indicates 

increased nitrification activity. affecting plant nitrogen availability [71,72]. 

In contrast, taxa such as Chloroflexia (-102.2%), Spartobacteria (-103.7%), and Sphingobacteria (-

66.4%) exhibited notable reductions in relative abundance. These declines suggest a restructuring of 

the microbial community post-treatment that is likely due to competition with introduced and 

promoted taxa. Spartobacteria and Sphingobacteria, often associated with oligotrophic 

environments, may have been displaced by microbial groups better suited to the enriched nutrient 

and biological activity conditions facilitated by PaleoPower [73–75]. 

Table 4 highlights the functional significance of key positive taxa that responded to PaleoPower 

treatment. For instance, Sphingomonas (LDA = 3.91), which increased significantly (2.86 treated vs. 

1.29 untreated), is known for its ability to degrade environmental pollutants, including glyphosate 
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and its recalcitrant byproducts such as AMPA, contributes to soil remediation [76,77]. Similarly, 

increases in Ramlibacter, Streptomyces, and Nocardioides are associated with enhanced organic matter 

decomposition, nitrogen fixation, and soil stabilization—functions crucial for long-term soil health 

and productivity [78–81]. Notably, the rise in Frankia, a genus of nitrogen-fixing bacteria [82], and 

Nitrospira highlights the improvement in nitrogen cycling processes within the treated soils [71,83]. 

Other taxa, including Myxococcus support improved ecosystem functionality [66,85] through their 

roles in predatory behavior, organic matter turnover, and pollutant degradation [84]. 

Overall, these results indicate that PaleoPower successfully enhanced the growth and activity of 

both introduced strains and autochthonous, glyphosate-tolerant microbial groups, thereby 

expanding the enzymatic repertoire of treated soils. This dual action—via inoculation and 

stimulation of native functional microbes—promotes nutrient cycling, organic matter decomposition, 

and pollutant degradation to underscore the selective impact of PaleoPower in restoring microbial 

balance. These findings are consistent with prior studies that demonstrate the role of microbial 

inoculants in improving soil health and ecosystem stability [86,87]. 

4.5. Alpha Diversity Analysis 

The integration of glyphosate and TEG levels with alpha diversity metrics provides insights into 

the relationship between microbial diversity and the remediation of glyphosate in treated and 

untreated cohorts compared to the baseline. The data reveal a clear association between glyphosate 

levels and alpha diversity metrics where the PaleoPower treatment shows notable improvements in 

both microbial diversity and glyphosate degradation. 

4.5.1. Correlation Between Glyphosate and Alpha Diversity Metrics 

At baseline, glyphosate levels ranged from 32.1 to 79.36 ppm, AMPA from 252.72 to 822.43 ppm, 

and TEG from 421.92 to 1,309.86 ppm. The alpha diversity metrics during this period showed 

moderate values for richness (Chao1: 1,017–1,221), diversity (Shannon: 8.78–9.38), and phylogenetic 

diversity (Faith’s PD: 96.95–108.79). These results suggest that higher glyphosate levels at baseline 

were associated with reduced microbial richness and diversity, consistent with reports that 

glyphosate can negatively affect microbial communities by inhibiting the shikimate pathway in 

certain microorganisms [63,77]. 

In the untreated cohort, post-harvest glyphosate levels remained relatively high, with 

glyphosate ranging from 32.3 to 48.15 ppm and TEG from 486.56 to 912.28 ppm. The alpha diversity 

metrics in this cohort improved slightly compared to the baseline (Chao1: 1,199–1,228; Shannon: 9.21–

9.36; Faith’s PD: 104.21–113.44). These modest increases likely reflect natural microbial recovery 

processes following harvest but were insufficient to significantly reduce glyphosate levels. The 

persistence of high AMPA and TEG levels indicates that there is limited microbial degradation 

capacity without treatment. 

In contrast, the treated cohort exhibited significantly lower glyphosate levels (8.52–86.36 ppm) 

and corresponding reductions in AMPA (47.21–287.75 ppm) and TEG (104.74–472.75 ppm). These 

reductions were accompanied by substantial increases in alpha diversity metrics. For example, Chao1 

values ranged from 1,187 to 1,542, Shannon diversity from 9.29 to 9.57, and Faith’s PD from 109.45 to 

128.98. The higher richness, evenness, and phylogenetic diversity in the treated cohort suggest that 

the microbial inoculant in PaleoPower enhanced the community’s ability to degrade glyphosate and 

its byproducts through functional redundancy and the increased abundance of glyphosate-tolerant 

or degrading microbes [88,89]. 

Glyphosate targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and 3,4-Dideoxy-4-

amino-d-arabino-heptulosonate 7-phosphate synthase (Table 5) which are pivotal enzymes in the 

shikimate pathway. This pathway is responsible for the biosynthesis of aromatic amino acids, 

including phenylalanine, tyrosine, and tryptophan, as well as secondary metabolites like indole-3-

acetic acid, lignin, alkaloids, and flavonoids that are essential for the growth and survival of plants, 

fungi, and many bacteria [12,90,91]. By competitively binding to EPSPS, glyphosate inhibits its 
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activity and prevents the formation of 5-enolpyruvylshikimate-3-phosphate (EPSP), a precursor for 

aromatic amino acids. This blockage results in the accumulation of upstream metabolites, such as 

shikimate, while downstream products become depleted to ultimately disrupt critical cellular 

functions that lead to cell death in susceptible organisms [92,93]. 

The shikimate pathway is absent in animals, making glyphosate selective for plants and 

microorganisms that possess this biochemical pathway. This selectivity has far-reaching 

consequences since many soil microbial communities and animal GI tract microbes rely on the 

shikimate pathway for survival and function. Soil microorganisms that are unable to withstand 

glyphosate's inhibitory effects are particularly vulnerable, which leads to shifts in community 

composition. This selective pressure often favors glyphosate-resistant microbes which may carry 

mutations in the EPSPS gene or possess alternative metabolic pathways that bypass the shikimate 

pathway altogether [94]. Such adaptations allow resistant taxa to dominate glyphosate-contaminated 

soils, while susceptible groups, often involved in key ecological processes like organic matter 

decomposition and nutrient cycling, are suppressed [59,95]. This disruption not only impacts 

microbial diversity but also undermines the overall functionality and health of soil ecosystems. 

Furthermore, glyphosate's influence extends beyond its direct inhibition of EPSPS. By altering 

the microbial community composition, glyphosate indirectly affects soil biogeochemical cycles and 

ecosystem services. For example, reduced production of aromatic amino acids in susceptible 

microbial taxa can impair the synthesis of enzymes and metabolites required for processes like lignin 

degradation, phosphate solubilization, and nitrogen fixation. Over time, these disruptions can lead 

to the depletion of soil organic matter and reduced nutrient availability that further compound the 

negative effects of glyphosate on soil health and productivity [2,9,64]. 

Glyphosate’s targeting of the shikimate pathway leads to a reduction in microbial diversity so 

that susceptible taxa are suppressed while resistant taxa become dominant. This imbalance can result 

in the homogenization of soil microbial communities, characterized by reduced richness and 

evenness [96]. Sensitive groups that are responsible for critical ecological functions such as nutrient 

cycling, organic matter decomposition, and pathogen suppression, may decline or disappear entirely. 

Conversely, glyphosate-resistant taxa, such as certain Pseudomonas species, can proliferate, further to 

narrow the range of ecological functions performed by the soil microbiome [97]. 

The resilience and recovery of microbial diversity following glyphosate exposure hinge on the 

restoration of functional diversity, which involves reestablishing a balance between microbial groups 

with complementary ecological roles. This recovery is often slow and incomplete without external 

interventions. Biostimulants and microbial inoculants, such as consortia of beneficial bacteria or 

fungi, can help mitigate glyphosate’s effects by reintroducing key taxa and enhancing microbial 

functionality [69,98]. These treatments promote the enrichment of beneficial microbes such as 

Burkholderia and Gemmatimonadetes which are associated with nutrient solubilization and organic 

matter turnover, thereby counteracting the disruptions caused by glyphosate to foster a more diverse 

and resilient microbial community [99]. 

Ultimately, addressing glyphosate's pervasive effects requires not only reducing its application 

but also degrading accumulated residual soil glyphosate and implementing strategies that actively 

rebuild microbial diversity and restore the functionality of soil ecosystems. 

4.5.2. Treatment Effects on Microbial Diversity and Glyphosate Remediation 

The treated cohort demonstrated a stronger inverse relationship between glyphosate levels and 

alpha diversity metrics compared to the untreated cohort. For example, in the treated group, 

glyphosate levels as low as 8.52 ppm were associated with the highest Shannon diversity (9.57) and 

Faith’s PD (128.98). This finding highlights the efficacy of the treatment in both reducing glyphosate 

residues and promoting microbial diversity. Previous studies have shown that treatments involving 

microbial soil inoculants can enhance glyphosate degradation by introducing or enriching 

glyphosate-degrading bacteria such as select members of the genera Pseudomonas and Bacillus [63,77]. 
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In contrast, the untreated cohort displayed weaker correlations between glyphosate levels and 

diversity metrics. This suggests that the native microbial community lacked the capacity to effectively 

degrade glyphosate and is consistent with studies showing that high glyphosate concentrations can 

suppress microbial diversity and favor glyphosate-resistant taxa at the expense of overall community 

function [12,59,100]. 

4.5.3. Implications for Soil Health 

The observed increases in microbial richness and diversity in the treated cohort are critical for 

restoring soil health and ecosystem functionality. High microbial diversity is associated with 

enhanced resilience, nutrient cycling, and the breakdown of xenobiotics like glyphosate [101,102]. 

The strong inverse relationship between glyphosate levels and alpha diversity metrics in the treated 

cohort further underscores the potential of microbial inoculants to mitigate the negative effects of 

glyphosate on soil microbial communities [103]. 

4.6. Beta Diversity Analysis 

The beta diversity analysis of microbial community composition revealed significant differences 

between untreated glyphosate-contaminated soils and those treated with PaleoPower, as indicated 

by PERMANOVA results (p = 0.008, F-statistic = 11.88, R² = 0.54). These differences, visualized 

through Principal Coordinates Analysis (PCoA) based on Bray-Curtis dissimilarity (Figure 4), 

underscore the impact of glyphosate contamination on microbial community structure and the ability 

of PaleoPower treatment to mitigate this disruption and restore microbial diversity and functionality 

[104]. 

The PERMANOVA analysis, grounded in Bray-Curtis dissimilarity, demonstrated that variance 

in microbial composition was strongly associated with both glyphosate levels and the application of 

PaleoPower (p = 0.008). This variance is consistent with the clustering patterns observed in Figure 3, 

which highlight significant beta diversity differences between groups. Untreated glyphosate-

contaminated soils were dominated by resistant taxa, such as members of the Pseudomonadota (e.g., 

Pseudomonas), while sensitive taxa, including Acidobacteriota and Actinomycetota, were markedly 

underrepresented in the microbiome. 

In contrast, soils treated with PaleoPower exhibited a recovery of alpha diversity metrics, with 

increased richness and evenness. This recovery was accompanied by the enrichment of beneficial 

taxa, such as Burkholderia and members of Gemmatimonadetes which are associated with critical 

ecological functions like phosphate solubilization and organic matter decomposition. The distinct 

clustering in the PCoA plot reflects the divergence between untreated and treated glyphosate-

contaminated soils to facilitate the restoration of microbial diversity and functionality in response to 

PaleoPower treatment. 

4.6.1. Microbial Community Homogenization in Glyphosate-Contaminated Soils 

Glyphosate-contaminated soils formed a tightly clustered group in the PCoA plot, indicative of 

a homogenized microbial community. This clustering reflects the dominance of glyphosate-resistant 

taxa such as Pseudomonadota (e.g., Pseudomonas) and the underrepresentation of sensitive taxa such as 

Acidobacteria and Actinobacteria. Homogenization of microbial communities in glyphosate-

contaminated soils is consistent with previous studies showing that glyphosate selectively 

suppresses sensitive microbial populations while favoring resistant taxa capable of metabolizing 

glyphosate as a carbon or phosphorus source [2,105]. This reduction in microbial diversity and 

complexity compromises key soil ecosystem functions such as nutrient cycling, organic matter 

decomposition, and pathogen suppression. 

The reduction in microbial heterogeneity in untreated soils aligns with previous studies showing 

that glyphosate disrupts microbial communities to favor a narrow set of resistant taxa while reducing 

overall diversity and resilience [106]. This community homogenization can exacerbate soil health 
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degradation in contrast to diverse microbial assemblages that are better equipped to perform critical 

ecological functions and buffer against environmental disturbances [101]. 

4.6.2. Recovery of Microbial Diversity and Functionality in Treated Soils 

In contrast, glyphosate-contaminated soils treated with PaleoPower exhibited a more 

heterogeneous microbial community as reflected in the dispersed clustering observed in PCoA 

analyses. This pattern is consistent with the recovery of microbial complexity and diversity reported 

in other studies involving soil amendments or biostimulants [107–109]. The enrichment of beneficial 

taxa such as Burkholderia and Gemmatimonadetes indicates that PaleoPower treatment facilitated 

the re-establishment of functionally significant microorganisms. Burkholderia species are widely 

recognized for their role in phosphate solubilization [110,111], while Gemmatimonadetes contribute 

to the decomposition of organic matter and nutrient cycling [112,113]. 

This recovery in microbial diversity aligns with findings by Li et al. (2024) [114] who reported 

that soil microbial inoculation enhanced both alpha diversity and functional resilience in agricultural 

soils degraded by chemical stressors. Additionally, the reduction of glyphosate residues in treated 

soils (Section 3.4) suggests that inoculation with PaleoPower not only promoted microbial growth 

but also enhanced the activity of autochthonous glyphosate-tolerant and degrading bacteria to restor 

ecological balance. 

4.6.3. Functional and Ecological Implications 

The significant beta diversity differences (p = 0.008) observed between untreated and treated 

soils highlight the dual impact of glyphosate exposure: suppression of sensitive taxa (e.g., 

Methylobacterium) [115] and the dominance of glyphosate-resistant groups such as Pseudomonas, 

which are known for their biodegradation capacity [116,117]. However, prolonged dominance of 

these resistant microbes can limit overall community functionality and stability [118,119]. In contrast, 

the PaleoPower treated soils had not only increased microbial diversity but also the recovery of taxa 

critical for ecological functions such as organic matter turnover, nutrient cycling, and pathogen 

suppression. 

The observed recovery is consistent with prior studies on microbial inoculants, such as those 

reported by Griffiths and Philpott (2013) where biostimulants increased soil microbial heterogeneity 

and resilience following chemical perturbation [120]. By promoting the growth of functionally 

diverse taxa, treatments like PaleoPower enhance soil ecosystem resilience and preserves key 

processes required for long-term agricultural sustainability [109]. 

4.7. Correlation Analysis and Random Forest Evaluation of Microbial Taxa in Glyphosate Dynamics 

Correlation analysis and Random Forest evaluation provided complementary insights into the 

relationships between microbial taxa, diversity indices, and glyphosate degradation metrics, such as 

glyphosate, AMPA, and TEG. While both approaches identified key microbial taxa and diversity 

metrics associated with glyphosate dynamics, their combined use revealed nuanced patterns of 

microbial responses and predictive relationships. 

4.7.1. Key Microbial Predictors Identified in Correlation Analysis 

Correlation analysis identified Sphingomonas and Mesorhizobium as strongly positively associated 

with glyphosate (r = 0.85 and r = 0.88, respectively), suggesting their ecological roles in glyphosate 

metabolism or tolerance mechanisms. These findings align with known functions of Sphingomonas, a 

genus well-recognized for its capacity to degrade complex organic pollutants such as glyphosate 

through specialized enzymatic pathways [121]. Similarly, Mesorhizobium species have been shown to 

adapt to glyphosate by metabolizing it as a phosphorus source [122,123]. 

In contrast, Nitrospira displayed strong negative correlations with glyphosate (r = -0.88) and 

AMPA (r = -0.87) to show its sensitivity to glyphosate exposure. The inhibition of Nitrospira, a key 
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nitrite-oxidizing bacterium, reflects the broader adverse impact of glyphosate on nitrification 

processes and nitrogen cycling within soil ecosystems [124]. 

4.7.2. Random Forest Evaluation of Glyphosate Dynamics 

Random Forest modeling supported the significance of Sphingomonas and Mesorhizobium as key 

predictors of glyphosate dynamics. These taxa emerged as the most important features in predicting 

glyphosate and AMPA concentrations to confirm their ecological and functional relevance [121]. The 

strong correlations observed for these taxa were validated by their high feature importance scores in 

the Random Forest model, demonstrating their central roles in glyphosate degradation pathways 

[122,123]. 

Interestingly, Nitrospira, which showed a strong negative correlation with glyphosate and 

AMPA in the correlation analysis, also emerged as an important predictor in the Random Forest 

model. Its consistent negative relationship highlights the adverse impact of glyphosate on this critical 

taxon, emphasizing its ecological sensitivity and the broader consequences for soil nitrogen cycling. 

4.7.3. Comparison Between Methods 

The combination of correlation analysis and Random Forest evaluation allowed for a more 

robust assessment of microbial responses to glyphosate. Correlation analysis provided direct insights 

into linear relationships between microbial taxa and glyphosate metrics and identified Sphingomonas, 

Mesorhizobium, and Nitrospira as key taxa. In contrast, Random Forest modeling accounted for 

complex, nonlinear interactions and confirmed these taxa as significant predictors of glyphosate and 

AMPA dynamics. The improvement in the Random Forest model’s predictive performance (R² = 0.24 

for glyphosate) underscores its utility in identifying influential microbial drivers in glyphosate-

impacted soils. 

While both methods identified similar key taxa, differences in their approaches provided 

complementary strengths. Correlation analysis emphasized direct associations, whereas Random 

Forest highlighted taxa with the greatest predictive power, even when relationships were not strictly 

linear. This dual approach enhances confidence in the findings and provides a comprehensive 

understanding of the microbial processes governing glyphosate degradation. 

4.7.4. Diversity Metrics and Functional Implications 

Alpha diversity indices, such as Faith’s Phylogenetic Diversity (Faith’s PD), identified moderate 

positive correlations with AMPA (r = 0.39) and effective glyphosate (r = 0.40) in the correlation 

analysis to suggest that glyphosate exposure disproportionately affects phylogenetic diversity. 

Similarly, Random Forest analysis underscored the role of diversity metrics and identified them as 

moderate contributors to glyphosate dynamics. These findings highlight the selective pressure of 

glyphosate on phylogenetically diverse taxa, which may drive compositional and functional shifts 

within the soil microbiome. 

4.8. Metabolic and Regulatory Adaptations Post-Harvest 

The analysis of metabolic pathways and regulatory processes revealed significant adaptations 

post-harvest, particularly in response to stress conditions, phosphate metabolism, and fundamental 

biosynthetic processes. These changes suggest that treatment with PaleoPower induced broad 

functional shifts in the soil microbiome, to facilitate improved nutrient cycling, stress resistance, and 

metabolic activity. 

4.8.1. Fundamental Processes 

The observed post-harvest increases in pathways associated with Starch Sucrose Metabolism 

(+2.3%) and Fatty Acid Biosynthesis (+2.6%) reflect enhanced carbohydrate processing and lipid 

synthesis, critical for microbial energy production and membrane stability. Notably, the 
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Oligogalacturonide Transport System Substrate-Binding Protein exhibited a substantial 66.7% 

increase to indicate improved transport and utilization of oligosaccharides which are key energy 

sources derived from organic matter decomposition. Additionally, N-Glycan Biosynthesis (High-

Mannose Type) (+9.1%) and Ribosome Biogenesis GTPase/Thiamine Phosphate Phosphatase (+7.6%) 

showed significant increases, suggesting enhanced protein synthesis and glycosylation processes 

essential for cell growth and enzymatic activity. 

4.8.2. Phosphate Metabolism 

Post-harvest soils exhibited dramatic changes in phosphate metabolism pathways. Methane 

Metabolism significantly increased (p = 0.016) to highlight a substantial microbial shift toward 

methane-related metabolic processes. This increase could indicate enhanced methanotrophic or 

methanogenic activity associated with microbial adaptation to nutrient availability or anaerobic 

microenvironments. Additionally, the pathways involving 1L-Myo-Inositol 1-Phosphate 

Cytidylyltransferase and Multiple Inositol-Polyphosphate Phosphatase increased by 65.7%, 

suggesting elevated inositol phosphate metabolism critical for phosphate storage and signaling. The 

78.3 % increase in 3,4-Dideoxy-4-Amino-D-Arabino-Heptulosonate 7-Phosphate Synthase (+78.3%) 

points to heightened activity in shikimate and other secondary metabolic pathways which may play 

roles in microbial adaptation and environmental resilience. 

Further upregulation in the PhoR-PhoB Two-Component Regulatory System (+9.6%) and the 

Phosphate Acetyltransferase-Acetate Kinase Pathway (+7.8%) indicates improved responses to 

phosphate availability and acetate production. These pathways are central to phosphate uptake and 

energy metabolism and underscore the soil microbiome’s enhanced ability to regulate phosphate 

homeostasis and optimize energy utilization when residual soil glyphosate is degraded. 

4.8.3. Homeostasis and Osmotic Stress 

Pathways associated with stress responses also showed considerable upregulation. Increased 

sulfiredoxin by 225% demonstrates a robust microbial oxidative stress response to environmental 

perturbations post-harvest. The 4.2% modest increase in the Manganese/Iron Transport System could 

have far-reaching impact on energy, photosynthesis, hormone, and stress defense with improved ion 

transport and metal homeostasis that are critical for enzymatic processes under stress conditions. 

Enhanced osmotic stress resistance was evidenced by the upregulation of Ectoine Hydroxylase 

(+18.1%), a key enzyme in the biosynthesis of ectoine, a known osmoprotectant that stabilizes cellular 

components under high osmotic pressure. The 23.2% increase in Anaerobic Nitric Oxide Reductase 

Transcription Regulator reflects improved regulatory mechanisms under anaerobic conditions, 

highlighting microbial adaptability to variable oxygen availability in the reduced glyphosate, post-

harvest soils. 

4.9. Impact of Metabolic Shifts on Crops 

The observed post-harvest metabolic shifts in the soil microbiome have significant implications 

for crop health, nutrient availability, and overall agricultural productivity. The upregulation of 

pathways such as Starch Sucrose Metabolism (+2.3%) and Fatty Acid Biosynthesis (+2.6%) reflects 

enhanced microbial carbohydrate processing and lipid synthesis which contribute to the breakdown 

of organic matter and the release of essential macro- and micro-nutrients [125]. These processes 

improve soil fertility and ensure that critical nutrients are readily available for plant uptake. This is 

particularly important in nutrient-limited soils [126]. 

The increase in phosphate metabolism pathways, including methane metabolism (+7150.9%) and 

inositol phosphate metabolism (+65.7% highlights enhanced phosphate solubilization and cycling. 

Microbial conversion of insoluble phosphates into bioavailable forms improves root uptake and 

supports processes like root elongation, energy transfer, and photosynthesis [127]. This is especially 

relevant in agricultural systems where phosphorus availability is a major yield-limiting factor. 
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In addition to nutrient cycling, the upregulation of stress response pathways, such as 

sulfiredoxin (+225%) and ectoine hydroxylase (+18.1%), suggests the microbial community's 

enhanced resilience to oxidative and osmotic stress. Microbial production of stress-protectant 

molecules like ectoine and sulfur-based antioxidants buffer soil ecosystems against environmental 

disturbances such as drought, salinity, and temperature fluctuations [128,129]. These stress-tolerant 

microbial populations not only stabilize soil structure and moisture but also indirectly protect plant 

roots from abiotic stress to improve plant resilience [130]. 

Furthermore, pathways related to Oligogalacturonide Transport (+66.7%) and Ribosome 

Biogenesis (+7.6%) suggest improved microbial activity, functional diversity, and metabolic 

efficiency. This enrichment fosters beneficial plant-microbe interactions that facilitate nutrient 

uptake, pathogen suppression, and organic matter decomposition [131]. For example, phosphate 

solubilizers and nitrogen-fixing bacteria can increase nutrient availability to crops and enhance plant 

vigor and root development [132]. 

Glyphosate is a potent chelating agent that binds essential micronutrients like iron, copper, zinc 

and manganese to reduce their availability in soils [93,133]. This can lead to deficiencies in plants and 

affect photosynthesis, enzyme functions, and growth that are often seen in chlorotic and stunted 

development. Glyphosate-induced chelation in soils limits the availability of these micronutrients for 

microbes as well as plants and disrupts critical processes such as nitrogen fixation and organic matter 

decomposition [9,116]. 

The observed improvements in iron and manganese transport systems (+4.2%) highlight 

enhanced micronutrient regulation in soil treated with PaleoPower. Micronutrients like iron and 

manganese are essential for plant enzymatic activity, chlorophyll synthesis, and overall crop 

productivity [134]. Concurrently, enhanced acetate metabolism (+7.8%) produces short-chain fatty 

acids that provide soil pH buffering capacity and promote root health by stimulating beneficial 

rhizosphere microbes [135]. 

The observed metabolic and regulatory adaptations consistent with reduced levels of residual 

soil glyphosate post-harvest demonstrate the significant role of microbial processes in improving soil 

functionality and crop performance. Enhanced nutrient cycling, stress resilience, and beneficial plant-

microbe interactions collectively foster healthier soil environments and support increased plant 

growth, root development, and yield potential. These findings align with previous studies that 

emphasize the importance of diverse and functional microbial communities in promoting 

agricultural sustainability, particularly under environmental stress and limited nutrition 

[101,125,131]. 

4.10. Limitations of the Study 

While the findings of this study underscore the potential benefits of using co-fermented 

microbial inoculants, such as PaleoPower, in agricultural systems, several limitations warrant 

consideration and highlight the need for further research to validate and expand upon the observed 

results across a wider range of conditions and experimental designs. 

One notable limitation is that this study was conducted in a single soil type—a previously 

glyphosate-treated cotton field with a silt loam to silty clay loam soil texture. Some glyphosate-

treated soils may select for microbial communities that are already tolerant to or capable of degrading 

glyphosate and its byproducts, such as AMPA. Thus, the observed microbial shifts may reflect the 

pre-existing adaptation of autochthonous bacteria rather than solely the effects of the microbial 

inoculant. This pre-selection of glyphosate-tolerant taxa, such as Burkholderia, Sphingomonas and 

Mesorhizobium, likely amplified the inoculant’s efficacy but may not fully represent its potential in 

soils with no history of glyphosate exposure or in more diverse agricultural settings. 

Another important consideration is that the study's sample size was relatively small, with soil 

samples collected from six locations within the field at each time point, resulting in 12 paired cores 

per sampling event. Although this approach allowed for representative coverage of the study area, 

the limited sample size reduces the statistical power to generalize the findings. Moreover, the study 
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was conducted in a single location and crop type to potentially restrict its applicability to other 

regions, soil types, and agricultural systems. Soils with different textures, nutrient profiles, and 

microbial baselines might respond differently to the same treatment and lead to inconsistent results. 

Similarly, soils with differing histories of glyphosate usage and baseline levels of glyphosate and 

AMPA residues may respond differently over a similar period as this study. 

Reports from other studies on microbial inoculants have noted little to no changes in microbial 

community structure following treatment [8,12,65,136]. Such discrepancies could be attributed to 

differences in microbial inoculum composition, in soil type, application rates, environmental 

conditions, and experimental designs. For example, glyphosate is known to be more persistent in 

heavier clay soils that impede microbial dispersal and colonization, while sandy soils might allow for 

more rapid infiltration of the inoculant but reduce microbial retention. Similarly, suboptimal 

application rates or environmental conditions, such as drought or extreme temperatures, could limit 

the efficacy of microbial inoculants. These variables highlight the complex interplay of biotic and 

abiotic factors that influence the success of soil microbial treatments. 

Finally, the study focused primarily on glyphosate-contaminated soils, leaving unanswered 

questions about the performance of the inoculant in non-contaminated or organically managed fields. 

The baseline microbial community structure and diversity in such systems could lead to vastly 

different outcomes. Additionally, the field-scale application was conducted with one concentration 

of the inoculant (1.6 × 10⁸ CFU/m²), which may not represent the full range of potential application 

rates. Further studies should investigate how varying concentrations affect microbial community 

dynamics and soil health outcomes to optimize the application for diverse agricultural systems. 

Although this study provides valuable insights into the potential benefits of microbial 

inoculants, the limitations discussed above emphasize the need for broader investigations. Future 

studies should incorporate larger sample sizes, diverse soil types, multiple field conditions, and 

varying application rates to better understand the generalizability of these findings. Long-term 

studies would be valuable for assessing the sustainability and cumulative impacts of the microbial 

inoculants in PaleoPower on soil health, crop productivity, and environmental resilience. 

5. Conclusions 

The results of this study highlight the multi-functional benefits of co-fermented microbial 

inoculants when applied to agricultural soils as part of a broader sustainable farming strategy. The 

high-density microbial product developed through the controlled co-fermentation of eight bacterial 

strains demonstrated its capacity to enhance nutrient cycling, organic matter decomposition, and soil 

health. With a viable cell count of 7.2 × 10⁹ cells per gram that includes 4.05 × 10⁹ spores per gram, 

this inoculant offers extended shelf-life, stability, and resistance to environmental stress to ensure its 

suitability for large-scale field applications. 

The field application of PaleoPower at a concentration of 1.6 × 10⁸ CFU per square meter further 

underscores its practical utility in improving soil microbial composition and functionality. Uniform 

dispersal across the study area allowed for consistent microbial colonization and activity to support 

glyphosate degradation and the reduction of its recalcitrant byproduct, AMPA. Treated soils 

exhibited significant reductions in glyphosate and AMPA concentrations, increased microbial 

diversity and richness metrics. Thus, emphasizing the dual impact of the PaleoPower inoculant in 

both enhancing microbial diversity and stimulating the activity of native glyphosate-degrading 

microbes. 

Key metabolic shifts observed by degrading glyphosate and AMPA (post-harvest) include 

substantial upregulation of phosphate metabolism pathways, stress-response mechanisms, and 

biosynthetic processes that reveal the functional recovery and resilience of the treated soil 

microbiome. Enhanced phosphate solubilization, carbohydrate processing, and lipid biosynthesis 

collectively improved nutrient availability, while increased oxidative and osmotic stress tolerance 

supported the overall health and resilience of the soil microbial community. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 January 2025 doi:10.20944/preprints202501.0419.v1

https://doi.org/10.20944/preprints202501.0419.v1


 26 of 33 

 

The enrichment of beneficial taxa, such as Sphingomonas, Nitrospira, and Burkholderia, further 

demonstrated the selective impact of the PaleoPower microbial inoculant in restoring ecosystem 

functionality. These taxa are known for their roles in pollutant degradation, nitrogen cycling, and 

phosphate solubilization; process that are essential for long-term soil health and crop productivity. 

The observed improvements in microbial alpha and beta diversity highlight the role of microbial 

inoculants in restoring soil ecological balance and buffering against environmental stressors. 

The application of PaleoPower represents a significant innovation in the field of sustainable 

agriculture. Unlike conventional microbial inoculants that often target single strains or limited 

functionalities, PaleoPower leverages a co-fermented consortium of eight bacterial strains specifically 

selected through advanced genomic and community metabolic modeling. This integrative approach 

enables a synergistic interaction between strains, optimizing glyphosate degradation, nutrient 

cycling, and soil health restoration. 

This study demonstrates the efficacy of this novel strategy, with treated soils exhibiting 

enhanced microbial diversity, significant reductions in glyphosate and AMPA residues, and 

upregulation of critical metabolic pathways, such as methane metabolism (+7,150.9%) and oxidative 

stress responses (+225%). These findings highlight the dual-action potential of PaleoPower to not only 

directly degrade persistent agricultural pollutants but also stimulate native microbial communities, 

fostering a resilient and balanced soil ecosystem. 

By combining advanced AI-driven selection methodologies and field validation, PaleoPower 

sets a new benchmark for microbial inoculants, addressing the limitations of traditional single-strain 

approaches. These results underscore its potential as a scalable and eco-friendly solution to mitigate 

the environmental impact of glyphosate while promoting agricultural sustainability. 
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