# Influenza SARS-CoV-2 assay for Countable PCR

#### DESCRIPTION

#### Why this assay matters

The SARS-CoV-2 N1, Influenza A M1, Influenza B NS2, and RPP30 targets are key biomarkers for respiratory virus research. Sensitive, reproducible detection enables highconfidence biomarker assessment with every run.

### The Countable Influenza SARS-CoV-2 assay delivers:

- Rapid setup pre-verified, ready to use, and compatible with Universal Multiplex (UM) chemistry.
- Consistent performance sensitive enough to detect rare molecules, precise enough for reproducible results every time.

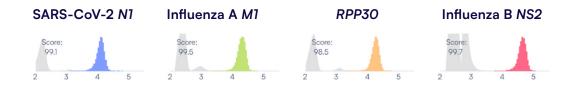
This assay is part of Countable Labs' Community Assays, a collection of ready-to-run assays shared with the scientific community to accelerate discovery. For the Influenza SARS-CoV-2 assay, please contact us at hello@countablelabs.com for information on the full primer sequences. All performance data was generated using the Countable platform.

#### **Targets**

The Influenza SARS-CoV-2 assay is designed to detect SARS-CoV-2 N1. Influenza A M1. Influenza B NS2, and human RPP30 genes with the following specifications on the Countable platform.

| Targets                | Amplicon<br>length | UM probe |
|------------------------|--------------------|----------|
| SARS-CoV-2 N1          | 92 bp              | UM-1     |
| Influenza A <i>M1</i>  | 104 bp             | UM-2     |
| RPP30                  | 65 bp              | UM-3     |
| Influenza B <i>NS2</i> | 103 bp             | UM-4     |

#### Control sample


The following synthetic dsDNA templates spiked into genomic DNA from human cell line GM12878 were used to establish the Influenza SARS-CoV-2 assay performance and is also recommended to use as a Training Sample during your Countable PCR setup. While not required for running the assay, using this control helps:

- Improve the specificity of your counts
- Serve as a quick check that your setup is performing optimally
- Provide a reference point for monitoring consistency across runs

#### PERFORMANCE DATA

### Assay signal distribution

Clear separation between the target signal and the background is critical for accurate calls. The Influenza SARS-CoV-2 assay consistently achieves an Intensity Distribution (ID) score above 90 — signifying that the data has a clean distinction between "signal" and "noise," reducing false positives and improving confidence in quantification.



**Figure 1.** Representative fluorescence intensity histogram for the Countable Influenza SARS-CoV-2 assay, showing clear separation between target signal (SARS-CoV-2 N1: blue; Influenza A M1: green, RPP30: orange; Influenza B NS2: red) and background (grey). The Intensity Distribution (ID) score for each target appears in the upper-left corner, demonstrating strong signal-to-noise performance.

## Instant multiplexing

The Influenza SARS-CoV-2 assay demonstrates consistent multiplex performance, yielding equivalent Counts per 50 µL whether targets are run individually (1-plex) or together (4-plex). This robust performance saves you time and ensures reliable results when running multiple targets.

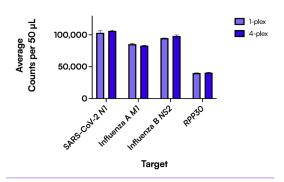



Figure 2. Consistent multiplex assay performance of the Countable Influenza SARS-CoV-2 assay. Bars represent individual Counts per 50  $\mu L$  for each reaction, amplified using the synthetic training sample with either a single (1-plex; n=3) or four primer pairs (4-plex; n=3).

### Linearity and sensitivity

A dilution series of the control sample shows excellent linearity across a broad dynamic range, demonstrating quantification abilities from high to very low target concentrations.

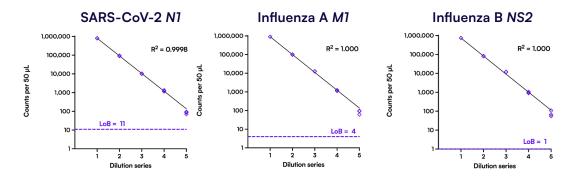



Figure 3. Linearity and limit of blank (LoB) for the Countable Influenza SARS-CoV-2 assay. A 5-fold dilution series of the control sample (n=4) shows excellent linearity (R2 = 0.9998, 1.0000, 1.0000) across the dynamic range. The dashed line marks the LoB for each target, highlighting the assay's ability to detect even rare targets with accuracy.

#### Precision

Across the assay's full dynamic range, the %CV remains low, delivering consistent and reproducible results. This precision enables confident detection of SARS-CoV-2 N1, Influenza A M1, Influenza B NS2, and RPP30 across a wide range of inputs, ensuring sensitive and reliable biomarker measurement every time.

| Target                     | Dilution       | 1       | 2      | 3      | 4     | 5      |
|----------------------------|----------------|---------|--------|--------|-------|--------|
| SARS-                      | Average counts | 801,205 | 91,686 | 10,158 | 1,233 | 83     |
| CoV-2 N1                   | % CV           | 1.53%   | 2.86%  | 2.11%  | 8.77% | 14.66% |
| Influenza<br>A <i>M1</i>   | Average counts | 904,438 | 99,864 | 12,609 | 1,186 | 83     |
|                            | % CV           | 0.28%   | 2.68%  | 1.28%  | 4.48% | 23.08% |
| Influenza<br>B <i>N</i> S2 | Average counts | 743,234 | 81,852 | 11,843 | 957   | 77     |
|                            | % CV           | 0.15%   | 1.73%  | 1.78%  | 7.55% | 37.22% |

Table 2. Influenza SARS-CoV-2 assay precision across the dynamic range.

## Summary

The Influenza SARS-CoV-2 assay delivers sensitive, reproducible results across a wide dynamic range — giving you high-quality biomarker data from the very first run.

# Influenza SARS-CoV-2 assay

#### Getting started

This protocol describes the setup and execution of the Countable Influenza SARS-CoV-2 assay for detecting SARS-CoV-2 N1, Influenza A M1, Influenza B NS2, and human RPP30 genes on the Countable PCR platform using Universal Multiplex chemistry.

| Targets         | Amplicon length | UM<br>probe |
|-----------------|-----------------|-------------|
| SARS-CoV-2 N1   | 92 bp           | UM-1        |
| Influenza A M1  | 104 bp          | UM-2        |
| RPP30           | 65 bp           | UM-3        |
| Influenza A NS2 | 103 bp          | UM-4        |

#### **Materials**

Listed below are the materials needed for setting up the amplification mix of this specific assay. Refer to Countable PCR™ Reaction Preparation User Guide (IFUOO4) for the complete list of required materials to set up a Countable PCR reaction.

| 4X | C | ount | ab | le | P | CR | N | /lix | (Rec | uired | (k |
|----|---|------|----|----|---|----|---|------|------|-------|----|
|    |   |      |    |    |   |    |   |      |      |       |    |

Cat #: KT0004 (PR0004)

50X UM-1, UM-2, UM-3, UM-4 Probes (Required) Cat #: KT0005 (PR0006-PR0009)

Influenza SARS-CoV-2 primer mix (Required)

Visit website for sequences

Control sample (Optional\*) Visit website for sequences

### Countable PCR reaction set-up

The table below lists the setup of the amplfiication mix specific to this assay. Refer to Countable PCR™ Reaction Preparation User Guide (IFU004) for complete setup instructions.

| Reagents                       | Cat #                | Per 50 µL<br>reaction | Final conc. |
|--------------------------------|----------------------|-----------------------|-------------|
| Nuclease-free<br>water         | _                    | To 50 μL              | _           |
| 4X Countable<br>PCR Mix        | KT0004<br>(PR0004)   | 12.5 µL               | 1X          |
| 50X UM-1, -2, -3,<br>-4 Probes | KT0005<br>(PR0006-9) | 1 μL each             | 1X          |
| 50X primer mix*                | _                    | 1 μL                  | 1X          |
| Template                       | _                    | Variable              | _           |

<sup>\*</sup> Refer to IFU004, Appendix E for details

## Thermal cycling conditions

Ensure ramp rate setting of 2 °C/sec. Set the sample volume to 125 µL and the heated lid to 105 °C.

| Cycle | Step                  | Temp<br>(°C) | Time<br>(mm:ss) |
|-------|-----------------------|--------------|-----------------|
| 1     | Initial denaturation  | 95 °C        | 02:00           |
| 70    | Denaturation          | 95 °C        | 00:20           |
| 30    | Annealing & extension | 60 °C        | 01:00           |
| 1     | Hold                  | 8 °C         | ∞               |

<sup>\*</sup> The use of a training sample in the Countable system enhances the specificity of counts, verifies assay performance, and can serve as a control, particularly for detecting rare molecules.