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Introduction



Introduction

Goal of chapter. We will introduce the theory of elementary stochastic

calculus, in particular Itô’s lemma and stochastic differential equations,

with the application to the Black-Scholes model.

A random nature of financial markets make stochastic calculus extremely

important in the mathematical modeling of financial processes.

We will discuss the basic theory behind

1. Brownian motions,

2. stochastic integration,

3. stochastic differential equations,

4. Itô’s lemma, and

5. application to the Black-Scholes model.
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Introduction

Figure 1: Brownian motion can be seen as a limit of (appropriately scaled) series

of coin-tossing experiments.
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Introduction

B Discrete time stochastic processes presented in the previous chapters

(binomial trees) can be seen as an approximation of the continuous

time stochastic processes from this chapter.

B Equivalently, continuous time models can be obtained as a limit of

the discrete time models, where the number of periods n goes to

infinity (and hence ∆t → 0).

B In practice one does not observe asset prices following continuous

time processes.

B Stochastic calculus equips us with the mathematical tools which are

not available in discrete time (notably Itô’s lemma).
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Brownian motion



Filtered probability space

Since we work with stochastic processes, we have to equip the usual

probability space (Ω,F ,P) with a filtration (Ft)t≥0. Recall:

Definition. A filtration F is an increasing sequence of σ-algebras on a

measurable space. That is, given a measurable space (Ω,F), a filtration is

a sequence of σ-algebras F = (Ft)t≥0 with Ft ⊆ F , such that t1 ≤ t2

implies Ft1 ⊆ Ft2 .

A filtered probability space (Ω,F ,P, (Ft)t≥0) , is a probability space

equipped with the filtration (Ft)t≥0 of its σ-algebra F .
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Brownian motion

Let T > 0 and suppose that a filtered probability space

(Ω,F ,P, (Ft)0≤t≤T )) is given.

Definition. A one-dimensional standard Brownian motion is a stochastic

process (Wt)0≤t≤T with the following properties:

1. W0 = 0,

2. t 7→Wt(ω) is a continuous function P-a.s.,

3. (Wt)0≤t≤T is adapted to the filtration (Ft)0≤t≤T ,

4. the increments Wt −Ws are independent and normally distributed

with variance t − s and zero mean for any 0 ≤ s ≤ t.

B Intuitively, the change of Brownian motion on the interval (t, t + ∆t)

can be perceived as ∆Wt := Wt+∆t −Wt = ε
√

∆t, where

ε ∼ N (0, 1).
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Brownian motion
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Figure 2: 10 paths of a one-dimensional standard Brownian motion.
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Brownian motion: Important properties

B Martingale: Given the information up to s < t the conditional

expectation of Wt is Ws , that is

E(Wt | Fs) = Ws .

B Quadratic variation: If we divide up the time interval [0, t] into a

partition P with n + 1 points ti , then

〈W 〉t = lim
n→∞

∑
ti∈P

(Wti −Wti−1)2 −−→
a.s.

t. (1)

B Markov property: The conditional distribution of Wt given

information up until s < t depends only on Ws . That is, for any

event A and s < t it holds that

P(Wt ∈ A | Fs) = P(Wt ∈ A |Ws).
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Brownian motion: Important properties

B Normality: Over finite time increments ti−1 to ti , Wti −Wti−1 is

normally distributed with mean zero and variance ti − ti−1.

B Continuity: The paths of Brownian motion are continuous, there are

no discontinuities. Brownian motion is the continuous-time limit of

the discrete-time random walk.

B Non-differentiability: Almost surely (with probability 1), the paths are

not differentiable at any point. Therefore, it is not possible to define∫ t
0 f (s)dWs as

∫ t
0 f (s)dWs

ds ds, i.e.

∫ t

0
f (s)dW 6=

∫ t

0
f (s)

dWs

ds
ds.
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Stochastic integration



Stochastic integration

In order to construct a stochastic integral let us first define the notion of a

simple stochastic process.

Definition. A process (Ht)0≤t≤T is a simple process if it can be written as

Ht(ω) =

p∑
i=1

φi (ω)I(ti−1,ti ](t),

where 0 = t0 < t1 < · · · < tp = T and φi is Fti−1-measurable.
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Stochastic integration

Definition. A stochastic integral of a simple process H = (Ht)0≤t≤T is a

process (
∫ t

0 HsdWs)0≤t≤T given by

∫ t

0
HsdWs =

p∑
i=1

φi (Wti∧t −Wti−1∧t),

where a ∧ b = min{a, b}.

B Note that in particular
∫ t

0 1 dWs = Wt .

B Given a (Ft)0≤t≤T -Brownian motion (Wt)0≤t≤T and a

(Ft)0≤t≤T -adapted process (Ht)0≤t≤T , one is able to define the

stochastic integral (
∫ t

0 HsdWs)0≤t≤T as soon as
∫ T

0 H2
s dWs <∞.

B The general concept extends that for simple processes.
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Stochastic integration: Example

To illustrate why the direct use of the definitions is complicated, let us

compute the stochastic integral
∫ t

0 WsdWs for a Brownian motion Ws .

Consider a partition P with n + 1 points ti . Because

2Wti (Wti+1 −Wti ) = W 2
ti+1
−W 2

ti
− (Wti+1 −Wti )

2,

we obtain by summing up that

∑
ti∈P

Wti (Wti+1 −Wti ) =
1

2
(W 2

t −W 2
0 )− 1

2

∑
ti∈P

(Wti+1 −Wti )
2.
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Stochastic integration: Example

If n→∞, then the sum on the right-hand side becomes the quadratic

variation in (1) and converges P-a.s. to t. We therefore expect to obtain

∫ t

0
WsdWs =

1

2
W 2

t −
1

2
t,

and we will see later from Itô’s lemma that this is indeed correct.

B Note that we should expect the first term 1
2W

2
t from classical

calculus (where we have
∫ x

0 y dy = 1
2x

2).

B The second-order correction term 1
2 t appears due to the quadratic

variation of Brownian trajectories.

B Since the direct use of definitions is complicated, we will now present

the basic tool for working with stochastic processes and especially

stochastic integrals in continuous time =⇒ Itô’s lemma.
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Stochastic differential equations



Itô process

Let us use the notion of stochastic integral and extend it to the concept of

stochastic differential equations.

Definition. Let (Ω,F ,P,F) be a filtered probability space and (Wt)0≤t≤T

a F-Brownian motion. An R-valued process (Xt)0≤t≤T is called an Itô

process if it can be written as

Xt = X0 +

∫ t

0
Ksds +

∫ t

0
HsdWs , (2)

where

B X0 is F0-measurable,

B (Kt)0≤t≤T and (Ht)0≤t≤T are (Ft)0≤t≤T -adapted processes,

B
∫ t

0 |Ks |ds <∞ P-a.s.,

B
∫ t

0 H2
s ds <∞ P-a.s.
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Stochastic differential equations

B Consider an Itô process Xt = X0 +
∫ t

0 Ksds +
∫ t

0 HsdWs from the

previous slide. Its shorthanded version

dXt = Ktdt + HtdWt ,

is called a stochastic differential equation.

B Note that its precise meaning comes, however, from the technically

more accurate equivalent stochastic integral. In practice, the

shorthanded version is used almost everywhere.

B Think of dXt as an increment of the process Xt .

B A Brownian motion (Wt)0≤t≤T is itself an Itô process (2), where

W0 = 0,Ks = 0 and Hs = 1.
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Itô’s lemma



Itô’s lemma

The theorem below represents the main result of stochastic calculus.

Theorem. (Itô’s lemma or Itô’s formula) Let (Xt)0≤t≤T be an Itô process,

Xt = X0 +
∫ t

0 Ksds +
∫ t

0 HsdWs . Let (t, x) 7→ f (t, x) be a function which

is twice differentiable w.r.t. x and once w.r.t. t such that these partial

derivatives are continuous w.r.t. (t, x). Then

f (t,Xt) = f (0,X0) +

∫ t

0

∂f

∂s
(s,Xs)ds +

∫ t

0

∂f

∂x
(s,Xs)dXs+

+
1

2

∫ t

0

∂2f

∂x2
(s,Xs)d〈X 〉s ,

where by definition∫ t

0

∂f

∂x
(s,Xs)dXs =:

∫ t

0

∂f

∂x
(s,Xs)Ksds +

∫ t

0

∂f

∂x
(s,Xs)HsdWs

and

〈X 〉t :=

∫ t

0
H2
s ds.
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Itô’s lemma

Why is Itô’s lemma so useful?

Take an Itô process (Xt), given by dXt = Ktdt + HtdWt . It makes sense

to consider another process Yt = f (t,Xt), which is a function of the

former. The Itô’s formula yields

dYt =
∂f

∂t
(t,Xt)dt +

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)d〈X 〉t , (3)

where the differentials are formally computed according to the following

rules

dt · dt = dt · dWt = dWt · dt = 0 and dWt · dWt = dt.

Note that (3) is just a shorthanded version of Itô’s lemma from the

previous slide for Yt = f (t,Xt).
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Itô’s lemma

B Financial relevance of Itô’s lemma: Think of Xt as some underlying

financial asset and of Yt = f (t,Xt) as a new product obtained from

the underlying by a possibly nonlinear transformation f .

B Then (3) shows us how the financial product reacts to changes in the

underlying.

B The important message of Itô’s lemma is then that when using

stochastic models (for Xt), a simple linear approximation is not good

enough, one must also account for the second order behavior of Xt .
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Itô’s lemma: Example

Example.

Let (Xt)0≤t≤T be the Brownian motion (Wt)0≤t≤T and f (t, x) = x2.

Then

Wt = 0 +

∫ t

0
0ds +

∫ t

0
1︸︷︷︸
Hs

dWs , 〈W 〉t =

∫ t

0
12ds = t,

and the differentials are

∂f

∂t
(t, x) = 0,

∂f

∂x
(t, x) = 2x ,

∂2f

∂x2
(t, x) = 2.
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Itô’s lemma: Example

By Itô’s formula we have

f (t,Wt) = f (0, 0︸︷︷︸
=W0

) +

∫ t

0

∂f

∂t
(s,Ws)ds +

∫ t

0

∂f

∂x
(s,Ws)dWs+

+
1

2

∫ t

0

∂2f

∂x2
(s,Ws)d〈W 〉s ,

with

W 2
t = 0 + 0 + 2

∫ t

0
Ws dWs +

1

2

∫ t

0
2 dt = 2

∫ t

0
Ws dWs + t,

or equivalently

W 2
t − t = 2

∫ t

0
Ws dWs ,

which exactly ties up with the example on stochastic integration we have

seen earlier.
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Itô’s lemma

Remark. Let x : [0,∞)→ R be a function t 7→ x(t) and think of x as a

typical trajectory t 7→ Xt(ω) of X . The classical chain rule from analysis

then says that if x is in C 1 (i.e. continuously differentiable) and f : R→ R
is in C 1, the composition f ◦ x : [0,∞)→ R, t → f (x(t)) is again in C 1

and its derivative is given by

d

dt
(f ◦ x)(t) =

df

dx
(x(t))

dx

dt
(t),

or more compactly

(f ◦ x). (t) = f ′
(
x(t)

)
ẋ(t),

where the dot ˙ denotes the derivative with respect to t and the prime ′ is

the derivative with respect to x .
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Itô’s lemma

Remark. In formal differential notation, we can rewrite this as

d(f ◦ x)(t) = f ′
(
x(t)

)
dx(t), (4)

or in integral form

f
(
x(t)

)
− f
(
x(0)

)
=

∫ t

0
f ′
(
x(s)

)
dx(s).

In this last form, the chain rule can be extended to the case where f is in

C∞ (i.e. smooth function) and x is continuous and of finite variation.
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Itô’s lemma

Remark.

B The trajectories of Brownian motion are of infinite variation (and

finite quadratic variation) and the classical chain rule does not apply.

B One can view Itô’s formula as a purely analytical result which

provides an extension of the chain rule for f ◦ x to functions x that

have a nonzero quadratic variation.

B Comparing (3) to (4) shows that we have in comparison to the

classical chain rule an extra second-order term coming from the

quadratic variation of X .
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Black-Scholes model



Black-Scholes model

B The Black-Scholes model is the original breakthrough in field of

quantitative finance that led to huge growth in the industry and the

development of the subject.

B It is a mathematical model for the dynamics of a financial market

containing derivative investment instruments.

B The model describes and explains the basic building blocks of

derivatives theory (such as delta hedging and no arbitrage).

B Its derivation applies the mathematical tools presented during this

lecture.

B These fundamental principles lead to the Black–Scholes derivatives

pricing equation.
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Black–Scholes model: Assumptions

Assumptions: the market consists of at least one risky asset (usually called

the stock) and one riskless asset (usually called the money market, cash,

or bond).

Assumptions on the assets:

B The rate of return on the riskless asset is constant, known and the

same for all maturities (risk-free interest rate).

B The instantaneous log return of stock price follows an Itô process

with constant drift and volatility (returns on the underlying stock are

normally distributed).

B The derivative is European and can only be exercised at expiration.

B There are no dividends on the underlying during the life of the

derivative.
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Black–Scholes model: Assumptions

Assumptions on the market:

B There are no arbitrage opportunities (i.e. there is no way to make a

riskless profit).

B It is possible to borrow and lend any amount (perfect divisibility) of

cash at the riskless rate.

B It is possible to buy and sell any amount (perfect divisibility) of the

stock, including short selling (markets are perfectly liquid).

B The above transactions do not incur any fees, taxes or transaction

costs (i.e. frictionless market).

B Delta hedging (as well as trading) is performed continuously.
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Black–Scholes model

Definition.

A stochastic process St is said to follow a geometric Brownian motion

(GBM) if it satisfies the following stochastic differential equation (SDE):

dSt = µStdt + σStdWt , S0 = x0,

where Wt is a Brownian motion, and µ ∈ R, σ > 0, and x0 > 0 are

constants.

B Note that the instantaneous return of the underlying following an Itô

process dSt
St

= µdt + σdWt implies a GBM for the stock price.

B For a small ∆t (short time period), the percentage change in the

stock price (return) can be approximated by ∆S
S ∼ N (µ∆t, σ2∆t)).

B Next step: solve the geometric Brownian motion stochastic

differential equation.
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Black–Scholes model
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Figure 3: 10 paths of geometric Brownian motion with µ = 0.05 and σ = 0.2.
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Black–Scholes model

Example.

Find the solution of

dSt = µStdt + σStdWt , S0 = x0.

Reformulation: We look for an adapted process (St)0≤t≤T such that the

integrals
∫ t

0 Ssds and
∫ t

0 SsdWs exist and at any time t we have

St = x0 +

∫ t

0
µSsds +

∫ t

0
σSsdWs P− a.s.

Formal computation: We write Yt = log St where (St)0≤t≤T is a solution

of the initial equation. Note that (St) is an Itô process with

Ks = µSs , Hs = σSs .
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Black–Scholes model

Assuming St > 0, we apply Itô’s lemma formally to f (x) = log x and

obtain ∂f /∂t = 0, ∂f /∂x = 1/x , ∂2f /∂x2 = −1/x2. The quadratic

variation is given by

〈S〉t =

∫ t

0
H2
s ds =

∫ t

0
σ2S2

s ds.

Therefore, d〈S〉t = σ2S2
t dt and we have

log(St) = log(So) +

∫ t

0

1

Ss
dSs +

1

2

∫ t

0
− 1

S2
s

σ2S2
s ds︸ ︷︷ ︸

d〈S〉s

,

which can be rearranged as

Yt = Y0 +

∫ t

0
(µds + σdWs)− 1

2
σ2t.
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Black–Scholes model

Solving the integral yields

Yt = Y0 + (µ− 1

2
σ2)t + σWt ,

where one can use the definition of Yt and get

log St = log S0 + (µ− 1

2
σ2)t + σWt .

Now we can apply the exponential function and obtain

St = S0 · exp((µ− 1

2
σ2)t + σWt). (5)

Conjecture: St = x0 · exp((µ− σ2/2)t + σWt) is a solution of the initial

equation.

This has to be carefully proved.
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Black–Scholes model

Theorem.

Consider a real number µ, a strictly positive σ > 0 and T > 0, and a

Brownian motion (Wt)0≤t≤T . Then, there exists a unique Itô process

(St)0≤t≤T , which for any t ≤ T satisfies

St = x0 +

∫ t

0
(µSsds + σSsdWs) .

This process is given by

St = x0 exp

((
µ− σ2

2

)
t + σWt

)
.
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Black–Scholes model

Proof.

Consider g(t, x) = x0 exp((µ− σ2

2 )t + σx) and St = g(t,Wt). Then

∂g

∂t
= x0 (µ− σ2

2
) exp((µ− σ2

2
)t + σx),

∂g

∂x
= x0 σ exp((µ− σ2

2
)t + σx),

∂2g

∂x2
= x0 σ

2 exp((µ− σ2

2
)t + σx).

Since 〈W 〉t = t, Itô’s formula is applicable and

St = x0 +

∫ t

0
Ss(µ− σ2

2
)ds +

∫ t

0
SsσdWs +

1

2

∫ t

0
Ssσ

2ds

= x0 +

∫ t

0
µSsds +

∫ t

0
σSsdWs .
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Black–Scholes model

B In the derivation above we showed that the Black-Scholes model

yields

log ST − log S0 ∼ N ((µ− 1

2
σ2)T , σ2T ).

B This implies that the log return of the underlying from time 0 to

maturity T follows a normal distribution with

log
ST
S0
∼ N ((µ− 1

2
σ2)T , σ2T ),

and the stock price follows a log-normal distribution with

log ST ∼ N (log S0 + (µ− 1

2
σ2)T , σ2T ).
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Black–Scholes equation

B The next goal is to derive the Black-Scholes differential equation.

B This equation must be satisfied by the price of any European type

derivative dependent on a non-dividend paying stock (under the

Black-Scholes market model).

B We will use Itô’s lemma and no-arbitrage principle in determining the

Black-Scholes equation.

B These arguments are similar to the no-arbitrage arguments we used

to value stock options using binomial (or multinomial) trees.
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Black–Scholes equation

B Consider a derivative with price at time t given by V (t,St).

B The idea is to construct a self-financing portfolio Πt of one long

derivative position and a short position in some quantity θt of the

underlying

Πt = V (t,St)− θtSt , (6)

and chose θt such that the portfolio becomes riskless.

B The underlying follows a geometric Brownian motion

dSt = µStdt + σStdWt .

B The self-financing condition implies the change in the portfolio value

is

dΠt = dV (t,St)− θdSt . (7)
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Black–Scholes equation

B Using Itô’s lemma we obtain

dV (t,St) =
∂V

∂t
(t,St)dt +

∂V

∂S
(t,St)dSt +

1

2
σ2S2

t

∂2V

∂S2
(t,St)dt.

(8)

B Inserting (8) into (7) yields the portfolio change of

dΠt =
∂V

∂t
(t, St)dt +

∂V

∂S
(t,St)dSt +

1

2
σ2S2

t

∂2V

∂S2
(t, St)dt − θtdSt .

B Our goal is to obtain a portfolio Πt which is riskless, i.e. the portfolio

should have no randomness. This is achieved when

(
∂V

∂S
(t,St)− θt)dSt = 0.
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Black–Scholes equation

B The randomness is reduced to zero if we chose

θt =
∂V

∂S
(t, St) := ∆V . (9)

B Any reduction in randomness is generally termed hedging.

B The perfect elimination of risk, by exploiting correlation between two

instruments (in this case a derivative and its underlying), is generally

called delta hedging.

B Delta hedging is an example of a dynamic hedging strategy (the

perfect hedge must be continuously rebalanced).
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Black–Scholes equation

B After choosing the quantity θ as suggested above, we hold a portfolio

whose value changes by the amount

dΠt =

(
∂V

∂t
(t, St) +

1

2
σ2S2

t

∂2V

∂S2
(t, St)

)
dt. (10)

B This change is completely riskless.

B If we have a completely risk-free change dΠt in the portfolio value Πt

then it must be the same as the growth we would get if we put the

equivalent amount of cash in a risk-free interest-bearing account

dΠt = rΠtdt. (11)

B This is an example of the no-arbitrage principle.
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Black–Scholes equation

B Substituting (6), (9) and (10) into (11) we find that

(
∂V

∂t
(t, St) +

1

2
σ2S2

t

∂2V

∂S2
(t, St)

)
dt = r

(
V (t,St)−

∂V

∂S
(t,St)St

)
dt.

B After rearranging we get

∂V

∂t
(t, St) +

1

2
σ2S2

t

∂2V

∂S2
(t,St) + rSt

∂V

∂S
(t, St)− rV (t,St) = 0.

(12)

B This is the Black–Scholes partial differential equation (PDE).
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Black–Scholes equation

B Notice that the Black–Scholes equation does not depend on µ.

B Why? Since we can perfectly hedge the option with the underlying

we should not be rewarded for taking unnecessary risk (only the

risk-free rate of return is in the equation).

B We can use the same Black–Scholes argument to replicate an option

just by buying and selling the underlying asset.

B This leads to the idea of a complete market.

B In a complete market an option can be replicated with the underlying,

thus making options redundant (many things conspire to make

markets incomplete, such as transaction costs).

42/68



Black–Scholes equation

B The Black-Scholes equation (12) knows nothing about what kind of

option we are valuing, whether it is a call or a put, nor what is the

strike and the expiry.

B Hence, one must prescribe V (T ,ST ), the pay-off. For example, if we

have a call option with the strike price K , then we know that

V (T ,ST ) := C (T , ST ) = max(ST − K , 0),

and similarly for the put option

V (T , ST ) := P(T ,ST ) = max(K − ST , 0).

B Consider a call option C (t,St). From the continuous time model

formula we obtain that if the asset price is ever zero, then St remains

zero for all the time and hence the pay-off will be zero at expiry:

C (t, 0) = 0 for all 0 ≤ t ≤ T .

B These two conditions are so-called boundary conditions.
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Black–Scholes equation

B One also has a final condition

C (t,St) ≈ S , for large St .

B In order to obtain the derivative price V (t,St), one needs to solve the

partial differential equation (12) completed with the appropriate

boundary and final conditions (which depend on the derivative type).

B Another way to obtain the derivative price is via the martingale

approach (see below).

B One can as well use the binomial discrete time model, take the limit

as the time step shrinks to zero and obtain the continuous-time

Black–Scholes set up.

B In practice different numerical methods are often used (finite

difference methods, Monte Carlo sampling, and others).
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Black–Scholes equation

Remarks:

B The main idea is to set up a riskless portfolio consisting of a position

in the derivative and a position in the underlying stock.

B In the absence of arbitrage opportunities, the return of such portfolio

must be equal to the risk-free rate.

B The reason a riskless portfolio can be set up is that the stock price

and the derivative are both affected by the same underlying source of

uncertainty: stock price movements.

B In such portfolio, the gain/loss from the stock position always offsets

the gain/loss from the derivative position so that the overall value of

the portfolio at the end of the short period is known with certainty.

B This leads to the Black-Scholes partial differential equation.
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Black-Scholes formula: Example

Example. Consider an at-the money call option

B on a stock worth St = 100,

B with a strike price K = 100,

B and maturity of six months.

B Assume the risk free rate is r = 5%, and

B the stock has annual volatility σ = 20% and pays no dividend.

Compute the price of the call option under the Black-Scholes setting.

Solution.

B The present value factor e−r(T−t) = exp(−5% · 6/12) = 0.9753.

B The value of d1:

d1 =
log(St/(K · e−r(T−t)))

σ
√
T − t

+
σ
√
T − t

2
= 0.2475 .

B d2 = d1 − σ
√
T − t = 0.1061.
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Black-Scholes formula: Example

B Using standard normal tables (or the computer) we find

Φ(d1) = 0.5977 and Φ(d2) = 0.5422. Note that both values are

greater than 0.5 since d1 and d2 are positive.

B The price of the call is

C (t,St) = St · Φ(d1)− K · e−r(T−t) · Φ(d2) = 6.89.

B The price of the call option can also be viewed as an equivalent

position of Φ(d1) = 59.77% in the stock and some borrowing:

C (t,St) = 59.77− 52.88 = 6.89; thus, this is a leveraged position in

the stock.

B The price of the put is P(t, St) = 4.42.

B Buying the call and selling the put costs 6.89− 4.42 = 2.47; this

indeed equals to St − K · e−r(T−t) = 100− 97.53 = 2.47 which

confirms the put-call parity.
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Black–Scholes model: Important formulae

B Black-Scholes partial differential equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 .

B Black-Scholes formula to price a call option:

C (t, St) = St · Φ(d1)− K · e−r(T−t) · Φ(d2) .

• Φ(·) denotes the standard normal cumulative distribution

function.

• The number d1 is given by

d1 =
log(St/K ) + (r + 1

2σ
2)(T − t)

σ
√
T − t

=
log(St/(K · e−r(T−t)))

σ
√
T − t

+
σ
√
T − t

2
.

• The number d2 is given by d2 = d1 − σ
√
T − t.
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Black–Scholes model: Final remarks

B The two classic references are the paper (Black and Scholes 1973) by

Fischer Black and Myron Scholes which derives the key equations and

the paper (Merton, 1973) by Robert Merton which adds a rigorous

mathematical analysis.

B Merton and Scholes were awarded the 1997 Nobel Prize in Economic

Sciences for this work (Fischer Black died in 1995).

B Modern texts that give rigorous derivations of the Black-Scholes

formula include Björk (1998), Duffie (2001), Karatzas & Shreve

(1998), Oksendal (1998).
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Conclusion

“In the end, a theory is accepted not because it is confirmed by

conventional empirical tests, but because researchers persuade one another

that the theory is correct and relevant.”

— Fisher Black
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Martingale approach



Black–Scholes formula: Martingale approach

Definition.

A martingale with respect to P and (Ft)t≥0 is a real-valued stochastic

process (Mt)t≥0 such that for every time t,

1. Mt is Ft-adapted,

2. Mt ∈ L1(P) for all t, i.e. EP[|Mt |] <∞,

3. For s ≤ t:

E[Mt |Fs ] = Ms P-almost surely.

Intuition: Fair game.
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Black–Scholes formula: Martingale approach

Definition. Two measures P and Q under the same σ-algebra F are

equivalent if and only if P(ω) = 0 ⇐⇒ Q(ω) = 0.

Theorem. First Fundamental Theorem of Asset Pricing (FTAP)

No arbitrage ⇐⇒ There exists a probability measure Q equivalent to P
such that the discounted price process of every tradable asset is a

Q-martingale.

Remark. Such measure Q is called Equivalent Martingale Measure or

risk-neutral measure.

Examples of martingales: {e−rtSt}t≥0, {e−rtC (t,St)}t≥0.

54/68



Black–Scholes formula: Martingale approach

B Next goal: find the price of the call option C (t,St).

Consequence of the FTAP:

The value of any derivative can be calculated by discounting its final

pay-off under the risk-neutral measure:

EQ[e−rTC (T , ST )|Ft ] = e−rtC (t,St)

⇐⇒
C (t,St) = EQ[e−r(T−t)C (T ,ST )|Ft ].

Remark.

B No mentioning of hedging,

B No need to know the investors’ expectations/risk preferences.
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Black–Scholes formula: Martingale approach

The call option price can be written as:

C (t,St) = EQ[e−r(T−t)C (T ,ST )|Ft ] =

= e−r(T−t)EQ[(ST − K )+|Ft ] =

= e−r(T−t)EQ[(ST − K )1{ST>K}|Ft ] =

= e−r(T−t)EQ[ST1{ST>K}|Ft ]− Ke−r(T−t)EQ[1{ST>K}|Ft ] =

= e−r(T−t)EQ[ST1{ST>K}|Ft ]− Ke−r(T−t)Q(ST > K |Ft),

(13)

where we used the pay-off of a call option

C (T , ST ) = max(ST − K , 0) = (ST − K )+.

=⇒ Need to calculate EQ[ST1{ST>K}|Ft ] and Q(ST > K |Ft).
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Black–Scholes formula: Martingale approach

B The dynamics of St under P:

dSt
St

= µ dt + σ dWt .

B What is the dynamics of St under Q?

dSt
St

= µ dt + σ dWt =

= r dt + σ(
µ− r

σ
dt + dWt) =

= r dt + σ dW̃t .

B If Wt is a Brownian motion under P, then W̃t = Wt + µ−r
σ t is a

Brownian motion under Q.

B Intuition: change of probability measure changes the probability of

paths so that EQ[dStSt
] = r dt =⇒ Risk-neutral investor.
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Black–Scholes formula: Martingale approach

Remarks:

B Remember equation (5): Given s < t, Itô’s formula gives the

expression of St under Q:

St = Sse
(r−σ2

2
)(t−s)+σ(W̃t−W̃s)

∣∣
Fs
, ∀s, t ∈ [0,T ].

B For any s < t it holds that W̃t−W̃s√
t−s

∣∣∣
Fs

is a standard normal random

variable.

B Denote the cdf of a standard normal distribution with Φ(·). The

symmetry of the distribution yields 1−Φ(x) = Φ(−x) for any x ∈ R.

B We will use these results in the derivation on the next slide.
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Black–Scholes formula: Martingale approach

Q(ST > K |Ft) = Q
(
Ste

(r−σ2

2
)(T−t)+σ(W̃T−W̃t) > K

∣∣Ft

)
=

= Q

(
W̃T − W̃t >

ln( K
St

)− (r − σ2

2 )(T − t)

σ

∣∣∣Ft

)
=

= 1−Q

(
W̃T − W̃t√

T − t
≤

ln( K
St

)− (r − σ2

2 )(T − t)

σ
√
T − t

∣∣∣Ft

)
=

= 1− Φ

(
ln( K

St
)− (r − σ2

2 )(T − t)

σ
√
T − t

)
=

= Φ

(
ln(StK ) + (r − σ2

2 )(T − t)

σ
√
T − t

)
=

= Φ(d2).
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Black–Scholes formula: Martingale approach

B Recall:

C (t,St) = e−r(T−t)EQ[ST1{ST>K}|Ft ]− Ke−r(T−t)Q(ST > K |Ft).

B Above, we calculated Q(ST > K |Ft).

B Remaining term to calculate:

EQ[ST1{ST>K}|Ft ] = Ste
r(T−t)EQ[e−

σ2

2
(T−t)+σ(W̃T−W̃t)1{ST>K}

∣∣Ft ].

B Problem: e−
σ2

2
(T−t)+σ(W̃T−W̃t) and 1{ST>K} are not independent.
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Black–Scholes formula: Martingale approach

Theorem. Girsanov’s Theorem

Let Wt be a standard Brownian motion under a probability measure P.

We can define a new Brownian motion WQ
t under a probability measure Q

such that

WQ
t = Wt − θt,

where the Radon-Nikodym derivative (of the change of measure from P to

Q) is defined as

Zt :=
dQ
dP

∣∣∣
Ft

= e−
θ2

2
t+θWt .

WQ
t is a standard (non-drifted) Brownian motion under Q.

Finally, for every Ft-measurable and integrable random variable Xt we

have

EP
[
ZT

Zt
XT

∣∣Ft

]
= EQ[XT |Ft ].

Exercise: Show that Zt is a P-martingale.
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Black–Scholes formula: Martingale approach

Idea: Define a new measure Q∗ such that the Radon-Nikodym derivative is

given by dQ∗

dQ

∣∣∣
Ft

:= Zt , where ZT
Zt

= e−
σ2

2
(T−t)+σ(W̃T−W̃t). Then we obtain

EQ[ST1{ST>K}|Ft ] = Ste
r(T−t)EQ

[
e−

σ2

2
(T−t)+σ(W̃T−W̃t)1{ST>K}

∣∣∣Ft

]
=

= Ste
r(T−t)EQ

[
ZT

Zt
1{ST>K}

∣∣∣Ft

]
=

= Ste
r(T−t)EQ∗ [

1{ST>K}
∣∣Ft

]
=

= Ste
r(T−t)Q∗(ST > K |Ft).

This was possible by setting dQ∗

dQ

∣∣∣
Ft

= Zt = e−
σ2

2
t+σW̃t .

Next step: Calculate Q∗(ST > K |Ft).
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Black–Scholes formula: Martingale approach

B Given the definition of Zt , Girsanov theorem tells us that

W ∗
t = W̃t − σt is a Q∗-Brownian motion. Hence, the dynamics of St

under Q∗ are given by

dSt
St

= r dt + σ dW̃t =

= r dt + σ(W ∗
t + σ dt) =

= (r + σ2) dt + σ dW ∗
t .

B Itô’s lemma now gives

ST = Ste
(r+σ2

2
)(T−t)+σ(W ∗

T−W
∗
t )
∣∣
Ft
.
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Black–Scholes formula: Martingale approach

EQ[ST1{ST>K}|Ft ] = Ste
r(T−t)Q∗(ST > K |Ft) =

= Ste
r(T−t)Q∗

(
Ste

(r+σ2

2
)(T−t)+σ(W ∗

T−W
∗
t ) > K

∣∣Ft

)
=

= Ste
r(T−t)Q∗

(
W ∗

T −W ∗
t√

T − t
>

ln( K
St

)− (r + σ2

2 )(T − t)

σ
√
T − t

∣∣∣Ft

)
=

= Ste
r(T−t)

(
1−Q∗

(
W ∗

T −W ∗
t√

T − t
≤

ln( K
St

)− (r + σ2

2 )(T − t)

σ
√
T − t

∣∣∣Ft

))
=

= Ste
r(T−t)

(
1− Φ

(
ln( K

St
)− (r + σ2

2 )(T − t)

σ
√
T − t

∣∣∣Ft

))
=

= Ste
r(T−t)Φ

(
ln(StK ) + (r + σ2

2 )(T − t)

σ
√
T − t

∣∣∣Ft

)
=

= Ste
r(T−t)Φ (d1) .
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Black–Scholes formula: Martingale approach

B Now we just have to put everything together. As shown in equation

(13), the call option price is given by

C (t,St) = e−r(T−t)EQ[ST1{ST>K}|Ft ]− Ke−r(T−t)Q(ST > K |Ft).

B We calculated

EQ[ST1{ST>K}|Ft ] = Ste
r(T−t)Φ (d1) ,

and

Q(ST > K |Ft) = Φ(d2).
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Black–Scholes formula: Martingale approach

B This yields the Black-Scholes formula for call options:

C (t, St) = StΦ (d1)− Ke−r(T−t)Φ(d2),

where

d1 =
ln(StK ) + (r + σ2

2 )(T − t)

σ
√
T − t

,

and

d2 = d1 − σ
√
T − t.

B Φ(·) denotes the cdf of a N (0, 1) distributed random variable

Φ(x) :=
1√
2π

∫ x

−∞
e−

s2

2 ds.
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Black–Scholes formula: Martingale approach

B The put option price can be derived analogously (for example via the

martingale approach) to the call price by imposing an appropriate

final pay-off.

B Alternatively, we can derive it using the put-call parity relation

C (t,St)− P(t,St) = St − K · e−r(T−t) .

B The put option price is

P(t, St) = K · e−r(T−t) · Φ(−d2)− St · Φ(−d1) .
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Black-Scholes formula: Summary

Setting: Derive the Black-Scholes call option price with the martingale

approach.

Main steps:

1. Apply the Fundamental Theorem of Asset Pricing to write the call

option as a discounted pay-off under Q.

2. Decompose the price into

C (t,St) = e−r(T−t)EQ[ST1{ST>K}|Ft ]− Ke−r(T−t)Q(ST > K |Ft).

3. Solve for Q(ST > K |Ft) by writing the dynamics of St under Q and

using the normality of the Brownian motion.

4. Using a change of measure from Q to Q∗ write EQ[ST1{ST>K}|Ft ] as

EQ[ST1{ST>K}|Ft ] = Ste
r(T−t)Q∗(ST > K |Ft).

5. Solve for Q∗(ST > K |Ft) (same procedure as Step 3).
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